
Causality Control in Dynamic Platforms

Jacky Estublier, Germán Vega

Université Grenoble Alpes, LIG

Grenoble, France

{Jacky.Estublier, German.Vega}@imag.fr

Abstract— The increasing dynamicity of ubiquitous

environments and the rapid penetration of many sensors in our

day life are causes of concern for application designers and

developers. Indeed, they have to implement reliable

applications in a context in which the managed entities have a

very low level of abstraction; they are autonomous,

heterogeneous, and change in unpredictable ways. To simplify

developers work, there is a clear need to define a higher level

of abstraction in which these entities can be represented

homogeneously and managed systematically, irrespective of the

many technical details. To be used safely, this representation

must be causally related to the represented entities. Providing

a high level causal representation is very challenging, because

its implementation depends on the nature of the managed

entities, and because in ubiquitous systems the representation

and the system are evolving simultaneously and independently,

sometimes in incompatible ways. The paper describes a

systematic and extensible way to define and implement

causality, and presents the experience with the Apam system in

the domain of service platforms.

Keywords- component; model; services; platform; causality;

operational; OSGi.

I. INTRODUCTION

Almost every piece of information managed by a
program is a representation of something, either abstract
concepts (integers, strings), or real entities (persons, cars).
An important part of computing sciences has been devoted to
representations. In the 2000s, modelling proposed to make
more formal the relationship between a representation (a
model) and the system being represented, the System Under
Study (SUS).

When a part of the SUS is not directly accessible to the
machine (e.g., a part of the “real world”), building a
representation is a preliminary step before writing a program
that works on the SUS. A fundamental property of a model is
to provide a convenient representation of the SUS: it should
only represent what is needed at the right level of
abstraction, making the understanding easier, and making the
programs simpler. Therefore, even when the SUS is itself
abstract, it is often convenient to build “on top” of it, a
representation that fits better the needs.

Note that the SUS itself can be a representation of a
lower level system, making SUS and representation relative
concepts. Indeed, computer sciences make heavy use of
chains of representations, like abstraction layers in an
operating system.

The intuition often makes a distinction between SUS that
are part of the real world (e.g., cars and houses represented in

a database), and SUS that are electronic entities (files and
ports in an operating system). This intuition is often
misleading, machine world and real world are not two
separate worlds; after all, the machine too pertains to the real
world, and the SUS can include entities pertaining to the
machine.

However, what is relevant is that for electronic entities
changing the representation can be translated automatically,
and almost instantaneously, into corresponding changes on
the represented entity (e.g., closing a port or changing the
value of an integer Java variable). We say that the
representation is operational. It is of course not the case for
real world entities (changing the color of a car registered in a
data base does not actually change the color of the car itself).

For electronic entities, system changes can be directly
observed and translated into the corresponding
representation. We say that the representation is sensitive to
its SUS. For real world entities, it is a program, or an
administrator, that keeps the representation up to date, not
the entity itself.

A representation that is both operational and sensitive (as
illustrated in Figure 1) is said to be causally related to its
SUS, and causality is the relationship between a
representation and its SUS. Operationality and sensitivity are
reciprocal properties, making causality symmetric, and
making relative the concepts of SUS and representation.

Figure 1. Causality.

With the advent of modeling as a discipline, the
representation has become more formal and higher level,
often based on Object-Oriented concepts, making program
and representation pretty close, blurring even more the
boundary between system and representation.

With the recent irruption of many sensors and actioners
(ubiquitous computing, home automation, games, and so on)
the machine and the real world became intertwined, because
electronic devices have the property to be both in the
machine world and in the real world; we call it the shared
world.

512Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Unfortunately, the electronic side of devices being very
low level, the need for an abstract and convenient
representation does not disappear (we still need to hide
heterogeneity, and many technical details like
communication and discovery protocols). Such a
representation of the shared world can be operational, i.e.,
changes on the representation can be automatically translated
into the corresponding actions on the associated device(s).

Conversely, devices being part of the real world, their
state can be changed by the real world itself (a temperature
sensor, for example). Being in the shared world, this (real)
change can be translated into the corresponding change into
its abstract representation, making the representation
sensitive to its SUS.

Causality is transitive allowing the definition of chains of
representation, of increasing abstraction, each layer being
still causally related to the “lowest” one. This property is
well known for operationality (the usual abstraction layers),
with causality it allows, for example, to represent and
manage sensor networks at the relevant abstraction level.
Therefore, causality allows program to work on the
representation as if working on the SUS itself, even for
dynamic and autonomous SUS. This is an important property
that simplifies dramatically the writing of program.
However, causality is a relationship that is very difficult to
enforce in practice, which explains why it is so uncommon.

We have experimented how causality can be defined and
managed in a systematic way in the case where the
representation is a model, close to Extended Entity-
Relationship (EER), and the SUS is a software services
platform (like OSGi [1]) both running on same computer.
However, this simplification does not reduce significantly
the generality because, in our system, everything is
represented as a service: the shared world entities (sensor
drivers are services), remote entities (their proxy are
services), and so on.

This paper is structured as follows: Section II describes
the representation layer (a component model), the execution
platform (the SUS) and how causality is defined. Section III
describes how the representation and the execution platform
are synchronized; Sections IV and V show how this
representation can be extended to handle provisioning and
how it can cope with failure; finally, we conclude with a
discussion of our validation and experience, the related work,
and perspectives.

II. THE APAM REPRESENTATION LAYER

The Application Abstract Machine (Apam) platform
proposes to its users (program and administrators) the
mechanisms to build models that are causally related to their
SUS. All representations in Apam conform to the meta-
model depicted in Figure 2.

Apam proposes a generic Entity-Relationship meta-
model (left part of the figure) that can be used to build any
abstract representation, particularly for real-world entities.
This generic meta-model has been specialized into a
component meta-model (center of the figure) that is used
specifically to represent services and running applications
(the machine-world) of a service platform like OSGi.

Figure 2. Apam Metamodel (simplified view).

Apam maintains a causality relationship between the
abstract representation of the application and its concrete
code artifacts (Java code in our case), both at development
and runtime.

At development time, causality is enforced by the Apam
compiler. The compiler ensures that the abstract relationships
defined by the component model are actually implemented at
the code level. For example, in the meta-model the relation
implements means that the resources provided and required
by the associated specification must be provided and
required by its implementations; the compiler checks that the
associated class really provides (implements, in the Java
sense) and requires (imports, in Java code) the interfaces
associated to the resources. The complete component model,
and its Java mapping, is fully presented in [2]. The Apam
compiler also performs byte code instrumentation to enable
monitoring and management at execution.

The causal relationship established at development-time
between the component representation and the actual code
allows reasoning about the application completely in
architectural terms. It also enables to control the execution of
the application by manipulating the model at runtime, as
presented in the following section.

III. CAUSALITY CONTROL

The component model and the causality control in Apam
have been primarily intended to monitor (sensitivity) and
drive (operationality), at high level, the execution of
applications on top of a service platform. The represented
SUS is the execution of application services. Those services
in turn can represent the state of devices, the sensed activity
or actions provided by actuators.

The service execution layer is based on the OSGi [1] and
iPOJO [3] platforms. OSGi provides the basic mechanisms
for deployment, live update and dynamic service discovery.
iPOJO provides the component container and dependency
injection mechanisms. In the execution platform, an
application is, at any given point in time, a particular
assembly of concrete OSGi service instances. The execution

513Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

platform handles the deployment and instantiation of the
actual Java code of services, and service binding is
automatically performed by the iPOJO container, using
injected fields in the class of the client service.

At the representation level, the application is represented
as a dynamic and reconfigurable architecture, composed of
component instances linked by wires. The APAM platform
controls the execution by continuously resolving the required
dependencies and changing the model.

To effectively drive the execution of the application, this
layer must be causally related to the actual service execution
layer, as illustrated in Figure 3. Each change of the
architecture, like creating components and wires is
transformed into actions in the execution platform. For
example, creating a wire from source instance s to target
instance t at the architectural level produces the injection of
the address of t into the fields of s in the Java code of the s
implementation. In this regard, the Apam representation is a
virtual machine executing the architectural application
description, on top of the underlying OSGi execution
platform.

Figure 3. Causality Managers.

However, in a dynamic and ubiquitous context there are a
number of external and uncontrolled events that may affect
the application execution; for instance, new devices can be
discovered / removed that need to be integrated / removed in
the application, legacy components can be installed in the
platform offering services required by the application, other
applications can be installed that may interfere with the
application. The execution platform automatically detects
three kinds of changes:

• Components that appear and disappear
• Property changes of a component
• Service binding request from a component
The representation also manages components, properties

and wires; indeed, in some cases, context changes, detected
by the execution platform must be transformed into the
corresponding change in the representation. For example, the
apparition of a new device is important for the application
architecture since it may trigger application adaptation to this
new context (like making use of such a device). This requires
bidirectional synchronization between the two platforms; that
is the responsibility of the causality managers.

A. Causality Managers

In a top-down view of the execution, the application
description presented in Section II is a specification that
must be enforced in the execution platform. In a bottom-up
view, the context changes detected by the execution platform

must be represented in the architectural layer, in order to
trigger the appropriate adaptations. There is thus a need to
enforce a causal relationship between the two platforms.

Both platforms share the concept of components having
properties and wires; at different levels of abstraction. For
the architecture platform, a component is a description (its
metadata), and wires are relationships between these
descriptions; while for the execution platform, components
are classes and objects, and wires are addresses into Java
fields. Properties are similar in both platforms.

Causality managers are in charge of keeping the two
platforms synchronized. Each causality manager is driven by
a model (illustrated in the middle part of Figure 3)
expressing its synchronization strategy along three axes:

1) What to change: as expressed above, the three shared
concepts to synchronize are components, properties
and wires (labeled C, P, W respectively in the
figure).

2) Direction to change: a causal manager may be
operational, propagating changes from the
architectural platform to the execution platform,
(labeled D for Downwards); or sensitive,
propagating changes from the execution platform to
the representation (labeled U for Upwards). In some
cases, both platforms collaborate to take a decision;
(labelled S for Symbiotic).

3) When to change: propagation can be Eager (labeled
E), meaning that it happens as soon as the change
occurs, or it can be Lazy (labeled L), meaning that
the propagation will be done only on demand by the
other platform.

For components directly specified using the APAM
component model, at development time, the Apam compiler
automatically includes the metadata described in Section II.
The Apam causal manager extracts this metadata from the
packaged component, and builds the corresponding
component in the architecture platform.

For other legacy component technologies, a causal
manager is in charge to extract the available information and
to build the corresponding architectural object. However this
requires a deep knowledge of each technology, hence a
specific manager (for instance, the legacy OSGi and iPOJO
managers in the figure).

B. The Apam Causal Manager

The strategy used by the native Apam component is an
immediate causality for components: CUE and CDE, i.e., as
soon as an Apam component appears (C for component),
whether in the architecture or execution platform (Upward,
and Downwards), it is immediately (Eager) synchronized on
the other platform.

The code of Apam native components is injected to
intercept all references to the fields of the required
dependencies. The need to resolve a wire (Wire) is detected
by the execution platform which decides, in symbiosis with
the architecture platform (Symbiotic) to immediately (Eager)
resolve the wire in both platforms, hence WSE
synchronization. Properties are not synchronized since they
are only known and used by the architecture platform.

514Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

C. Legacy Causal Managers

For the OSGi causal manager, the available information
is limited to the properties published in the OSGi registry;
and properties can be modified in both the architecture and
execution platforms, hence the PUE, PDE synchronization:
Properties are synchronized Upward and Downward Eagerly.
OSGi component can be created only by third parties in the
execution platform (they do not have factories), hence the
CUE synchronization.

iPOJO causal manager is still another case: iPOJO
factories can be used to create and instantiate components at
the architecture and at the execution platform layers.
Components created by the architecture platform must
immediately affect execution, hence the CDE
synchronization. Conversely, legacy iPOJO components are
synchronized up only when required: CUL synchronization.
Wires are Symbiotically, Eagerly synchronized (WSE).
Properties are only visible and used in the architecture
platform, and thus are not synchronized.

IV. PROVISIONING EXTENDED CAUSALITY

Thanks to the sensitivity property, in our case, the
representation allows monitoring the services currently
running in the execution platform and deployed by third
parties, using platform specific mechanisms. The
operationality property requires the capability to
add/remove/create entities (components and instances) at the
representation level, not only to manage those already
existing in the execution platform.

To satisfy this requirement, Apam includes the capability
to perform component provisioning. At the representation
level, this provisioning capability is used to satisfy the
dependencies of the application, when a resource is required.
In practice, to find the needed component(s) and resources
the Apam kernel looks into a number of search spaces.

Search spaces in turn are mapped to concrete service
repositories, of diverse and open-ended nature: it may
include components repositories, existing cloud services,
networked devices, or even remote platforms.

Figure 4. Provisioning managers.

Apam proposes provisioning managers as an extensible
mechanism to control the search spaces. Figure 4 shows the
currently defined provisioning managers, with their behavior.

A. Provisioning managers

We qualify as provisioning managers the managers in
charge of synchronizing the execution machine with other
platforms. We call platform any repository containing
services that provisioning managers can access from the
execution platform; directly by deployment, or indirectly
through a proxy. Provisioning managers synchronize an
“external” platform with the execution platform. We
distinguish Lazy vs. Eager and Dynamic vs. Static behaviors
for provisioning managers. Lazy and Eager have been
already discussed; Dynamic means that changes in the
external platform are “immediately” synchronized with the
execution platform; Static means that changes, if any, are not
synchronized.

B. Causal provisionning managers

Eager and Dynamic provisioning managers are those that
define what constitutes the execution context of the
application, since each change in their platform is
immediately perceived by the execution platform, which,
depending on its causality, the manager transfers its
perception to the architecture platform. Here, the context is
made of Apam and all the devices controlled by the device
manager. Other context managers can be defined and added
(dynamically or not) to the Apam system.

C. Lazy managers: an extended search space

The Lazy managers define the search space in the
following way: when Apam tries to resolve a wire, it looks
for a satisfactory target in the architecture machine. If the
target is not found Apam delegates resolution to available
Lazy managers, because lazy managers may know
components in their platform that are not (yet) present in the
architecture machine. These managers must implement the
method resolve (Dependency d, Composite context) which
returns if found an instance in the execution machine
satisfying the dependency d in the provided context.

The architecture machine invokes each lazy manager in
their priority order until one returns an instance t’. Apam
invokes the relevant causality manager to reify t’ as a t
instance in the architecture machine, and return t as the
resolution solution. If no manager finds a solution, the
resolution fails.

Many Lazy managers can be defined, Apam provides
with the standard distribution the OBR manager that can
deploy components from a list of bundle repositories; the
Distribution manager that looks for a component in another
remote Apam machine and returns a proxy towards the
selected remote component. The Cloud manager, based on
the Rose framework [4], returns a proxy toward a remote
service (WS, etc.). Other managers can be defined; they will
be called if registered as a dependency manager.

V. FAILURE HANDLING

Even with different search spaces, it is possible that the
execution platform fails to find a suitable service to satisfy
the dependencies of an application component.

In Apam, the failure reaction is specified at the
architecture level, in the component model. A dependency

515Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

declaration can express what should be the policy in case of
failure. The currently supported policies are:

• Optional dependency: nothing is done; the field
(wire source) will contain “NULL” as target value.

• Wait (duration): the current thread for which a wire
could not be resolved is halted until a valid target is found, or
until the time limit is reached.

• Exception (name): throws the exception specified
by the component.

• Hide: the source component is hidden for all
subsequent resolution; all its incoming wires are broken,
which may hide its clients and so on.

The hide strategy allows to backtrack the current
architecture (as long as dependencies are in the hidden
mode) and thus to explore automatically a wide range of
possibilities. But since all current architectures must be valid,
it is not allowed to remove (hide) components that are
explicitly part of the Application architecture.

VI. VALIDATION AND EXPERIENCE

Owing to its flexibility, adaptability and reliability, Apam
has been experimented, by academic and industrial teams, as
the central layer (often referred as the “dynamic
middleware”) of two large projects for home automation.

In OpenTheBox project, Apam is mostly used as the
central manager for set top boxes, in charge of providing
isolation, controlled collaboration between applications[5],
including the conflicting accesses to the shared devices [6].
In this case, each application is modeled as a composite, and
the contextual properties described in Section IV allow
specific policies for each application to be applied.

In the AppsGate project, the set top box is powerful
enough to support high level services, advanced
functionalities and innovative user interactions. In this
project, Apam builds an abstract “model of the world” based
on sensors and devices. The high level services are defined
as applications at specification and implementation levels,
and the execution automatically links the service to the
relevant devices.

VII. RELATED WORK

The use of models to represent a system at an appropriate
level of abstraction is generalized in software engineering.
However, as systems become more dynamic and directly
related to the physical world, there is a need to carefully
consider the representation relationship, as discussed in [7].

Our approach can be regarded as an example of the
general principle of models at runtime [8]: the Apam
architectural description is a model of the underlying
physical execution. As explained, this model is both an
abstract representation (sensitivity) and a prescriptive
specification (operationality) of the reality [9].

The abstract Apam application description is a model of
the valid space of application’s configurations, which
evolves by changes at both the execution and component
level. Thus, Apam model can be characterized as a
“Configuration space and variability model”, according to
the classification by Vogel et al.[10].

Apam uses architectural models as enabling technology
for runtime adaptability. As such, it can be related to many
works in dynamic architectures [11][12]. The main idea that
we borrowed is that runtime reconfiguration must be
reasoned and performed at the architectural level.

If we consider a top-down approach, based exclusively
on operationality, the application model is a prescription of
the execution, and, the Apam component meta-model can be
regarded as an Architecture Description Language. Our
meta-model combines the classical concepts of Software
Component Models [13] with the intrinsic evolution typical
of Service-Oriented Computing [14], in which the concrete
architecture is incrementally built as new services are
required or made available and bound at execution. In this
respect, our proposition can be related to other structural
service composition approaches, like SCA [15] or CALM
[16], however, these approaches do not define any runtime
reconfiguration mechanisms.

We can also think of the Apam runtime platform as a
middleware that manages the application execution. Our
approach shares then similar goals with reflective
middleware platforms [17] that propose an introspection
layer that reifies in a causal model the execution elements.

Similarly, some component models propose a reflective
runtime to allow introspection and reconfiguration [18][19].
The main difference is that these approaches make the
implicit assumption that architecture evolution is an
exogenous process, performed by external agents, like
administrators or autonomic managers. In our vision,
architecture evolution is a continuous, endogenous process,
intrinsic to the execution of each application.

Other experimental platforms have been designed
specifically for ubiquitous computing. For example, DiaSuite
[20] proposes a domain-specific component model to
describe the architecture and properties of
Sense/Compute/Control applications. The specialized model
enables static analysis and verification, beyond what is
proposed in Apam, however it doesn’t manage runtime
dynamicity.

Without surprise, it was the double synchronization
(upward and downward) that raised the most difficult
technical issues, and the trickiest bugs. Indeed, conflicting
changes on the “same” entity can happen “simultaneously”
in the model and in the platform. A large fraction of the code
is dedicated to solve (reconcile, choose, merge, prevent,
notify, etc.) these special cases. It also explains that full
causality is difficult to provide, and indeed, is not often
provided.

VIII. CONCLUSION

Best practice in software engineering emphasizes the need
to work with representations that are simple, homogeneous
and at the relevant abstraction level. For that reason, many
techniques like levels of abstraction or modeling have been
developed. In all case, there is the need to closely control the
relationship between the representation and the system
represented. Most often, this relationship is operational only:
the changes performed on the representation are propagated
to the underlying system, supposed to be passive.

516Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The ever increasing interpenetration of the numeric world
and our life (smart phones, ubiquitous computing, home
automation, etc.) makes abstract representations even more
needed, but in the same time the represented system is
dynamic, autonomous and its changes are unpredictable. In
this case, both the system and its representation are active
and both are subject to unpredictable changes, possibly
simultaneous and incompatible. Therefore, the representation
must be both operational and sensitive, i.e., causal. The
realization of a causal representation is very challenging, but
at the same time, it is almost needed if reliable applications
are to be developed in such a context. The issue we have
addressed is a general approach to the development of a
causal representation.

In our work, the representation is similar to a traditional
model but metaclasses can be explicitly associated with the
kind of entities they represent. This association is extensible
in the sense that it is implemented in the form of plug-ins:
Maven plug-in at development time and Apam causality
managers at run time. The platform knows the association
and dynamically delegates the causality management to
currently plugged-in managers.

In our experimentation, the system represented is an
OSGi service platform. It is a limitation because the entities
represented are 1) only services, and 2) only those service
currently running in OSGi. We have overcome these two
limitations by making “everything” a service (proxies,
sensors, applications, etc.) and extending the OSGi platform
by an extensible provisioning layer, also made of plug-in
managers very similar to causal managers. An entity required
in the representation layer is automatically deployed in the
system (OSGi), and by causality it is created into the
representation. The different extensibility mechanisms
(causal metaclasses, causal managers, provisioning
managers) provide a fairly general framework for the
development and management of a causal representation.

The experience shows that causality can be provided
systematically and efficiently making much more feasible
the reliable development of the new kind of applications like
ubiquitous computing.

The Apam platform is available in open source, see [21].

ACKNOWLEDGMENT

Parts of this work have been supported by the European
CATRENE project AppsGate and the French ANR
“Investissements d’Avenir” project Open-The-Box.

REFERENCES

[1] OSGi Alliance, “OSGi Service Platform Core Specification
Release 4”, Aug. 2005. [Online]. Available from
http://www.osgi.org [retrieved: July, 2014]

[2] E. Damou. “ApAM : A development and execution
environment for ubiqutous applications”. PhD dissertation.
Université de Grenoble, France, Oct. 2013. [In french]
[Online]. Available from http://tel.archives-ouvertes.fr/tel-
00911462 [retrieved: July, 2014]

[3] C. Escoffier, R. S. Hall, and Ph. Lalanda, “iPOJO: an
Extensible Service-Oriented Component Framework”, in
Proceedings of the International Conference on Services
Computing, pp. 474-481, July 2007.

[4] J. Bardin, C. Escoffier, and Ph. Lalanda “Towards an
Automatic Integration of Heterogeneous Services and
Devices”, in Proceedings of the Services Computing
Conference, pp. 171-178, Dec. 2010.

[5] J. Estublier and G. Vega. “Managing Multiple Applications in
a Service Platform”, in Proceeding of the ICSE workshop on
Principles of Engineering Service-Oriented Systems, pp. 36-
42, June 2012.

[6] J. Estublier, G. Vega, and E. Damou. “Resource Management
for Pervasive Systems”, in Proceedings of the International
Conference on Service Oriented Computing, Lecture Notes in
Computer Science, vol. 7759, pp. 368-379, Nov. 2012.

[7] M. Jackson, “Aspects of abstraction in software
development”, Software & System modeling, vol. 11, no. 4,
pp. 495-511, Oct. 2012.

[8] G. Blair, N. Bencomo, and R. B. France, "Models@
run.time", IEEE Computer, vol.42, no.10, pp. 22-27, Oct.
2009.

[9] P-A. Muller, F. Fondement, B. Baudry, and B. Combemale.
“Modeling modeling modeling”, Software & System
modeling, vol. 11, no. 3, pp. 347-359, July 2012.

[10] Th. Vogel, A. Seibel, and H. Giese, “The Role of Models and
Megamodels at Runtime”, in Proceedings of the Workshop on
Models in Software Engineering, Lecture Notes in Computer
Science, vol. 6627, pp. 224-238, Oct. 2010.

[11] P. Oreizy and R. Taylor, "On the role of software
architectures in runtime system reconfiguration" Software,
IEE Proceedings, vol.145, no.5, pp.137-145, Oct. 1998.

[12] J. Magee and J. Kramer, “Dynamic structure in software
architectures”, in ACM SIGSOFT Software Engineering
Notes, vol. 21 Issue 6, pp. 3-14, Nov. 1996.

[13] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V.
Chaudron, “A Classification Framework for Software
Component Models”, IEEE Transactions on Software
Engineering, Vol 37, No. 5, pp. 593-615, Sept. 2011.

[14] J. L. Fiadeiro and A. Lopes, “A Model for Dynamic
Reconfiguration in Service-oriented Architectures”, in
Proceedings of the European Conference on Software
Architecture, Lecture Notes in Computer Science, vol. 6285,
pp. 70-85, Aug. 2010.

[15] OSOA, “Service Component Architecture Assembly Model
V1.00”, March 2007. [Online]. Available from
http://www.oasis-opencsa.org/sca-assembly [retrieved: July,
2014]

[16] G. Jung and J. Hatcliff, “A type-centric framework for
specifying heterogeneous, large-scale, component-oriented,
architectures”, Science of Computer Programming, vol. 75,
no. 7, pp. 615–637, July 2010.

[17] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The case-
for reflective middleware”, Communications of the ACM,
vol. 45, no. 6, pp. 33-38, June 2002.

[18] M. Léger, T. Ledoux, and T. Coupaye, “Reliable Dynamic
Reconfigurations in a Reflective Component Model” in
Prooceedings of the International Symposium on Component-
Based Sofware Engineering, Lecture Notes in Computer
Science, vol. 6092, pp. 74-92, June 2010.

[19] L. Seinturier, Ph. Merle, D. Fournier, N. Dolet, V. Schiavoni,
and J-B. Stefani, “Reconfigurable SCA Applications with the
FraSCAti Platform” in Prooceedings of the International
Conference on Service Computing, pp.268-275, Sept. 2009.

[20] D. Cassou, E. Balland, C. Consel, and J. Lawall. “Leveraging
Software Architectures to Guide and Verify the Development
of Sense/Compute/Control Applications”. in Proceedings of
the International Conference on Software Engineering, pp.
431-440, May 2011.

[21] Apam [Online]. http://adeleresearchgroup.github.com/ApAM
[retrieved: July, 2014].

517Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

