
An Analysis of Domain and Application Engineering Co-evolution for Software Product
Lines based on Cladistics: A Case Study

Anissa Benlarabi
IMS Team, SIME Laboratory

ENSIAS, Mohamed V Souissi University
Rabat, Morocco

a.benlarabi@gmail.com

Amal Khtira
IMS Team, SIME Laboratory

ENSIAS, Mohamed V Souissi University
Rabat, Morocco

amalkhtira@gmail.com

Bouchra El Asri
IMS Team, SIME Laboratory

ENSIAS, Mohamed V Souissi University
Rabat, Morocco
elasri@ensias.ma

Abstract—Software product line engineering is a discipline for
large scale reuse, its main advantage is the ability to reuse a set of
domain assets in the development of a large number of products.
In order to achieve this benefit, the software product line must
cope with business requirements evolution. When dealing with
evolution, the most effort must be granted to the understanding
of the change and the identification of its impact because changes
happening to products must be propagated to domain artifacts
that are used for the whole family, and if the impact is not studied,
each product will evolve separately from the domain assets. Many
techniques were proposed to facilitate the impact analysis, such as
evolution traceability or documentation. However, they consider
only the change on the domain assets level and they underestimate
issues raised by the fact when products evolve separately from
the domain assets, which decreases the ability of the software
product line to derive all the products features. In this paper, we
tackle this issue by analyzing the co-evolution of software product
lines and their products. We use cladistics classification, which
was used in biology to construct their evolutionary trees, then we
compare the trees using mathematical analysis and we propose a
solution to restore the perfect co-evolution of the software product
line and its products. We carried out a case study on a Mobile
Media software product line to illustrate our approach.

Index terms— Software product lines; Co-evolution;
Cladistics.

I. INTRODUCTION

Software product line engineering [1] is a software engi-
neering discipline centered on reuse. It consists in developing
a set of domain assets, which can be reused to derive a set
of products for a particular market [2]. Its main goal is the
reduction of costs and time to market, which can only be
achieved by the continuous adaption of the domain assets
to the ever-changing user requirements. Hence, to maximize
benefits from the software product line common platform, the
evolution activity must be the pivot activity of the software
product line process development.

The primary aim for the evolution activity is the protection
of the software from the aging problem, which pictures
the fact of having a vital software for the organization but
which cannot be evolved [3]. Unlike single software, software
product line aging problem is not only caused by the loss
of knowledge but also by the inability of the software product
line to support all the features of the old and the new products.
This happens especially when the changes happening to the
products are not propagated to the domain artifacts, in this case

each product evolves separately from the domain artifacts and
the software product line will no longer be able to derive all
the features. Hence, instead of having a software product line
we will have a set of independent products.

The approach presented here aims at improving the under-
standing of how the software product line and its products
evolved in time and how they influenced each other during
their evolution. It focuses on analyzing the co-evolution of
the software product lines and their products. The change in
software product lines has two levels, the level of domain
engineering and the level of application engineering, the
evolution of each level impact the evolution of the other, our
co-evolution analysis helps identifying how the evolution of
products and the evolution of the core assets impacted each
other. In this paper, we focus on the impact of the changes
happening to products on the core assets because it was
less tackled by the researchers than the domain engineering
evolution impact. Co-evolution was extensively studied in
biology [4] to show how organisms influence each other
during their evolution. The co-evolution of host-parasite is a
famous example from biology [5]. Beside biology, the co-
evolution was studied also in software engineering [6] [7]
[8].Similarly to co-evolution in biology, we will study the co-
evolution of many populations of software. Our work consists
in a co-evolution model for software product lines based on
cladistics classification [9], which identifies the evolution path
of a group of organisms based on their shared characters and
classifies them in evolutionary tree. We start by establishing
the evolutionary trees of the software product line and its
products, then we perform a mathematical analysis to correct
divergences between their evolution paths. We illustrate our
approach through a case study on the mobile media software
product line [10], we started by applying the approach on
one product but we intend to experiment it on other products
and compare the obtained results. Currently, we consider that
all the products features must be derived from the domain
engineering; we do not consider the products specific features
that are not intended to be part of the platform.

In Section 2, we explain the co-evolution in biology, the
we present some co-evolution studies in software engineering
and we introduces the co-evolution of domain and application
assets. In Section 3, we propose present our approach through
a case study; we firstly study the evolution courses of the

495Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

software product line and its products through their evolution-
ary trees established using cladistics classification. Secondly,
we compare these resulted trees to extract their similarities
and divergences then we correct these divergences using a
mathematical analysis. We give a conclusion in Section 4.

II. RELATED WORKS

According to our literature search, works done to understand
how the evolution of domain engineering and the evolution
of application engineering influence each other rely mainly
on traceability links between the artifacts of the two levels.
A framework for traceability was proposed by Anquetil et
al. [11], the framework allows for tracing links between the
different artifacts and present them in a graphical view, the
developers can use the graphical view to know the impacted
artifacts by a change. Ajila and Kaba [12] proposed a tool
which gives operation instances modification, operations for
consistency checking, and operations for change impact anal-
ysis. The tool calculates the impact of a change on the basis
repositories that involved the software product line artifacts
and their relationships. Goknil proposed a meta-modeling
approach for requirements traceability management [13]. He
focuses on post-requirements traceability, in particular be-
tween requirements models and architectural models, the goal
is to determine which architectural components are impacted
by a requirement change. Traceability approaches consider the
traceability of links between the domain assets and the links
between the domain and the application assets as a basis for the
change impact analysis activity. However, they rely on human
knowledge which is too expensive and error prone. In addition,
they consider that the change happens only in the domain
assets. Our work allows for defining the impact of the change
by identifying the hidden links between the reference and the
application assets, it also improves the change understanding
through a synthesis of the history of the software product line
evolution and help predicting future changes by considering
changes that were implemented at a product level and may
be propagated to the reference assets and then to the other
products. Instead of relying on the human knowledge, we use
the evolution histories of the software product line and its
products and we analyze their co-evolution using cladistics
classification.

III. SOFTWARE PRODUCT LINES CO-EVOLUTION

In this section, we present the co-evolution principal, which
was used mainly in biology, and we give an insight on some
works that deal with the co-evolution in software engineer-
ing context. Thus, we introduce the co-evolution of domain
engineering and application engineering in software product
lines.

A. Co-evolution in Biology

Co-evolution of species in biology describes the situation
when an evolution of a population of species can affect another
population of species, and consequently induces its evolution.

It consists in a mutual evolutionary influence between two pop-
ulations [4]. A population in biology represents any group of
descendants of the same ancestor that appeared due to changes
of the ancestor characteristics. Understanding how popula-
tions co-evolve allows for determining how environmental
changes impact directly their evolution. The co-evolution of
host-parasite is a famous example of biological co-evolution.
Because parasites cause damages to their hosts, hosts develop
new capacities to resist to their parasites however parasites
also develop capacities to overcome this resistance [5]. There-
fore, a clearer understanding of hostparasite co-evolution will
point to new possibilities for organic farming and reduce the
application of ecologically harmful chemicals.

B. Co-evolution in Software Engineering

Co-evolution was tackled in other fields, such as software
engineering; we present here some works that showed the
necessity to take into consideration the co-evolution between
different layers of a solution to preserve its consistency and
correctness and also to reduce evolution costs.

Ruscio et al. [6] addressed the co-evolution of meta-models
and their related entities: models, transformations and tools,
especially the automated adaptation of these entities in order
to preserve their correctness and consistency. The authors
introduced a set of basic ingredient a co-adaptation solution
must provide, and they point out on the necessity to have
a unique technique for meta-models co-evolution regardless
the related entity type. They proposed the EMFMigrate tool,
which applies a set of migration rules on the related entities
depending on the change type and the relation between the
metamodel and the entity, because in some relations meta-
models changes may be independent and do not require a co-
evolution.

Kster and Trifu [7] tackled the problem of traceability
between the requirements and the architecture incited by the
fact that an important part of evolution costs are spent to locate
the impacted elements. He presents a case study on the co-
evolution between requirements and architectural design from
which he extracted a set of requirements for a solution of co-
evolution of architectural model and requirements model. Then
he proposed a solution using graphs in which elements from
both models are linked by decisions. The graph is dynamically
navigable, and helps identifying the change impact easily.

Seidl et al. [8] introduced the co-evolution of software
product lines. He stated that evolution of SPLs can harm
the mapping between features and realization artefacts, for
example if an implementation asset is deleted and a mapping to
it remains in the system, products that include features mapped
to this missing item will be invalid. For this reason, proposed
an approach to co-evolve the features mapping and the system
models, more accurately the feature model and the realization
artefacts. He made a classification of evolution scenarios either
in problem space (insert feature, delete feature, Split feature,
etc.) or in solution space (replace method, rename method,
etc.) into two groups: interspatial evolutions that reaches
beyond the boundaries of the originating space and intraspatial

496Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 1. Co-evolution approach for SPL

evolutions that impact only the space they are originating from.
Thus, he extended Eclipse by a set of remapping operators to
maintain the consistency of features mapping. These operators
will be sequentially executed after each interspatial evolution.

C. Domain and Application Assets Co-evolution in Software
Product Lines : a cladistics based approach

In this paper, we introduce the concept of co-evolution of
domain and application assets in software product lines, which
consists in comparing the evolution paths of the domain assets
and the application assets and then deducing if application
assets were changed independently from their domain assets.
Organisms co-evolution analysis relies mainly on the visible
characters of these organisms, in software the visible char-
acters are its features. Hence, we will consider only features
models; thus, we study the co-evolution of the domain features
model and the application features models.

To deal with such co-evolution, we propose an approach
based on Cladistics [9], which is a biological technique used
to understand how organisms evolve over time (see Fig. 1.), it
builds an evolutionary tree for a population by classifying its
members in a tree on the basis of the evolution of their physical
characters or the evolution of their behavior. The steps of our
approach are as follows:

• Building evolution history: in this step, we use the data
about evolution in order to establish the evolution path of
the software product line and each derived product. We
use cladistics classification, which gives a classification
of the members of a population based on their shared
characters. In the case of software product lines, the
characters of software are its features

• Co-evolution Analysis: in this step, we perform a math-
ematical analysis of the domain and applications assets
co-evolution through sets, we introduce the hypothesis of
our analysis and we represent the perfect co-evolution by
means of mathematical equalities

• Imperfect co-evolution correction: in this step, we present
mathematically the imperfect co-evolution on the basis of
the analysis we did in step 2 and we propose an algorithm
to correct.

Figure 2. Mobile Media SPL features model

In the following subsections, we will explain in more details
our approach and the techniques used in each step.

IV. DOMAIN AND APPLICATION ENGINEERING
CO-EVOLUTION ANALYSIS: A CASE STUDY

In this section, we present our approach co-evolution ap-
proach through a case study on the mobile media software
product line with one of its derived products. In the first
subsection, we present the mobile media software product line
and the derived product features, in the second subsection,
we construct their cladograms using cladistics classification,
a cladogram is a branching diagram which represents the
evolution path of a group of organisms based on their shared
characters. In the third section, we compare their cladograms
and we correct the detected imperfections using a mathemat-
ical analysis.

A. Mobile Media software product line

The Mobile Media software product line manipulates photo,
music, and video on mobile devices, such as mobile phones
and it has 200 derived products [10]. Many evolution scenarios
were performed on the mobile media software product line,
we take into consideration in our case study six evolution
scenarios. Hence, we have a population P1 formed by seven
releases of the software product line and a population P2
formed by the seven releases of a derived product. We present
the feature model of the seventh release of the mobile media
software product line in Fig. 2.

B. Building Evolution History

In order to build the evolution history for the populations
of the software product line and the product, we use cladistics
classification, which is a biological technique which classifies
a set of organisms derived from the same ancestor in a
evolutionary tree. In the following subsections, we give more
details about this technique and its application on the mobile
media software product line.

1) Cladistics Classification: Cladistics classification was
used in biology to construct evolutionary trees that shows
the evolutionary relationships among various biological or-
ganisms, on the basis of the similarities and differences in

497Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

their physical or genetic characteristics [9]. It assumes that
in a population of organisms, a new organism appeared due
to the change of the group characters. Hence, it identifies
the evolution path of these organisms based on their shared
characters. In the case when more than one possible tree
can be generated for one group we must choose the most
parsimonious evolutionary tree which is the shortest one. The
length of a tree is obtained by calculating the sum of all
the characters fits where the fit of a character is the number
of its occurrences on the tree. In addition to identifying the
evolution path of a taxonomic group, cladistics classification
helps identifying which character change is responsible for
the appearance of each organism and also the characters that
mostly participate to the evolution of the group. The steps of
the cladistics classification are:

• Select the population to be classified
• Identify the characters of the population and their differ-

ent states
• Classify the group on the basis of their shared characters

in an evolutionary tree called cladogram
• When having more than one cladogram in result, an

analysis of parsimony is required.

2) Evolutionary trees of mobile media and its product: We
follow the mentioned steps for the cladistics classification.

The first step consists in defining populations for which
we will study the co-evolution. a population is constructed
by a set of organisms derived from the same ancestor by
adding new characters or capabilities. in order to compare the
evolution path of the software product line mobile media with
the evolution path of its derived product, we must build their
evolution paths. We constructed two populations, the first one
P1 is formed by seven versions of the software product line
mobile media, while the second one P2 is formed by seven
versions of the derived product. In Tables 1 and 2, respectively,
we give a detailed description of the populations P1 and P2,
which we constructed on the basis of the feature models of
the different releases of P1 and P2:

After we defined the two populations P1 and P2, the second
step consists in defining the characters of each population. In
biology, the characters of organisms of a population represent
their visible traits, which could be physical or behavioral
characteristics. Hence, for each population, we will identify
its behavioral characters that are its features. By assuming the
hypothesis H0 of features Independence, the set of characters
of a population will be composed by independent features.
In Tables 1 and 2, respectively, we formulated the vectors of
features of the populations P1 and P2 as follow, the number
of features are 19 and 16 for A1 and A2, respectively:

A1 = {F1,i while i ∈ N, i ≤ 19},
A2 = {F2,i while i ∈ N, i ≤ 16}

In order to classify the versions of each population, we
will construct in the third step the features states matrices
that illustrate the states of features in each version. Each
feature has two states, the primitive state, which denotes the

TABLE I. MOBILE MEDIA SOFTWARE PRODUCT LINE POPULA-
TION

Version Description
V1.0 The first release of the mobile media software prod-

uct line, this release encompasses the following fea-
tures: Manage photos (F1,1), Create album (F1,2),
Delete album(F1,3), Create media (F1,4), Delete
media (F1,5), View media (F1,6), Sort media (F1,7),
Edit media label (F1,8)

V1.1 The second release of the mobile media software
product line, in which the following features were
added: Set favorites (F1,9) and See favorites (F1,10)

V1.2 The third release of the mobile media software prod-
uct line, in which the feature Copy media (F1,11)
was added

V1.3 The fourth release of the mobile media software
product line, in which the following features were
added: Send media (F1,12) and Receive media
(F1,13)

V1.4 The fifth release of the mobile media software prod-
uct line, in which the feature Add music media
management (F1,14) was added

V1.5 The sixth release of the mobile media software
product line, in which the following features were
added: Add video media management (F1,15), Cap-
ture videos (F1,16) and Capture photos (F1,17)

V1.6 The seventh release of the mobile media software
product line, in which the following features were
added: Play videos (F1,18) and Play music (F1,19)

TABLE II. DERIVED PRODUCT POPULATION

Version Description
V2.0 The first release of the product, this release en-

compasses the following features: Manage photos
(F2,1), Create album (F2,2), Delete album(F2,3),
Create Photo (F2,4), Delete Photo (F2,5), View
Photo (F2,6), Sort media (F2,7), Edit media label
(F2,8)

V2.1 The second release of the product, in which the
following features were added: Set favorites (F2,9)
and See favorites (F2,10)

V2.2 The third release of the product, in which the feature
Copy media (F2,11) was added

V2.3 The fourth release of the mobile media software
product line, in which the following features were
added: Send media (F2,12) and Receive media
(F2,13)

V2.4 The fifth release of the product, in which the feature
Print photo (F2,14) was added

V2.5 The sixth release of the product, in which, the feature
Capture photos (F2,15) was added

V2.6 The seventh release of the product, in which, the
feature Share photo in social websites (F2,16) was
added

nonexistence of the feature and it is represented by 0, and the
derived state, which denotes its existence and it is represented
by 1. The features state matrices of our populations P1 and P2
are presented in Tables 3 and 4, respectively. We construct
cladograms on the basis of these matrices by grouping versions
together based on their shared characters. In this steps we
used the tools PHYLIP to generate the coordinates of the
evolutionary trees of P1 and P2 from their features state

498Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

TABLE III. FEATURES STATES MATRIX B OF THE MOBILE MEDIA
SPL

B F1,1

..
F1,8

F1,9

F1,10

F1,11 F1,12

F1,13

F1,14 F1,15

..
F1,17

F1,18

F1,19

V0 1 0 0 0 0 0 0
V1 1 1 0 0 0 0 0
V2 1 1 1 0 0 0 0
V3 1 1 1 1 0 0 0
V4 1 1 1 1 1 0 0
V5 1 1 1 1 1 1 0
V6 1 1 1 1 1 1 1

TABLE IV. FEATURES STATES MATRIX C OF THE PRODUCT

C F2,1

..
F2,8

F2,9

F2,10

F2,11 F2,12

F2,13

F2,14 F2,15 F2,16

V0 1 0 0 0 0 0 0
V1 1 1 0 0 0 0 0
V2 1 1 1 0 0 0 0
V3 1 1 1 1 0 0 0
V4 1 1 1 1 1 0 0
V5 1 1 1 1 1 1 0
V6 1 1 1 1 1 1 1

matrices. In Fig. 3. we present the example of the input file
of P1. The output file of Phylip contains the coordinates of
the evolutionary tree of the population P1, we used the online
tool Phyfi which we present in Fig. 4 in order to compile this
file and generate the cladogram. The resulted cladograms of
P1 and P2 are illustrated in Fig. 5 and Fig. 6, respectively.

C. Co-evolution Analysis

In biology, the perfect co-evolution can be restored by iden-
tifying the branches that cause this divergence and extending
the cladograms by them. However, by assuming the hypothesis
H1 that features of the software product line are sufficient but
not necessary to derive all the features of the derived products,
we will eliminate the imperfection caused by branches that
exist in the software product line cladogram and are absent
from the products cladogams. Our hypothesis is based on the
fact that the software product line feature model take into
consideration commonality and also variability of products.
In this subsection, we will formulate our hypothesis about the
perfect co-evolution in software product lines. Thus, we verify

Figure 3. Input file for drawing the cladogram of P1

Figure 4. The coordinates of the cladogram P1

Figure 5. The cladogram of the Mobile Media SPL

these hypothesis for the two populations and we propose an
algorithm to correct the extracted imperfections

1) Perfect co-evolution modeling: We set three
hypothesis for the software product line, H0 and H1
are already explained above, in addition we formulated
a new hypothesis H2 on the basis of H0 and H1:

(H0) features independence: In the set of features A1
and A2, the features are independent from each other

∀i, j ∈ N, i ≤ 19, j ≤ n, F1,i 6= F1,j

∀i, j ∈ N, i ≤ 16, j ≤ m, F2,i 6= F2,j

(H1) domain features sufficiency: Each feature of the set A2
has a corresponding feature in the set A1

Figure 6. The cladogram of the derived product

499Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

∀j ∈ N, j ≤ 16,∃i ∈ N, i ≤ 19/F2,j = F1,i

(H2) features exclusion: This hypothesis is deduced from the
combination of H0 and H1. Each feature of A2 has only one
corresponding feature in A1{
F2,i, F2,j/i, j ≤ 16} ⊂ {F1,x, F1,y/x, y ≤ 19}
F2,i = F1,x

⇒ F2,j = F1,y

On the basis of the hypotheses H0 and H2, we deduce that
the relationship between the two cladogram of P1 and P2 must
respect the following inequality:

B ×A1 ≥ C ×A2 (1)

This inequality means that for each couple of leafs
L1i, L2i/0 < i ≤ k of the cladograms of P1 and P2, the
number of features of L1i must be superior to the number of
features of L2i. Assuming the hypothesis H1, the inequality
can be reduced to the following equality. The vector A3 =
{F3,i while i ∈ N, i ≤ 3} represents the features of the
software product line that are not supported by the derived
product, and the entries di, j of the matrix D are equal to 0
or 1 depending on weather the features exist in the product or
no :

B ×A1− C ×A2 =

d1,1 · · · d1,s

d2,1 · · · d2,s

...
. . .

...
dk,1 · · · dk,s

×

F3,1

F3,2

...
F3,i

...
F3,s

(2)

After the calculation of this equality we will obtain seven
equalities as follow:

∑19
i=1 b1,i × F1,i −

∑16
j=1 c1,j × F2,j =

∑3
j=1 d1,j × F3,j∑19

i=1 b2,i × F1,i −
∑16

j=1 c2,j × F2,j =
∑3

j=1 d2,j × F3,j∑19
i=1 b3,i × F1,i −

∑16
j=1 c3,j × F2,j =

∑3
j=1 d3,j × F3,j∑19

i=1 b4,i × F1,i −
∑16

j=1 c4,j × F2,j =
∑3

j=1 d4,j × F3,j∑19
i=1 b5,i × F1,i −

∑16
j=1 c5,j × F2,j =

∑3
j=1 d5,j × F3,j∑19

i=1 b6,i × F1,i −
∑16

j=1 c6,j × F2,j =
∑3

j=1 d6,j × F3,j∑19
i=1 b7,i × F1,i −

∑16
j=1 c7,j × F2,j =

∑3
j=1 d7,j × F3,j

(3)

2) Perfect Co-evolution for the Mobile Media
Software Product Line: By considering the features
states matrices of the mobile media and its product,
the inequality (1) can be expressed as follows:

1 1 · · · 0 0

1 1 · · · 0 0

...
. . .

...
1 1 · · · 1 1

 ×

F1,1

F1,2

...
F1,10

...
F1,19

≥

1 1 · · · 0

1 1 · · · 0

...
. . .

...
1 1 · · · 1

×

F2,1

F2,2

...
F2,10

...
F2,16

TABLE V. NEW FEATURES STATES MATRIX B′ OF THE MOBILE
MEDIA SPL

B’ F1,1

..
F1,8

F1,9

F1,10

F1,11 F1,12

F1,13

F1,14 F1,15

..
F1,17

F1,18

F1,19

F2,14 F2,14

V0 1 0 0 0 0 0 0 0 0
V1 1 1 0 0 0 0 0 0 0
V2 1 1 1 0 0 0 0 0 0
V3 1 1 1 1 0 0 0 0 0
V4 1 1 1 1 1 0 0 1 0
V5 1 1 1 1 1 1 0 1 0
V6 1 1 1 1 1 1 1 1 1

We calculate the equalities (3) for the mobile media software
product line and its derived product in order to deduce the
results of their co-evolution:

∑19
i=1 b1,i × F1,i −

∑16
j=1 c1,j × F2,j = 0∑19

i=1 b2,i × F1,i −
∑16

j=1 c2,j × F2,j = 0∑19
i=1 b3,i × F1,i −

∑16
j=1 c3,j × F2,j = 0∑19

i=1 b4,i × F1,i −
∑16

j=1 c4,j × F2,j = 0∑19
i=1 b5,i × F1,i −

∑16
j=1 c5,j × F2,j = F1,14 − F2,14∑19

i=1 b6,i × F1,i −
∑16

j=1 c6,j × F2,j = F1,14 − F2,14 + F1,15 + F1,16∑19
i=1 b7,i × F1,i −

∑16
j=1 c7,j × F2,j = F1,14 − F2,14 + F1,15 + F1,16

+F1,18 + F1,19 − F2,16

We notice that two imperfections was detected after the
calculation. They are underlined, the first in the fifth equality
and the second is in the last equality. These imperfections
are caused by the two features F2,14 ”Print photo” and F2,16

”Share photo in social websites”. The two features exist in
the product and are absent from the software product line.
The vector A3 is composed by the following features :(F1,14

”Add music media management”, F1,15 ”Add video media
management”, F1,16 ”Capture videos”, F1,18 ”Play videos”,
F1,19 ”Play music”, F2,14 ”Print photo”, F2,16 ”share photo
in social websites”). From the seven equalities we deduce the
matrix D of the inequality (1):

B×A1−C×A2 =

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 −1 0

1 1 1 0 0 −1 0

1 1 1 1 1 −1 −1

×

F1,14

F1,15

F1,16

F1,18

F1,19

F2,14

F2,16

3) Imperfect Co-evolution Correction: In order to correct

imperfections represented by the negative entries in the matrix
D we propose the following algorithm which will restore the
missing features to the software product line. By applying this
algorithm to the mobile media software product line, the two
features F2,14 ”Print photo” and F2,16 ”Share photo in social
websites” of he derived product will be added to mobile media
software product line states features matrix, in Table 5 we
present the new matrix B’ of the software product line.

Our approach allows for restoring the integrity of the soft-
ware product line, by propagating features that were developed

500Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Figure 7. Imperfect co-evolution correction algorithm

on the products level to the domain engineering level. In
the presented case study the two features ”Print photo” and
”Share photo in social websites” of the derived product were
propagated to the mobile media software product line. The
approach aims at preserving the software product line from
the aging phenomenon by correcting the divergences between
products and the software product line that happened during
their evolution.

Our motivation is conducted by the main principal of
software product line engineering which is the ability of the
domain feature model to support all the features of the de-
rived products. Furthermore, cladistics classification technique
allowed us to restore the missing features to the corresponding
versions of the software product line in order to achieve
the perfect co-evolution of the software product line with
its products. This approach enables also the extension of the
software product line capabilities, for our example, the two
added features can be propagated to the other derived products
that manage photos. Thereby, it helps predicting new features
and anticipating new requirements, for example the feature
”Share photo in social websites” which we propagated to the
mobile media software product can also be adapted to include
other media such as songs and videos.

V. CONCLUSION

In this paper, we introduced the co-evolution of domain
and application engineering in software product lines, which
consists in identifying the evolution paths of the domain assets
and the application assets and finding if they are similar or
different. Our purpose is to preserve the ability of domain
engineering assets to derive the application assets even during
their evolution. This purpose can be achieved by propagating
the changes that happened to the products only to the software
product line. Co-evolution was extensively studied in biology
in order to understand how organisms influence each other
during their evolution. The co-evolution relies basically on

the physical characters or behaviors of organisms. Since the
features of a software represent its visible characters, we
consider only the co-evolution of feature models in this paper.

We used the biological Cladistics classification to build
the evolutionary trees of the software product line and its
derived products, then we perform a mathematical analysis
to extract similarities and differences between these trees.
Thereby, we propose an algorithm to propagate the missing
features that cause divergence between the evolutionary trees
to the domain feature model. We applied our approach to
the software product line of mobile media applications that
manage media such as songs, photos and videos on mobile
devices. We compared the evolution paths of the software
product line and one of its derived products, then we applied
our analysis to propagate the features that exists in the product
but are missed from the software product line to the domain
features model. As a consequence, we restored the ability of
the software product line to derive all the products features,
and also we extended its capabilities by the new features.

REFERENCES

[1] K. Pohl, G. Bckle, and F. J. van der Linden, Software product line
engineering: foundations, principles and techniques, Springer, 2005.

[2] P. Clements, L. Northrop, and B. W. Boehm, ”Software product lines :
practices and patterns”, Fondo Xavier Clavigero, S.J. ITESO, 2002.

[3] D. L. Parnas, ”Software aging”, in Proc. The 16th international conference
on Software engineering, 1994, pp. 279-287.

[4] P. R. Ehrlich and P. H. Raven, Butterflies and plants: a study in
coevolution Evolution, JSTOR, 1964, pp. 586-608.

[5] R. M. Anderson and R. M.May, ”Coevolution of hosts and parasites”,
Parasitology, 1982, vol. 85, no 02, pp. 411-426.

[6] D. Di Ruscio, L. Iovino, and A. Pierantonio, ”What is needed for man-
aging co-evolution in MDE?”. In Proc. The 2nd International Workshop
on Model Comparison in Practice, 2011, pp. 30-38.

[7] M. Kster and M. Trifu, ”A case study on co-evolution of software artifacts
using integrated views”. In Proc. The WICSA/ECSA, 2012, pp. 124-131.

[8] C. Seidl , F. Heidenreich, and U. Amann, ”Co-evolution of models
and feature mapping in software product lines”. In Proc. The 16th
International Software Product Line Conference, 2012, pp. 76-85.

[9] Brinkman, S.L. Fiona, and D. D. Leipe, Bioinformatics: a practical guide
to the analysis of genes and proteins, Vol. 43, John Wiley Sons, 2004.

[10] L. P. Tizzei, M. Dias, C. M. Rubira, A. Garcia, and J. Lee, ”Components
meet aspects: assessing design stability of a software product line”,
Information and Software Technology, Elsevier, 2011, vol. 53, no 2, pp.
121-136.

[11] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J. Royer, A. Rumm-
ler, and A. Sousa, ”A model-driven traceability framework for software
product lines”, Software Systems Modeling, Springer, 2010, 9, pp. 427-
451.

[12] S. A. Ajila and A. B. Kaba, ”Evolution support mechanisms for software
product line process”, Journal of Systems and Software, Elsevier, 2008,
vol. 81, no 10, pp. 1784-1801.

[13] A. Goknil, I. Kurtev, K. van den Berg, and J. Veldhuis, ”Semantics
of trace relations in requirements models for consistency checking and
inferencing”, Software Systems Modeling, Springer, 2011, 10, pp. 31-54.

501Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

