
A Set-Oriented Formalism as a Foundation for the Modeling and Verification of
Connected Data and Process Specifications

Julia Martini, Hannes Restel, Raik Kuhlisch, Jörg Caumanns
E-HEALTH // ESPRI
Fraunhofer-FOKUS

Berlin, Germany
{julia.magdalena.martini, hannes.restel, raik.kuhlisch, joerg.caumanns}@fokus.fraunhofer.de

Abstract—In this work-in-progress report, a methodology
based on a fully formalized and machine-readable formalism is
introduced. The goal is to help modelers/developers to design
and verify specifications, standards, and profiles in the field of
information exchange. The formalism allows the specification
and verification of process models as well as data/information
models. These formalized specifications describe the structure
(syntax) and meaning (semantics) of data models and process
models as well as relations (requirements, dependencies, rules,
constraints, pre-/post-conditions) between them. Unlike the
traditional approach of defining a specification, which is to
first write an unstructured specification document and then to
derive a platform-specific binding from it (e.g., XML Schema),
the specification itself is directly defined in a structured and
machine-understandable formalism on a logical level. Fully
formalized specifications allow for automatic validation and
verification and, therefore, allow checking if the specification is
complete and consistent so that dependencies between process
steps can be verified. This work in progress lines out the very
foundations of the described methodology by introducing a
Set-Oriented formalism (SOF) that is used to formalize data
models and dependencies.

Keywords-specification; formalism; profiling; validation;
information modeling.

I. INTRODUCTION
To simplify the development of applications and to

achieve interoperability, acknowledged specifications (de
jure standards, de facto standards) for document and message
exchange are widely used in our current era of net-based
information exchange. An information exchange
specification may define data and information models as
well as process/protocol models. To support a multitude of
different use cases in a variety of domains, standards are
usually defined in a rather generic way. This often results in
an (intentionally) ambiguous specification that allows
multiple interpretations by different parties and, therefore,
limits interoperability. To counter this effect, domain
specific profiles are derived to restrict the specification and
to make it unambiguous. Even a set of specifications may be
compiled into a single profile to specify a more complex
process.

Often, the existing information exchange specifications
are barely represented as fully formalized documents and,

therefore, cannot be understood by machines. They need to
be manually interpreted, transformed and bound into a
serializable, machine-computable representation on the
platform specific level [1] that is finally used to generate and
exchange instances (messages, documents) of those models
on runtime. Technologies/methodologies are widely used to
support those steps (see Table I).

For example, the Unified Modeling Language (UML) [2]
and the Object Constraint Language (OCL) [3] may be used
to define the data models as well as constraints, and the
Extensible Markup Language (XML) Schema [4] and
Schematron [5] may be used for the binding. Still, large parts
of the specifications located on the computational
independent level (CIM, see [1]) and platform independent
level (PIM, see [1]) are represented as unstructured (free
text) documents describing the purpose, syntax and
semantics of a specification. Thus, an automated
transformation from one step of the specification
development chain to the other is rarely possible.

If a set of specifications is compiled to define a profile,
then the complexity increases because relations
(requirements, dependencies, rules, constraints, pre-/ post-
conditions) between the data and process models of each
incorporated specification do exist. The more complex those
relations are, the more difficult it is to define a valid,
complete and unambiguous profile and to verify the
correctness of the profile.

To counteract the above-mentioned problems, a
methodology based on a mathematical, formalized and
machine-readable formalism is introduced in this report,
called Set-Oriented formalism (SOF).

This formalism allows the specification and verification,
both of the defined process models as well as the
data/information models of a specification including the
relations between the models on a level prior to the platform
specific level, i.e., on CIM and PIM.

422Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

TABLE I. DEVELOPMENT CHAIN FROM SPECIFICATION OVER
BINDING TO INSTANCES

Step Denoted in

Specification	
(Standard, Profile)

Unstructured document,
UML/OCL, Business Process Modeling Language,
Fundamental Modeling Concepts (FMC) etc.

Binding
XML Schema, Schematron, Resource Description
Framework-Schema (RDFS), Structured Query
Language (SQL), JSR-94, etc.

Instance XML, JavaScript Object Notation (JSON), etc.

In Section II, existing formalisms are evaluated, especially
UML and OCL. In Section III, the Set-Oriented Formalism
itself is introduced by formally defining its structure
component and rule component. Subsequently, the
transformation from a sample model depicted in SOF into a
platform specific perspective (i.e., XML/Schematron
representation) is described in Section IV. To support
comprehensibility, all Sections make use of a shared
example. This report concludes with a short summary of the
findings and an outlook (Section V).

II. RELATED WORK
The worldwide established modeling language UML

supports the standardized specification, construction and
documentation of a system. UML’s boundaries are that
element-spanning semantic constraints/dependencies are not
representable. For defining these rules for model elements,
UML was augmented with the OCL, which is a declarative
language. With the OCL one can, for example, define
invariants, pre-, and post-conditions.

In SOF, the elementary dependencies regarding the
cardinalities and data types that the UML depicts graphically
are expressed with the structure component. The rules for
model elements (e.g., invariants, pre- and post-conditions)
are defined in the rule component, thereby interpreting each
rule as a set of sets, which constitutes a valid instance of a
model regarding that rule. OCL’s boundaries are that
inconsistent specifications, that is the combination of
constraints contradicting each other, cannot be recognized. In
SOF, the recognition of inconsistent specifications is
possible. Since each constraint represents a set of valid
instances of the model, checking via the intersecting set can
determine whether an instance exists at all that fulfills all
constraints (see Section III.C, list item c). In particular, this
can be done pairwise for the constraints. The criteria for such
a consistent specification is, hence, that the intersecting set
of constraint sets is not empty. The familiar “frame problem”
that can arise with OCL can also be solved with SOF since
the post-conditions can be represented in SOF as the final
state of the whole system.

III. THE SET-ORIENTED FORMALISM (SOF)
The SOF is designed to specify fully formalized and

serializable data/ information models. Any data model,
which can be transformed into a tree, is defined as a
serializable information model. The basic principle of SOF is
to represent all elements and their properties and constraints
of a serializable information model as a set. For example,
dependencies regarding the cardinality, data type or value of
each element are represented as a set. This enables the
interpretation of element-spanning constraints as a set of sets
that constitutes a valid instance of the model regarding the
constraint. Through this set-oriented representation of each
element and the constraints, each verification problem can be
reduced to a subset or intersecting-set problem (see Section
III.C). The SOF has two main components: the structure and
the rule component. The structure component is a
degenerated table. Each cell represents an element of the
information model referenced by an identifier. Using these
identifiers, rules defined within the rule component may be
attached to each cell to express dependencies regarding the
values and cardinalities of the elements among themselves.

A. The Structure Component
The structure component itself includes a constructively

defined table 𝑇! that represents a serializable information
model S in a way that each cell unit (called 𝑇!-cell) is a
representative of a unique element of S. Each 𝑇!-cell is fully
formalized, providing information about the data types and
cardinalities of its S-element representative. The construction
is hierarchy-preserving, so that each 𝑇!-cell is assigned to a
unique identifier 𝑖 by its location. The identifier 𝑖 is assigned
to the same element of the information model using an
algorithm to navigate within the tree of the information
model (as shown in Figure 5 below).

1) Construction of 𝑇!

Assume a serializable information model S and an
infinite table 𝑇 so that 𝑇 contains an infinite amount of rows
and columns. Additionally, the tuple 𝑖, 𝑗 with 𝑖, 𝑗 ∈ ℕ! will
be the representative of the 𝑇-cell that is located in the 𝑖-th
row and 𝑗-th column. The algorithm for the construction of
𝑇! is displayed in Figure 1, whereby the infinite table 𝑇
evolves into 𝑇! , as the representative of the information
model S.

Each time createStructuralComponent() is executed, e
provides the current element and its location (i,j) within the
table (see Figure 1). At the first call (highest level of
recursion) e is the root element of the serializable
information model S and (i,j)=(1,1). The cells of the sub-
elements of the current element e are recursively evolved
until there is only one element with no further sub-elements
left, i.e., a leaf.

The following section describes how an element (i.e., 𝑇!-
cell) of the information model in SOF (as suggested by the
function fill_T-Cell()) has to be coded.

423Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

1. createStructuralComponent(Element e, T-cell (i,j))
2. fill_T-cell(e, (i,j))
3. for each sub-element c
4. k=i
5. i= createStructuralComponent(c, (i,j+1))
6. connect all T-cells between (k,j) and (i,j) to one 𝑇!-cell
7. if no sub-elements exists
8. return i+1
9. else
10. return i

Figure 1. Algorithm for the construction of TS.

2) Syntax and Markup for the 𝑇!-cells

The name and specifications regarding the cardinality
and data types written in the 𝑇-cell are predetermined by the
information model S. The syntax markup depicted in Figure
2 has been developed in order to represent each element’s
features.

Figure 2. Syntax of the cell markup.

a) Name of element:
① The name of the element e.

b) Markup concerning the cardinalities:
② If e is a required element, ① will be underlined.
④ If e is an at-most-once element, it will be marked

with “!“.
à If e is a prohibited element, see ⑤.
à If e is an exactly-once element, ① will be

underlined and marked with "!".
à If neither the name of e is underlined nor the

annotation "!" is used, e is an optional-many element.
③ Restrictions regarding the cardinality and data types

of e that are determined by other elements are defined as
rules in the rule component. Each rule of r is referenced
using unique Roman numerals (e.g., “III”) with an optional
prefix or universal rules (see Section B.2).

c) Markup concerning data types:
⑤ The value range of e is illustrated using curly

brackets. For instance, within an XML-based standard the
value range is interpreted using the following XML
Schematron definitions: value, pattern, type, ref. In the case
of ref anon, the value range of the referencing XSD element
is used.

à If e is a prohibited element, “Ø“ will be annotated
instead of the value range.

⑥ If e holds a default value, it will be noted within
round brackets.

Figure 3 shows an extract of the SAML specification [6],
which will serve as a continuous example in this report.

Figure 4 shows how the structure component is applied to
that SAML extract.

1. <?xml version="1.0" encoding="US-ASCII"?>
2. <schema targetNamespace="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns=http://www.w3.org/2001/XMLSchema
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" version="2.0">

3. <!—[...]-->
4. <element name="Assertion" type="saml:AssertionType"/>
5. <complexType name="AssertionType">
6. <sequence>
7. <element ref="saml:Subject" minOccurs="0"/>
8. </sequence>
9. <!—[...]-->
10. </complexType>
11. <element name="Subject" type="saml:SubjectType"/>
12. <complexType name="SubjectType">
13. <!--[...]-->
14. <element ref="saml:SubjectConfirmation"
maxOccurs="unbounded"/>

15. </complexType>
16. <element name="SubjectConfirmation"
type="saml:SubjectConfirmationType"/>

17. <complexType name="SubjectConfirmationType">
18. <sequence>
19. <!--[...]-->
20. <element ref="saml:SubjectConfirmationData"
minOccurs="0"/>

21. </sequence>
22. <attribute name="Method" type="anyURI" use="required"/>
23. </complexType>
24. <element name="SubjectConfirmationData"
type="saml:SubjectConfirmationDataType"/>

25. <complexType name="SubjectConfirmationDataType" mixed="true">
26. <complexContent>
27. <restriction base="anyType">
28. <attribute name="NotBefore" type="dateTime"
use="optional"/>

29. <attribute name="NotOnOrAfter" type="dateTime"
use="optional"/>

30. <attribute name="Recipient" type="anyURI"
use="optional"/>

31. <!--[...]-->
32. </restriction>
33. </complexContent>
34. </complexType>
35. </schema>

Figure 3. Extract from the XML Schema Definition of a SAML assertion.

Figure 4. Extract of a SAML assertion as a structure component in SOF.

3) Referencing and Navigation using Identifiers

Each serializable information model S can be
transformed into a tree. In order to refer to an element within
such a tree, it is sufficient to provide, for instance, the path in
a tuple form 𝑥!, 𝑥!,… , 𝑥! . The path has to be followed
from the root element in order to get to the last element.
After the construction of 𝑇! , a 𝑇! -cell is accessible by a
special navigation through a tuple referring to the same
element (see algorithm in Figure 5). If 𝑥!, 𝑥!,… , 𝑥! is a
tuple, describing an element e within the tree of the
information model S, then the navigation in 𝑇! will be, as
shown in Table III.

424Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 6 applies the algorithm on the sample SAML
extract (compare to listing in Figure 3).

1. while i < n
2. goto 𝑥! − 1 cell downward
3. goto the top right-hand column relative to the current cell
4. goto 𝑥! − 1 cell downward and print output

Figure 5. Algorithm to navigate within the tree of the information model.

Figure 6. Navigation within the tree representation for an SAML

assertion.

The table-oriented navigation within the structure

component, according to the path in Figure 6, is further
illustrated in Figure 7.

To keep the rules short, elements of S are referenced with

tuples instead of their full names.

Figure 7. Navigation path within the structure component.

B. The Rule Component
The rule component for an information model S holds

rules that S has to fulfill at all times, i.e., evaluates to true.
Each rule is identified by unique Roman numerals to
reference it within the 𝑇!-cells of the structure component.
Vice versa the 𝑇!-cells addressed within a rule are identified
by their tuple identifier.

1) Syntax of the Rule Component:
The syntax of the rule component is defined using a

Domain-Specific Language (DSL) created in Xtext [7]. The
syntax of the DSL will be explained in the subsequent
paragraphs. The basic elements are sets that are categorized
as follows:

a) Simple Sets
• Enumerative sets specify the elements contained (via

their identifiers), separated by commas and
encompassed by curly brackets.

• Defined sets are an accumulation of elements that
fulfill specific characteristics regarding their
cardinality. The four defined sets are 𝐴!, 𝑅!, 𝑃! and
𝐼!:

o 𝐴! contains all at-most-once elements,
o 𝑅! contains all required elements,
o 𝑃! contains all prohibited elements and
o 𝐼! instanced in the instantiation of S.

Therefore, the defined sets are S-specific and defined

within the structure component’s context since its elements
are already underlined and marked with the respective
symbols ("!" and "Ø").

b) Feature Sets

Feature sets are denoted as "[A]" and contain the
elements that fulfill the requirements of statement A. For
example, the set 1 , 1,2 ⊂ 1 , 1,3 evaluates to
the set 1 since 1 ⊂ 1 , 1,3 is true, but
1,2 ⊂ 1 , 1,3 is false.

The sets 𝐶 and 𝐷 can be combined with the following

operations and relations:
• 𝐶 − 𝐷 forms the set of all elements of 𝐶 except

those contained in 𝐷.
• 𝐶 + 𝐷 forms the set of all elements contained in 𝐶 or

𝐷.
• 𝐶 ∩ 𝐷 forms the set of elements that are contained in

𝐶 and 𝐷; machine-understandable: 𝐶 intersect 𝐷.
• < 𝑥 > provides the value of the element with the

identifier 𝑥.

Statements are created through the subsets’ correlations

or the set operators, respectively:
• 𝐶 ⊂ 𝐷 is true if and only if all elements contained in

𝐶 are also contained in 𝐷; machine-understandable:
𝐶 subsetOf 𝐷.

• 𝐶 ⊄ 𝐷 is true if and only if all elements in 𝐶 are not
contained in 𝐷 ; machine-understandable: 𝐶
notSubsetOf 𝐷.

• #𝐶 provides the number of elements in 𝐶 . A
statement is formed with the #-operator, the
relational operators >=, <=, =, >, < together with
an accompanying integer.

The statements can be linked with the known sentential
connectives AND, OR, XOR, and =>.

Operator and sentential connective ranking order: As there
is no existing operator and sentential connective ranking
order, the latter has to be defined using appropriate brackets
so that the nesting represents the desired priority.

425Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

When using SOF, it became apparent that there often was
a repetition of rules with the same content. To avoid the
latter, so-called universal rules have been established.

2) Universal Rules
A universal rule u applies to each 𝑇!-cell in which u has

been referenced. Subsequently, all universal rules are
semantically limited in their cardinality since the referenced
elements of the serialized information model S, which are
underlying the universal rules, have to be derived from the
position of the annotated field. An example of such a
universal rule is uI:

𝑢𝐼: 𝑥!,… , 𝑥#(!)!! ⊂ 𝐼! 𝐴𝑁𝐷 𝑥 ⊂ 𝑅! 𝑋𝑂𝑅

𝑥!,… , 𝑥#(!)!! ⊄ 𝐼! 𝐴𝑁𝐷 𝑥 ⊄ 𝐼! .

The rule states that the element e annotated with uI has to
be instantiated if and only if its parent element has been
instantiated.

C. Example of a Validation
This section briefly demonstrates how a validation is

conducted by validating, if a profile conforms to a standard.
In order to make a correct statement to this effect, the
problem will be reduced to three subset problems. Assume a
profile P, represented in SOF, which is derived from an
existing standard S that itself is represented in SOF.

𝑃 is a valid profile of 𝑆 if and only if the following subset
relations are fulfilled, so that 𝑃 ⊂ 𝑆 evaluates to true.

a) For the 𝐴, 𝑅, 𝑃 sets of the respective rule component
(of 𝑃 and 𝑆) that represent the cardinalities of all
elements: 𝐴! ⊂ 𝐴!, 𝑅! ⊂ 𝑅!, 𝑃! ⊂ 𝑃!.

b) Let 𝐷!! be the set-representation of the data type or
the value of the model element 𝑖 of the model 𝑋, as
defined in Section A.2). The following must apply
for each element (cell of the structure component)
with the identifier 𝑖:

∀𝑖 ∈ 𝑃: 𝐷!! ⊂ 𝐷!! .

c) Assume 𝑆 is consistent, i.e., there are no rules that
contradict each other:

𝑟
!!!,!!,…

≠ .

Then, each rule 𝑟 = 𝐼, 𝐼𝐼,… of the rule component
needs to be checked whether 𝑃 is included in the set
interpretation of this rule:

∀𝑟 = 𝐼, 𝐼𝐼,… :𝑃 ∈ 𝑟 ⇔ 𝑃 ∈ 𝑟
!!!,!!,…

 .

IV. TRANSFORMATION FROM SOF TO XML
To realize a platform-specific binding, a data model

being developed using SOF can be transformed into an XML
representation. It appears inconvenient to define structural
properties within Schematron, so it will be assumed that the
structure is defined using an XML Schema that is acting as
the structure component. The semantic restrictions are
defined by embedded Schematron rules that are acting as the
rule component. The XPath expressions of the rule elements
context, assert and report are evaluated to a Boolean
expression, while its constructs can be translated, as shown
in Table II.

To exemplify how the transformation works, a rule
defined in SAML Profiles [8] is displayed both in
Schematron and in SOF. The rule states that if an attribute
Method is given the URI-value
“urn:oasis:names:tc:SAML:2.0:cm:holder-of-key”, then
“One or more <ds:KeyInfo> elements MUST be present
within the <SubjectConfirmationData> element. An xsi:type
attribute MAY be present in the
<SubjectConfirmationData> element and, if present, MUST
be set to saml:KeyInfoConfirmationDataType (the
namespace prefix is arbitrary but must reference the SAML
assertion namespace)” [8].

It is impossible to express this rule exclusively using
XML Schema. A schema validation check would be
insufficient, so a Schematron rule (see Figure 8) is embedded
within an XML Schema for the SAML example.

TABLE II. EQUIVALENTS OF XPATH AND SOF

Language
construct

Language
XPath SOF

Path	 a/b/c	 (1,2,3)	

Structure	

<Rule context = „A“>	
<assert a=“B“> </assert>	

A => B	

[a::b = "predicate"]	 [<(1,2,3)> = "predicate"]	
Operators/ Relations 	

Integer	 +, -, *, /, <, <=, =, >=, >, !=	
Boolean	 and, or	

String	 = , !=	
concat()	 ++	

Node set	 count()	 #	
Node	 string()	 <>	

1. <pattern id="subject-confirmation">
2. <title>Holder of Key</title>
3. <rule context="saml:SubjectConfirmation[@Method =
'urn:oasis:names:tc:SAML:2.0:cm:holder-of-key']">

4. <assert test= "saml:SubjectConfirmationData/ds:KeyInfo">
5. Message1
6. </assert>
7. <assert test= "not(saml:SubjectConfirmationData[@xsi:type]) or
saml:SubjectConfirmationData[@xsi:type =
'saml:KeyInfoConfirmationDataType']">

8. Message2
9. </assert>
10. </rule>
11. </pattern>

Figure 8. Exemplary Schematron rule for SAML profiles.

426Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Using SOF, the same rule within the rule component in
combination with the respective structure component, as
depicted in Figure 9, is defined.

 //Holder of key
1. <(1,3,4,5)> = "urn:oasis:names:tc:SAML:2.0:cm:holder-of-key" =>
2. ({(1,3,4,4,1)}subsetOf R AND <(1,3,4,4,1)> subsetOf "ds:KeyInfo"
3. AND ({(1,3,4,4,01)} subsetOf I => <(1,3,4,4,01)> =
"saml:KeyInfoConfirmationDataType"))

Figure 9. Rule for SAML profiles represented in SOF.

V. CONCLUSION AND FUTURE WORK
A Set-Oriented Formalism (SOF) consisting of a

structure component and rule component has been
introduced in this work-in-progress report. The SOF defines
a machine-understandable formalism for the specification of
data models on a logical level (as part of information
exchange specifications). The defined data models are fully
formalized and, therefore, machine-understandable, allowing
them to be verified automatically.

The SOF acts as the foundation for an underlying
methodology that aims to support modelers/developers in
creating complex information exchange profiles based upon
a set of data models and process models. The goal is to
represent the models and relations between the models in a
fully formalized notation so that integrity and verification
checks can be automatically performed and platform-specific
bindings can be generated automatically. No further usage of
different notations/standards for the specification, profiling,
and binding is needed, as all of those steps are covered by a
single formalism.

The current development state of the SOF allows to
define data models and rules and to verify a single data
model. Modeling of process models is not yet available.
Further research is needed to identify whether an algebraic
calculus is suited to cover the needed requirements for
defining and verifying process models and the relations
between models. In addition, it is already possible to derive a

profile from a data model. A graphical user interface is
planned to make those steps easier to use. Implementing a
verification component is planned to verify a given
information model to the syntax compliance as well as the
semantic correctness with respect to the underlying rule
component. Furthermore, components for the automatic
generation of platform-specific binding are intended (XML
Schema and Schematron as well as HL7 FHIR [9]). Finally,
the formalism needs to be extended to work with a set of
models so that relations (requirements, dependencies, rules,
constraints, pre-/post-conditions) between process steps can
be defined and verified.

Subsequent papers and publications are planned that will
describe further components around the SOF (such as
process modeling, combination of formalized specifications,
multi-model verification, etc.).

REFERENCES
[1] M. Belaunde et al., “MDA Guide Version 1.0.1,” June, 2003.
[2] “Unified Modeling Language (UML).” [Online]. Available:
http://uml.org/. [retrieved: August, 2014].
[3] “OCL.” [Online]. Available: http://www.omg.org/spec/OCL/.
[retrieved: August, 2014].
[4] W3C, “W3C XML Schema.” [Online]. Available:
http://www.w3.org/XML/Schema#dev. [retrieved: August, 2014].
[5] ISO/IEC, “Schematron.” [Online]. Available:
http://www.schematron.com/. [retrieved: August, 2014].
[6] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and
Protocols for the OASIS Security Assertion Markup Language
(SAML) V2.0, http://docs.oasis-open.org/security/saml/v2.0/saml-
core-2.0-os.pdf.” März-2005.
[7] “Xtext.” [Online]. Available: http://www.eclipse.org/Xtext/.
[retrieved: August, 2014].
[8] J. Hughes et al., “Profiles for the OASIS Security Assertion
Markup Language (SAML) V2.0, http://docs.oasis-
open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf.” March, 2005.
[9] HL7, “HL7 FHIR.” [Online]. Available:
http://www.hl7.org/implement/standards/fhir/. [retrieved: August,
2014].

427Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

