
Insights from the Defect Detection Process of IT Experts: A Case Study on Data

Flow Diagrams

Gul Tokdemir

Computer Engineering Department

Cankaya University

Ankara,Turkey

e-mail: gtokdemir@cankaya.edu.tr

Nergiz Ercil Cagiltay

Software Engineering Department

Atilim University

Ankara,Turkey

e-mail: necagiltay@gmail.com

Ozkan Kilic

Informatics Institute

Middle East Technical University

Ankara, Turkey

e-mail: ozkankilic@gmail.com

Abstract— Design diagrams employed in software development

process deliver groups of associated information about the

software to be developed. They enhance the perception of the

software engineers helping them better understand the

software system at various levels of system development

process. Today’s fast-changing business environment

necessitates the reflection of these changes into the operational

software systems. Hence, the changes needed in software

systems require software engineers to understand the system

design diagrams and update them according to the changes.

Therefore, it is very important for software engineers to

understand and construct the design representations reflecting

the software requirements correctly for the success of a

software project. In the literature, there are not many studies

conducted to better understand the behaviors of software

engineers during designing and understanding these

representations. Hence, the main aim of this study is to analyze

the defect detection process of software engineers during their

understanding of Data Flow Diagram (DFD) representations

which are used to reveal system processes at different levels of

abstraction and data flow requirements between them. Mainly,

the question which type of defects can be detected easily is

aimed to be answered. The results of this study show that

missing information type defects (Missing Process-MP and

Missing Dataflow-MD) are harder to detect than the

incomplete or incorrect type (incorrect or missing

Information-I) of defects.

Keywords-DFD; software design; diagrammatic reasoning;

defect detection.

I. INTRODUCTION

Diagrams can be more influential than sentential
representations depending on the usage [1], as they
communicate, and leverage knowledge that is crucial for
solving problems [2]. Diagrams provide condensed
information; hence, they are very effective in information
systems for transferring information between stakeholders of
the system during the system design phase. Moreover, during
the software engineering lifecycle phases, they may offer

reductions in cost and enhancements in understanding of the
system.

During software development, engineers need to
understand the system design from the diagrams, transform
the system view into programs by viewing whole system,
and check for consistency and errors resulting from
misunderstanding of the design. As the understanding level
of the engineers gets higher, their error correction
performance is expected to increase. Finding and correcting
these design errors or inconsistencies have a paramount
effect in successful system development on time and within
the predicted cost.

The aim of this study is to analyze the defect detection
process by the software engineers during their DFD
reviewing process. We believe that such analysis would
provide insights about the design diagrams and software
engineer’s defect detection process. The results of this study
are expected to provide insights to the researchers, software
companies, and to the educators to improve DFD cognitive
process. The State of the art section below contains related
studies found in the literature, Methodology section explains
the experiment, Result section analyzes the experiment
results and Discussion and Conclusion section talks about
the insights gained through this study.

II. STATE OF THE ART

Studies report that 40–50% of the development effort is
being spent for fixing errors that could be detected and fixed
early in the software development process [3]. Hence, defect
detection performed early in the software development
process is, an essential task as undiscovered defects may
cause critical problems later in the process. In this regard,
there are many studies mentioning defect detection activity
as important, because, as they disseminate to the subsequent
development phases, recovery would be more costly and
difficult [4][5][6].

Studies also report that, by using model-based
approaches, the defect detection rate could be increased in
the early stages of the software life-cycle [7][8][9].
Accordingly, many researchers analyzed engineers’

441Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

perception of design diagrams and defect detection process
of software engineers in ERD [10], DFD [10], and UML [4]
and their cognitive processes [11]. For instance, Hungerford
et al. [10] states that practice and proficiency in diagrams
improve defect detection process of software engineers.
Kumaresh and Baskaran [5] report that analysis of the
defects at early stages of the software development lifecycle
reduces development time, development cost and the
resources required for the process.

Even though the DFD modeling language is over 30

years old, because of its usage history and familiarity among

the software developers, many researchers, today, based

their studies on this notation [12][13]. Additionally, since

most of the current software systems’ documentations are

based on the DFD notations, for maintenance procedures the

technicians are still required to better understand this

notation. For instance Yuwen and Wang [14] report the

drawing of DFD is the key technology in the development of

system analysis and design [14]. According to them, DFD is

not only the key composing part of the logic model in new

system, but also the key basis in the system physical

designing [14].

However, in the literature, there are not many studies

conducted to better understand the reviewers’ performance

during the defect detection process. For instance, Moser and

Biffl report that the missing or incorrect type of information

is often detected in a later engineering process step [15].

Hence understanding the defect types that cannot be detected

easily could help the software system designers to better

represent this type of information in their representations.

Additionally, this information also can be used to better

guide the reviewers in different phases of software

development process accordingly.
Hence, in this study, defect detection process of software

engineers during their DFD reviewing process is analyzed to
obtain insights about the cognitive processes of the
engineers. Mainly, three different types of defects, namely,
Missing Process (MP), Missing Dataflow or information
(MD) and incorrect or missing Information (I) have been
seeded into the DFD representations. The following research
question is aimed to be answered is 'Which types of defects
(MD, I, or MP) are easy to detect in DFD representations?'

Data are collected through interviews and observations
while the IT experts work on the corresponding materials in
defect detection.

III. METHODOLOGY

The experimental study is conducted with 4 participants
using a study material which is derived from the study of
Hungerford et al. [10], which is adapted to the current
settings of this study and translated into Turkish. Participants
of this study were software engineers with average age of 32
(Table 1).

TABLE I. PARTICIPANTS’ INFORMATION

Participant Age Experience in

the field

Gender Experience

with DFD

P1 29 8 F 8

P2 28 7 M 1

P3 34 12 M 2

P4 35 12 M 3

Average 32 10 3

We have prepared two DFDs of the system with 17
defects seeded in total at two levels. The participants have
been provided the system description one week before the
experiment. During the experiment, participants were asked
to find the defects seeded in the DFDs, based on the system
description.

The defects are categorized into three types: MP, MD
and I. Table 2 summarizes the number of defects in the
DFDs according to each category defined here.

TABLE II. NUMBER OF DEFECTS IN EACH CATEGORY

Code Description # of Defects

MP Missing Process 2

MD Missing Dataflow/information 9

I Incorrect/ Incomplete 6

 Total 17

Table 3 depicts the defects seeded into both DFDs with
their defect types. Figure 2 shows the locations of the defects
(Fig. 1) at level 1 and 2 (Fig. 2).

TABLE III. DEFECT EXPLANATIONS

Defect Description DFD Defect

Type

01 End of job proposal process (1.4) is missing 1 MP

02 The entity named accounting should be job

costing section

1 I

03 Job request data should go from customer to

1.1. Job Evaluation Process

1 MD

04 Receipt information should go from process

“1.5 Payment Monitor” to the Customer

entity

1 MD

05 Job proposal data flow should go data store

named D2, instate of entity named accounting

1 I

06 The data flow from data store D1 to process

1.2 should be part information not customer

information

1 I

07 From entity named customer, to the missing

process named end of job proposal (1.4),

rejection information should go

1 MD

08 the missing process named end of job

proposal (1.4) to the data storage named D2,

end of job proposal information should go

1 MD

09 From process 2.1 to the process 2.2 purchase

order information should go

2 MD

10 From the entity supplier to the process 2.2,

approval date and time information should go

2 MD

11 The Data storage named D7 should be

supplier account, not customer account

2 I

12 From the process 2.2 to the storage D5,

instate of customer information, part

2 I

442Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

information should go

13 The direction of the data flow (order form)

from the entity supplier to the process 2.2 is

incorrect. It should be from the process 2.2 to

the entity supplier

2 I

14 Process 2.3 delivery is missing 2 MP

15 From the data storage D8 to the missing

process 2.3, order form information should go

2 MD

16 From the missing process 2.3 to the process

2.2, delivered part information should go

2 MD

17 From the missing process 2.3 to the data

storage D1, delivered part information should

go

2 MD

In Figure 1, there are five processes describing top level

relationships and data flow between processes. These five
processes define the top level diagram of an ERP sales
function module of a company. They include request
evaluation, proposal preparation, work order preparation,
work order close-up and payment follow-up processes.
These processes connected to each other through data flows.
Moreover, data is accumulated in data stores called customer
account, work order/proposal and personnel.

Figure 1. Defects’ Placement in DFD1

Similarly, Figure 2 depicts three sub-processes of
proposal preparation process and their data flow. It has three
processes which define second level DFD of proposal
preparation process. They include parts/stock, order and
delivery operations processes. These processes connected to
each other through data flows. Moreover, data is
accumulated in sx data stores called parts/stock, work order/
proposal, order form, customer account and supplier info.

As seen from Figures 1 and 2, the defects were seeded
into two DFD diagrams and the participants were asked to
detect them and take notes. During this process, the
participants were allowed to check the system description.
In the following section, the results of the defect detection
process are provided.

Figure 2. Defects’ Placement in DFD2

In this study, data is collected through Defect Detection
Report used by the reviewers, observation notes and semi-
structured interview sessions conducted by each reviewer.
The defect detection report has the defect numbers and the
explanation for the defects found. By using this form, the
reviewers were asked to note each defect that they detect
and describe their opinions about this defect as explained in
the explanation document provided in Appendix A. The
observations were conducted by one researcher and
observation notes were taken during each reviewer’s defect
detection process. The durations spent for detecting each
defect were recorded during the observation sessions and
later synchronized with the reported defects in the Defect
Detection Report. Additionally, by the same researcher, a
semi-structured interview session was conducted by each
reviewer individually. The interview sessions took around
30 minutes. The semi-structured interview questions were
formed as below:

1. Which types of defects were easy to detect for you?

2. Which defects were hard to detect for you?

3. Which factors do you think helped you to detect the

defects easily?

4. Which factors do you think maked it hard to detect

the defects?

This study is conducted with the contribution of four

participants who were asked to detect 17 defects seeded in

two DFDs. Since the main research question of this study is

based on the defects, the results of this study based on 68

cases (17 times 4). Additionally, this study aims to focus on

the behaviors of the participants in order to uncover the

complexity of human behavior in such a framework and

present a holistic interpretation of what is happening during

the review process. Nielsen and Landauer [16] also report

that studying with four or five subjects is enough to

understand and explain more than 80% of the phenomena.

Accordingly, in this study, the participants’ behaviors are

analyzed in depth from different dimensions. Since each

participant studied individually, we believe that this number

of subjects could provide a view for understanding the

phenomena.

443Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

IV. RESULTS

Table 4 shows the duration in seconds that each
participant (DPij) spent during each defect detection process.

TABLE IV. DEFECT DETECTION DURATION DATA

Defect Type Defect Dp1j Dp2j Dp3j Dp4j ADi

MP 14 993 993

I 13 386 60 678 70 299

MD 16 256 256

MD 07 145 236 191

I 12 114 347 69 177

MD 09 147 147

I 06 162 88 70 214 134

MP 01 133 113 114 120

MD 04 103 103

MD 03 89 89

I 02 6 163 47 72

I 11 45 45

I 05 36 36

MD 08

MD 10

MD 15

MD 17

As an example, in this table, Dp1 is calculated from the

observation data which shows the duration in seconds that
the participant P1 spend time for detecting the defect i (Di). It
is the duration starting from the time point of last defect
detection process until the defect detection of Di. ADi is the
average of the durations spent by each participant to detect
defect i (Di). As seen in Table 4, the defects D08, D10, D15 and
D17 were never detected. It is interesting that the defect type
of all of these defects that were not recognized by any of the
reviewers was MD type. On the other hand, most of the
defects of type I, detected in relatively less time spent (D2,
D5, D11). Similarly, the participants spent more time for
detecting defects D14 and only one participant could be able
to detect this defect.

We have analyzed this data according to the defect types,
as shown in Table 5. Accordingly, the detection rate for
missing Information (I) type of defects is calculated as
16/24=0.67. Hence, defects of type I and MP were detected
mostly; on the other hand the defects of type MD were
detected seldom.

TABLE V. DETECTED DEFECT TYPE

Defect

Type

Total

Possibilities Total Detected Detection Rate

I 24 16 0.67

MP 8 4 0.50

MD 36 6 0.17

The detection frequency Fi of defects is shown in Table
6. In this table, Fi represents the frequency of a detected
defect by participants. Its value is calculated by adding 1
point for each defect’s detection for defect i (Di). For
example, if the defect is detected by only one participant this
value is 1, if it is detected by three participants the Fi value
for that defect is calculated as 3. As seen from Table 6, four
defects 08, 10, 15 and 17 were never detected.

TABLE VI. DEFECT FREQUENCY FI

Defect Type Defect Fi

I 06 4

I 13 4

MP 01 3

I 02 3

I 12 3

MD 07 2

MD 03 1

MD 04 1

I 05 1

MD 09 1

I 11 1

MP 14 1

MD 16 1

MD 08

MD 10

MD 15

MD 17

The average frequency of defect detection according to
the defect types are given in Table 6. As seen from this table,
the MD types of defects are detected less frequently, and the
defect of type I detected most frequently. Parallel to this
finding during the interviews, three reviewers (P2, P3, P4)
reported that missing type of information were hard to detect.
For instance, P3 reported that “the missing procedures were
very hard to detect for me”. Similarly, during the interviews,
two reviewers (P1 and P2) reported that data flows were easy
to understand. For instance P2 reported that “Detecting the
data flow directions were easy. I easily detected the
incoming and outgoing data. It was also easy to decide the
data flow to each data store and which data should be read
from a data store. Detecting the data, that supposed to go to a
data-store but not shown in the design, was also easy”.
Moreover, we have asked participants about the factors that
helped them to find the defects easily. They noted that the
diagrams used to describe process were easy to detect. They
stated that the data flows and external storages were difficult
to follow in the diagrams. They said bigger and more
detailed shapes with color would have increased the
understandability of these diagrams.

V. DISCUSSION AND CONCLUSION

In this study, an experiment is conducted to analyze
defect detection performance of software engineers in
reviewing DFD diagrams. During the experiment, we had
provided materials to the participants, one week before the
experiment (Appendix A) and requested to find defects on
DFD diagrams compared to the explanations given. They
were asked to think aloud. We have recorded defect
detection duration of each participant. The results of this
study show that, missing information type defects (MP and
MD) are harder to detect than the incomplete or incorrect
type (I) of defects. Hence the defect detection frequency of
defects in average is higher for of type I defects (2.67) that
that of type MP (2.00) and type MD (1.20) defects.
Similarly, the detection rate of type I defects (0.67) is higher
than that of type MP (0.50) and type MD (0.70) defects.

444Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

According to the results of this study, the software
system designers may reconsider their designs especially for
the defects of type missing information, which are harder to
be detected in the future and may increase the cost of
software projects. We believe that further analysis of the
DFD defect detection process is expected to provide more
insights to the researchers, software companies, and to the
educators to improve DFD cognitive process.

REFERENCES

[1] J.H. Larkin and H.A.Simon, “Why a diagram is (sometimes)
worth ten thousand words,” Cognitive Science, 1987, vol. 11,
pp. 65-99.

[2] J. Zhang, “The nature of external representation in problem
solving,” Cognitive Science, 1997, vol. 21 i2. 179-217.

[3] B. Boehm and V.Basili, ”Software defect reduction top 10
list”, IEEE Computer, vol. 34, pp. 135–137, January. 2001.

[4] O. Laitenberger, C. Atkinson, M. Schlich, and K. El Emam,
“An experimental comparison of reading techniques for
defect detection in UML design documents,” Journal of
Systems and Software, August. 2000, vol. 53 n.2, pp. 183-
204.

[5] S. Kumaresh and R. Baskaran, “Defect analysis and
prevention for software process quality improvement,”
International Journal of Computer Applications, 2000, vol. 8
i7. 42L 47.

[6] G. Travassos, F. Shull, M. Fredericks, and V.R. Basili,
“Detecting defects in object-oriented designs: using reading
techniques to increase software quality,” ACM SIGPLAN
Notices, October. 1999, vol. 34 no. 10, pp. 47-56.

[7] R. Alur and A.Chandrashekharapuram, “Dispatch sequences
for embedded control models”, In Proc. 11th IEEE Real-Time
and Embedded Technology and Applications Symp. 2005,
vol. 11, pp. 508–518.

[8] L. Kof “Scenarios: identifying missing objects and actions by
means of computational linguistics”, In Proc 15th
International Requirements Engineering Conference, pp. 121–
130, 2007.

[9] L. Kof, R.Gacitua, and M. Rouncefield, P.Sawyer, “Ontology
and model alignment as a means for requirements validation”,
in International Conference on Software Engineering, pp. 46–
51, 2010.

[10] B.G.Hungerford, A.R.Hevner, and R.W.Collins,”Reviewing
Software Diagrams: A Cognitive Study,”, IEEE Transactions
on Software Engineering, February, 2004, vol. 30 no. 2, pp.
82-96.

[11] K.A. Ericsson and H.A.Simon, Protocol Analysis: Verbal
Reports as Data. revised edition, Bradford Books/MIT Press,
Cambridge, MA 1993.

[12] F. Chan, “The Role and Mechanism of Analogical Transfers
in Novices' Data Flow Diagram Problem Solving: The Effects
of an Explicit Hint and Alternative Training Methods, Senior
Honors Thesis, University of Hawaii, 2014.

[13] V. Repa, Object-Oriented Analysis with Data Flow Diagram.
InInformation Systems Development (pp. 419-430), 2013,
Springer, New York.

[14] S. Yuwen and K.Wang, A Method of Data Flow Diagram
Drawing Based on Word Segmentation Technique. In Frontier
and Future Development of Information Technology in
Medicine and Education, pp. 3269-3274, 2014, Springer,
Netherlands.

[15] T. Moser and S.Biffl, “Semantic tool interoperability for
engineering manufacturing systems” In Proc. Emerging

Technologies and Factory Automation (ETFA), IEEE
Conference, pp. 1-8, 2010.

[16] J. Nielsen and T.K. Landauer, “A mathematical model of the
finding of usability problems”, Proc. ACM INTERCHI'93
Conference, pp. 206-213, 1993.

APPENDIX A

Problem Definition

Assume Mavi Company has business in pipe sector. The
company’s work and process descriptions are given below.

There are several types of employees working for Mavi
Company, such as managers, sales staff and security guards.
Telephones are shared and several employees may have the
same office address. Security guards may be assigned to both
buildings and car parks. Sales staff provides consultation
services to customers by phone or face to face. Customers
are assigned to exactly two salespersons and employees
work with other employees in teams.

Each department can have more than one unit of the
company. Personnel works in the units and each employee
can work in one unit. Unit numbers and unit names are only
defined uniquely in that department.

Customers can make job requests to Mavi Company.
Mavi Company may reject this request, or if accepts, it
prepares a job proposal and sends it to the customer.

When a job proposal is prepared, necessary parts’
information is retrieved from parts file. Unit labor costs for
parts are retrieved from job costing section. In this way,
prepared job proposal is sent to the customer. Customer may
accept or reject the proposal. If the customer rejects it, job
proposal is closed. If accepted, the proposal is signed and
the first payment is withdrawal.

Accepted job proposal is used to create a work order to
follow the request in the company. For each customer’s each
job proposal, a single account is opened. A manager is
appointed for each work order. Some work orders may
include several customers. Orders associated with each other,
brought together more than one job are classified as a new
project. First invoice is sent to the customer at this step.

After the work orders are prepared, the necessary parts
are controlled from the stock. If the parts do not exist in the
stock, purchase is made using the amount information.
According to the purchasing information, suppliers are
identified; invoice is prepared and sent to the supplier. When
the supplier approves the invoice, date and time is recorded.
Each manufacturer must have a separate account. The
supplier should provide invoice for the manufactured parts.
This information is used to update the supplier info. Invoices
are controlled as the parts are delivered. After the delivery,
part information is updated in the stock.

Special promotional campaign is created for important
projects. These campaigns are handled either by Mavi
Company, or by a local organization like a school or an art
festival. Projects cannot be performed by both campaigns.
Each campaign introduces a single project.

445Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

SOME DESCRIPTIONS ABOUT THE RESEARCH

1. Assume you are employed to analyze the software

system of Mavi Company. In this document, you

are given information about the business process of

Mavi Company.

2. You are required to use this information in

analyzing the system to find the possible

errors/mismatches. These errors/mismatches may

exist because of incomplete or incorrect

requirements.

3. The errors/mismatches you found should be based

on the system definition and the other supporting

documents presented to you earlier. Assume the

document describes the company processes

correctly.

4. In this study, you are not required to create new

solutions to solve the problems or not required to

fix these problems.

5. You are given 2 hours to find the induced

errors/mismatches. Please adjust your time

accordingly.

6. Identify errors/mismatches and list them on the

forms provided. To describe the error/mismatch, if

possible, please specify the related process(es) and

data-flow information. If not possible, please use

most appropriate way to explain the

error/mismatch.

7. You can use any method or technique to find the

Identify errors/mismatches. However, during the

process, please don’t interact with anyone else.

8. In identifying the errors/mismatches, you can

review the documents provided to you as you want.

9. Please, try to think loudly as you are analyzing the

system design. While you are reading and

interpreting the documents, try to talk loudly.

please, please. In particular, when you identify

errors/mismatches, please indicate your findings

loudly.

DFD Notations

1. The DFD diagrams used in this study are developed by

Visio. The processes are represented by circles; the data

flow is represented through arrows as described below.

2. Data storage is represented as below:

3. External entity is represented as below:

4. In this study, you are given Context diagram (Level-0

DFD) and DFD of two processes in detail (Proposal

Preparation process and Stock control/ Proposal process).

5. There are 17 defects in DFD diagrams These can be

missing process, Missing Dataflow/information, Incorrect/

Incomplete data flow type defects

6. The top level process definitions are given in the figure

below. Proposal Preparation and Stock control/ Proposal

processes’ DFD will be given during the experiment.

446Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

