
Towards Autonomic Context-Aware Computing for SaaS Through Variability

Management Mechanisms

Asmae Benali, Bouchra El Asri and Houda Kriouile

IMS Team, SIME Laboratory

ENSIAS, Mohammed V University

Rabat, Morocco

{asmae.benali, houda.kriouile}@um5s.net.ma

elasri@ensias.ma

 Abstract—Owing to the multi-tenancy of Software-as-a-

Service applications, the management of their resources

becomes a challenge and a crucial task in order to provide

highly configurable applications to thousands of tenants in a

shared and heterogeneous cloud environment. They need

dynamic context-aware configuration and intelligent strategies

for provisioning available and cost-efficient services. In this

sense, this paper identifies open issues in autonomic resource

provisioning and shows innovative management techniques for

these applications on cloud. Indeed, our work will focus on

implementing an autonomic management artifact of services

variability concerning the context. In this paper, we highlight

our process for the development of autonomic context-aware to
manage the SaaS variability.

 Keywords--multi-tenancy; context-aware; autonomic system;
SPL; SaaS

I. INTRODUCTION

The emergence of SaaS (Software-as-a-Service) provision
and cloud computing in general had recently a tremendous
impact on corporate information technology.
 While the implementation and successful operation of
powerful information systems continues to be a corner stone
of success in modern enterprises, the ability to acquire IT
(Information Technology) infrastructure, software, or
platforms on a pay-as-you-go basis has opened a new avenue
for optimizing operational costs and processes. Cloud
computing as defined by the NIST [1] as an IT model that
allows network to have an easy access to a shared set of
configurable computing resources. Cloud Computing
providers offer their services in three basic models: SaaS,
PaaS (Platform-as-a-Service) and IaaS (Infrastructure-as-a-
Service).
 A SaaS application is hosted by a provider in the cloud,
rented to multiple tenants and accessed by the tenants’ users
over the Internet [2]. Also, application resources are shared
among tenants. In the provisioning of a SaaS application,
various stakeholders with different objectives are involved,
i.e., providers of all cloud stack layers as well as tenants and
their users [1].
 Hence, an autonomic and dynamic configuration
management is necessary in order to offer these highly
configurable SaaS applications.
 Some configuration steps, e.g., performed by tenants, are
independent from each other. However, others are dependent,

e.g., tenant’s configuration choices depend on the pre-
configuration of the provider. Thus, these later depend on the
context-aware of the providers.
 In addition, stakeholders’ objectives may change over
time, e.g., if a tenant decides to change the tenancy contract.
Thus, the configuration process needs to support
reconfiguration of stakeholder pre-configurations and
subsequent ones being further affected.
 Our ongoing works are twofold. Firstly, we define
context-aware for a configuration management of SaaS
applications. Secondly, we suggest an autonomic
configuration management based on SPLE (Software Product
Line Engineering) [3].

The structure of this paper is as follows. We describe the
background in Sections II and III. Then, we show our
motivations in Section IV. Section V depicts our futures
contributions. In Section VI, we present the related work and
the state-of-art. Finally, we conclude this paper in Section
VII.

II. VARIABILITY-AWARE SYSTEM

 Variability is an ability of software artifacts that allows

them to be extended, modified, customized or configured to
meet specific needs [4]. In this section, we discuss, in

general, the literature concerning systems based on variable

modules. Several works have been proposed. We have

classified them according to the different phases of software

engineering, namely, elicitation time, design time, compile

time and binding time. The system variability may occur in all

these phases [5].

A. Elicitation Time

 It is precisely about managing the variability at the

customer’s requirements level, examining their priorities and

making appropriate choices. A variety of requirement

approaches have been proposed in recent works. Barney et al.

[6] showed that the management of software product value

depends on the context in which the product exists.

B. Design Time

 At design time, all variants and variations points are

defined in the software architecture or in a complementary

feature tree or table. Several approaches were proposed in this

phase to model software product lines by using feature

models starting with the FODA (Feature Oriented Domain

453Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://um5s.net.ma/

Analysis) approach [7]. This approach aims at capturing the

commonalities and differences points at requirement level.

C. Compilation Time

 During the compilation time, the variability described in

the architecture must be compiled in the software components

(e.g., core assets in a product line) by means of a variety of

programming techniques. Cardelli et al. [8] proposed a

framework where each module is separately compiled to a

self-contained entity and showed that this separation makes it

possible to link safely the compatible modules together.

D. Binding Time

 Binding time is a property of variation points to delay the

design decisions to a later stage, as new requirements or

different context conditions may require concretize the

variability at any time after design time. Trummer [9]

introduced a corresponding data model that is based upon the

Café (Cloud Application Framework) model. Applications

are composed out of components that may be provisioned
separately.

III. CONTEXT-AWARE SYSTEM

 An understanding of how context can be used will help

us determine what context-aware behaviors to support in our

future framework [5].

A. Context

 Before specifying our own definition of context to use, we

will look at how researchers have defined context in their own

work. The first work that introduced the term ‘context-aware’

was done by Schilit and Theimer [10]. They defined context

as location, identities of nearby people and objects, and

changes to those objects. Dey et al. [11] defined context

as:”... any information that can be used to characterize the

situation of an entity. An entity is a person, place or object

that is considered relevant to the interaction between a user

and an application, including the user and applications

themselves.”
 In our work, we will adopt this definition because it

allows context to be either explicitly or implicitly indicated by

the user.

B. Context-Aware System

 The first research investigation of context-aware

computing was discussed by Want et al. [12] in 1992. Since
then, numerous approaches attempts to define context-aware

computing were appeared. Hull et al. [13] defined context-

aware computing to be the ability of computing devices to

detect and sense, interpret and respond to aspects of a user's

local environment and the computing devices themselves.

Dey and Abowd [14] defined Context-Aware as:”A system is

context-aware if it uses context to provide relevant

information and/or services to the user, where relevancy

depends on the user’s task”. In our work, we will adopt this

definition because it remains the most generic.

IV. MOTIVATIONS: THE NEED OF AUTONOMIC COMPUTING

FOR THE SAAS ACCORDING TO THE TENANT-CONTEXT

 SPL have become a common skill for creating software

systems that share a common set of commonalities and

variabilities that distinguish specific products, thus promoting

the development of a family of related products.

 Deploying an application in the cloud provides to its owner

many advantages: cost reduction, scalability, high availability,

etc. However, the migration of an application or the

development of a new service in the cloud is not trivial

because of the large number of functional and non-functional

requirements to deal with [5].

 Figure 1. Configuration and instansiation of SaaS application.

 We show in Figure 1 how a multi-tenant SaaS application

is configured. Tenancy contracts define the provisioned

application functionality as well as QoS (Quality of Service)

guarantees. Thus, an Extended domain Feature Model (EFM)

[15] with attributes is convenient to express this variability
and a staged configuration as proposed by Czarnecki et al. is

applicable to create those contracts [16]. In contrast to

conventional SPL engineering, multiple tenancy contracts

and user variants are derived, but integrated into a single

application instance in the solution space. To handle this

variability, a self-adaptive application architecture was

proposed. In this paper, we focus on autonomic managing the

variability of SaaS applications by taking into account the

context-aware of the system.

V. TOWARD AUTONOMIC CONTEXT-AWRE MANAGEMENT

OF VARIABILY

 In this section, we will present the notion of autonomic

system, and our overview process to achieve autonomic

configuration.

A. Autonomic Systems

 Autonomic systems are self-regulating, self-healing, self-

protecting, and self-improving [17]. Therefore, Autonomic
computing capabilities can address the adaptation and

reconfiguration challenges of the SaaS cloud layer. Some key

open challenges are:

 Self-configuring: As stakeholder objectives change,

e.g., if a tenant decides to rent different functionality, the

tenant’s configuration needs to be reconfigured.

454Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 QoS: Cloud Service Providers (CSPs) need to ensure

that sufficient amount of resources is provisioned to

ensure that QoS requirements of CSCs (Cloud Service

Consumers), such as deadline, response time, and budget

constraints are met.

 Security: Achieving security features such as

availability. If a coordinated attack is launched against

the SaaS provider, the sudden increase in traffic might

be wrongly assumed to be legitimate requests and

resources would be scaled up to handle them.

B. Overview of our Process

 Our autonomic system of management variability is

presented in Figure 2.

 Figure 2. System architecture for autonomic cloud management.

 Application Scheduler: The scheduler is responsible

for assigning each task in an application to resources for

execution based on user QoS parameters and the overall

cost for the service provider.

 Security and Attack Detection: This component
implements all the checks to be performed when

requests are received .

 The workflow of the process proposed which is depicted in

Figure 3.

 Figure 3.Workflow of our process proposed.

 Step 1: Specifies the context of the reconfigurable system.

 User variant configurations are instantiated as user

contexts in the SaaS application instance. The users of a

tenant have their own user context, each conforming to a user

variant configuration. The context of the reconfigurable
systems is specified by means of the OWL (Web Ontology

Language) [18]. This language provides a vocabulary for

describing system context knowledge and for specifying

conditions in the context.

 Step 2: Specifies the variability and commonality among functionality

and quality properties

 The stakeholders have varying requirements on

functionality and QoS. Therefore, we need to handle the

variability of both. Stakeholders' objectives consider
functional variability and variability among quality

constraints, e.g., performance, availability, and the server

location. We will use an EFM with mixed constraints and

group cardinalities.

 Step 3: defines stakeholders and their views on the extended feature

model

 A stakeholder either represents a person, a member of

an organization, or a third party that is involved in the

configuration process and has certain concerns regarding the

configuration of parts of the EFM. Views are defined by

mapping configuration operations specified for the EFM onto

groups and categories specified in the View Model. This later

defines stakeholders and their views on the extended feature
model [19].

 Step 4: Analyzes the reconfigurations before performing them.

 Process verification needs to ensure that the

configuration process is consistent with the EFM. This is

needed for error-correction and avoidance while it would
also help users keeping track of their configurations.

 Step 5: Analysis results.

 After the given analysis results, the previous

configuration can be updated or leveraged at run-time phase.

 Step 6: To Debugs the run-time reconfigurations.

 Given the fact that not all potential run-time failures can

be anticipated during system design, it is possible to set up
MoRE (Model-based Reconfiguration Engine) [20] with a

debugging-enabled reconfiguration strategy. This strategy

keeps the history of system configurations.

 Step 7: Keeps track of the reconfigurations.

 In the context of experimentation, MoRE can store trace
entries about the reconfigurations. This provides information

455Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

for a posterior analysis, which ranges from context

conditions to reconfiguration plans.

 Step 8: To deploy the system in the target platform.

 Once the development is finished, there is no interest in

debugging information any longer. Therefore, MoRE can be

set up with another reconfiguration strategy which lacks

debugging support but achieves better performance. We

suggest using MoRE featuring a performance-oriented

reconfiguration strategy tool.

VI. RELATED WORK

 This section presents work that is related to the concepts
of our configuration management, which copes with different

research fields. Mietzner et al. propose using SPL techniques

for configuring multi-tenant SaaS applications [21]. The

tenant’s configuration decisions are influenced by already

deployed services. Concerning our approach, tenants’ pre-

configurations are not influenced by the configuration of new

tenants. Cheng et al. [22] apply SPL techniques on

configurable SaaS applications. The description of the

application flexibility is created in domain engineering. This

catalog is then used to configure the application per tenant.

In contrast, we will use EFMs to model the functionality of

the application as well as QoS and assume the context-aware
of the tenant. Another concept which describes variability for

SaaS applications is given by Ruehl et al. [23]. This approach

can systematically show variability points and their

relationships. This work focuses on the creation of

descriptions of variability but not so much on the execution.

 Weissbach and Zimmermann [24] tackle the problem of

avoiding storing or processing data at undesired location by

data-flow analysis. In contrast to our work, this approach is

not context-aware. There are also numerous works on

context-aware service oriented systems. Du et al. [25]

controls data-flow between services to detect malicious
services. Context awareness with respect to the client is not

assumed. Azeez et al. [26] propose a multi-tenant service-

oriented architecture middleware for cloud computing.

They;concentrate on multiple users sharing an instance and

native multi-tenancy. Contrary to our work, using certain

services in context of the location is not considered. Bastida

et al. [27] discuss the steps that the service integrators should

follow to create context-aware service compositions and also

introduce a composition platform that supports the lifecycle

of dynamic compositions both at design-time and at runtime.

The context part is not explicitly defined in the complete

approach.
 Table I shows a comparison among several research

works in the area of management and configuration of cloud

environments. In the state of the art, some work has been

performed to combine the benefits SPLE with those of multi-

tenancy to facilitate the customization of SaaS applications

tailored to the tenant-specific needs. However, none of the

current approaches defines explicitly the context-aware of the

tenants and users in the complete approach in both design

time and run time phase (see Table I). Moreover, it provides

no support for context awareness which is one of the

keystones for the cloud computing in general and SaaS in
particular.

TABLE I. A comparison among research works on Cloud Environment

VII. CONCLUSION AND FUTURE WORK

 This paper presented our first steps towards autonomic

and dynamic context-aware configuration variability on the

SaaS applications. We identified requirements for a multi-

tenant aware SaaS reference architecture at design time as

well as at runtime. In addition, we have shown an overview

of our process which our framework will be based. We rely

Research

work

Adaptation

Type

Phase of system

variability

Adaptation

Space

Adaptation

Mechanisms

Environment

[20] Dynamic Design time Functional Variability SaaS

[21] On-demand Design time Functional and
non-Functional

Variability SaaS

[22] Dynamic Design time Functional and

non-functional

Variability SaaS

[23] Dynamic Run time Non-Functional Variability Data security in

the cloud

[24] Dynamic Run time Non-functional Variability IaaS

[25] Static Design time

and Run time

Functional variability Middleware

[26] Dynamic

Design time

and Run time

Functional and

context-aware

variability Composants

456Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

on autonomic system concept in order to allow a dynamic

and automatic management of variability for these

applications. Furthermore, our dynamic configuration

process allows deriving multiple variant configurations that

are independent from each other.

 Because SPL engineering is a well researched field, we

may benefit from developed tools that help to derive valid

tenant configurations and we propose to use NSGA-II (Non-

Dominated Sorting Genetic Algorithm) algorithms [28] to

optimize and select services. Additionally, we plan to take

into account context user’s evolution. As the cloud market

evolves constantly, changes in context can occur that require

the application environments to be reconfigured. e.g., a new
service is available. To deal with such changes, we propose

to adapt evolutionary tree and evolutionary algorithm.

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud computing,”

NIST Special Publication 800-145, National Institute of Standards and
Technology, Information Technology Laboratory, Sept, 2011, pp. 3-8.

[2] G. F. Chong and G. Carraro, “Architecture strategies for catching the

long tail,” Website, April, 2006, pp. 10-26. [retrieved: 08, 2014].
Available: http://msdn.microsoft.com/en-us/library/aa479069.aspx

[3] M. L. Griss, “Implementing product-line features with component
reuse,” in Proceedings of the 6th International Conerence on Software

Reuse: Advances in Software Reusability, London, UK, June, 2000,
pp. 137–152.

[4] D. M. Weiss and C. T. R. Lai, “Software product-line engineering: a

family-based software development process,” Addison-Wesley
Professional, Aug, 1999, 448 pages.

[5] A. Benali and B. El Asri, “Towards dynamic management of

variability and configuration of cloud Environments,” in press

[6] S. Barney, A. Aurum, and C. Wohlin, “A product management
challenge: creating software product value through requirements

selection,” Journal of Systems Architecture, vol. 54, no 6, June, 2008,
pp. 576-593.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson, “Feature-oriented domain analysis (FODA) feasibility
study,” Technical report, CMU/SEI TR-21, USA, Nov, 1990, 148

pages.

[8] L. Cardelli, “Program fragments, linking, and modularization,” In
Proc. Symp. Principles of Programming Languages (POPL), ACM

Press, Mar, 1997, pp. 266–277.

[9] I. Trummer, “Cost-optimal provisioning of cloud applications,”

Diploma thesis, University of Stuttgart, Faculty of computer science,
electrical engineering and information technology, Germany, Feb,

2010, pp. 135 – 142.

[10] B. Schilit and M. Theimer, “Disseminating active map information to
mobile hosts,” IEEE Network, 8(5), Sept, 1994, pp. 22-32.

[11] A. Dey and G. Abowd, “Towards a better understanding of context and

context-awareness,” in CHI 2000 Workshop on The What, Who,
Where,When, and How of Context-Awareness, nov, 2001, pp. 304-

307.

[12] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge
location system,” ACM TIS, Jan, 1992, pp. 91-102.

[13] R. Hull, P. Neaves, and J. Bedford-Roberts, “Towards situated

computing,” International Symposium on Wearable Computers, Oct,
1997, pp. 146-153.

[14] K. Dey and D. Abowd, “Towards a better understanding of context and

context-awareness,” Georgia Institute of Technology, Atlanta, GA,
USA 30332-0280, Sept, 1999, pp. 271-350.

[15] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker, “Generative
programming for embedded software: an industrial experience report,”

In: D.Batory, C.Consel, W.Taha, GPCE 2002. LNCS, vol. 2487, Oct,
2002, Springer, Heidelberg (2002), pp. 156–172.

[16] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration

through specialization and multi-level configuration of feature
models,” Improvement and Practice Journal, April, 2005, pp. 143-169.

[17] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, IEEE, Jan, 2003, pp. 41-50.

[18] D. Martin, M. Burstein, J. Hobbs, D. McDermott, S. McIlraith, S.
Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan,

and K. Sycara, “OWL-S: Semantic markup for web services,” Website,
Nov, 2004. [retrieved: 08, 2014].Available:

http://www.w3.org/Submission/OWL-S/

[19] J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau,
“Dynamic configuration management of cloud-based applications,”

In: SPLC ’12:16th International Software Product Line Conference –
Vol. 2, ACM, pp. 171–178.

[20] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Autonomic computing

through reuse of variability models at run-time: the case of smart
homes,” IEEE Computer Society Press, Los Alamitos, CA (2009), Oct,

2009, pp. 37-43.

[21] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability

modeling to support customization and deployment of multi-tenant-
aware software as a service applications,” In (PESOS '09)

Proceedings, USA, May, 2009, pp. 18-25.

[22] X. Cheng, Y. Shi, and Q. Li, “ A multi-tenant oriented performance
monitoring, detecting and scheduling architecture based on SLA,” In

Proceedings of the Joint Conferences on Pervasive Computing, JCPC
'09, Dec, 2009, pp. 599-604.

[23] S. T. Ruehl and U. Andelfinger, “Applying software product lines to

create customizable software-as-a-service applications,” In
Proceedings of the 15th International SPL Conference, Volume 2,

ACM, Aug, 2011, pp. 16:1-16:4.

[24] M. Weissbach and W. Zimmermann, “Controlling data-flow in the
cloud,” in The Third International Conference on Cloud Computing,

GRIDs, and Virtualization, W. Zimmermann, Y. W. Lee, and Y.
Demchenko, Eds. ThinkMind, July, 2012, pp. 24–29.

[25] J. Du, W. Wei, X. Gu, and T. Yu, “Runtest: assuring integrity of data

flow processing in cloud computing infrastructures,” in Proceedings of
the 5th ACM Symposium on Information, Computer and

Communications Security, ser. ASIACCS ’10. New York, NY, USA:
ACM, Jan, 2010, pp. 293–304. [retrieved: 08, 2014]. Available:

http://doi.acm.org/10.1145/1755688.1755724.

[26] A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D.
Leelaratne, S. Weerawarana, and P. Fremantle, “Multi-tenant soa

middleware for cloud computing,” in IEEE CLOUD, July, 2010, pp.
458–465.

[27] L. Bastida, F. J. Nieto, and R. Tola, “Context-aware service
composition: a methodology and a case study,” In SDSOA ’08:

Proceedings of the 2nd international workshop on Systems
development in SOA environments, New York, NY, USA, ACM,

May, 2008, pp. 19–24.

[28] A. Pratap, T. M. K. Deb, and S. Agrawal, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization :

NSGA-II,” Technical report, Indian Institute of Technology Kanpur,
Sep, 2000, pp. 849-858.

.

457Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://www.w3.org/Submission/OWL-S/

