
Towards an Efficient Traceability in Agile Software Product Lines

Zineb Mcharfi, Bouchra El Asri, Ikram Dehmouch

IMS Team, SIME Laboratory

ENSIAS, Mohammed V Rabat University

Rabat, Morocco

{zineb.mcharfi@gmail.com, elasri@ensias.ma, ikram.dehmouch@gmail.com}

Abstract—In a volatile market, where it is difficult to

predict future needs, classical Software Product Lines

show limitations and become pricey. Therefore,

researchers managed to add supplements in order to

reach flexibility, and this led to the Agile Product Line

Engineering concept. However, this concept has not

gained yet sufficient maturity, and works are still

necessary to establish the best practices for putting Agile

Product Line Engineering into practice, especially when

it comes to their traceability. In this paper, we discuss

the correlation between agility and traceability

dimensions through the state of the art of traceability in

Agile Software Product Lines, and present our solution

based on markers and break-even point in order to

establish a traceability methodology in Agile Software

Product Lines.

Keywords-Software Product Lines; Agile Software Product

Lines; traceability; efficient traceability.

I. INTRODUCTION

Considering market growth and competitiveness,
companies try to achieve mass customization with lower
costs, reduce time to market, and insure product quality
while getting customer’s satisfaction. From a software
engineering point of view, Software Product Lines (SPL) is
a promising concept that helps dealing with those challenges
[1][2].

However, in some business environments, SPL may not
be enough reactive compared to market growth. In fact,
designing a SPL requires deploying important efforts and
time in order to speculate on future products and
functionalities that may be needed. Also, the Return On
Investment (ROI) of those efforts might be very small in a
volatile market [3]. Those constraints pushed developers and
researchers to look for improving SPL in order to gain
flexibility, which led to the concept of Agile Product Line
Engineering (APLE) [4]–[6].

Many researchers worked on the feasibility of combining
SPL and Agile Software Development (ASD) [3]–[6], as
both of them share the same objectives of increasing
productivity and software quality while optimizing

production time, even if they present differences in the
concept and practices [4]. Traceability might be considered
as one of the challenging points in combining SPL and
agility; the former, because of its complexity and need to
manage variability, requires traceability documentation to
assure consistency of the links between artifacts and
facilitate changes implementation [2], while the latter
advocates less use of documents [7].

In the present paper, we will illustrate, throughout a state
of the art, how the existing works manage traceability in
their Agile Software Product Lines (ASPL), depending on
the agile method used. We will also present our contribution,
a methodology based on the concepts of “markers” and
“break-even point” for an efficient traceability in ASPL.

The remainder of this paper is structured as follow: in
Sections II, we describe the concepts of SPL, ASD and
ASPL. Section III presents the traceability in SPL and a state
of the art of traceability in ASPL. We discuss our
contribution in Section IV and illustrate it in a case study in
Section V, before concluding in Section VI.

II. BACKGROUND AND MOTIVATIONS

In this section, we will first briefly introduce SPL and
ASD in order to present later the ASPL, a concept based on
the combination of the two previous ones.

A. Software Product Lines

As defined by Northrop [1], a SPL is “a set of software-
intensive systems that share a common, managed feature set
satisfying a particular market segment’s specific needs or
mission and that are developed from a common set of core
assets in a prescribed way”. It is used in the organizations
that produce numerous products answering specific needs,
but having many components in common. Those common
components (e.g., architecture, requirements, test plans,
schedules, budgets and processes description) are called
“core assets”. Adopting a SPL approach allows to produce
new systems by reusing the existing ones, in an organized
manner.

Accordingly, SPL is a combination of three major
interacting elements, called the SPL essential activities
[1][8]: (1) core asset development or Domain Engineering
(DE), (2) product development or Activities Engineering
(AE) and (3) technical and organizational management that
orchestrates those two activities.

529Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

SPL is by far considered as an up-front, proactive (in
opposite to reactive) reuse demarche [9]: it is based on a
production plan, involves both technical and organizational
management, is a direct consequence of the organization
strategy, and it is used to reach predictable results.

B. Agile Software Development

ASD is a concept based on the Agile Manifesto [7]. As
for SPL, ASD seeks to satisfy customer needs rapidly, while
insuring a good software quality, yet unlike SPL, the ASD
concept is based on simplicity, iterations, and reducing up-
front design [5].

ASD values, described in the Agile Manifesto, are
“individuals and interactions over processes and tools,
working software over comprehensive documentation,
customer collaboration over contract negotiation and
responding to change over following a plan” [7].

The Agile Manifesto defines also twelve principles for
ASD [7]. Hereinafter some: (1) customer satisfaction by
rapid delivery of useful software, (2) welcome changing
requirements, even late in development and (3) regular
adaptation to changing circumstances.

Thus, ASD shows values where SPL shows weaknesses,
especially when it comes to flexibility and adaptation to
changing requirements and circumstances.

Accordingly, some complementarity can be found
between SPL and ASD, which led to the APLE concept.

C. Agile Product Line Engineering: Software Product

Lines combined to Agile Software Development

As explained earlier, SPL need an up-front design, with
heavy processes and significant efforts. It helps answering
planned changes, but if it comes to unstable environments
with rapidly changing conditions, the investment in SPL
might be pricey [3]. On the other hand, ASD seeks to satisfy
customer requirements in a reactive way, promoting
continuous discussion with the customer, and avoiding up-
front developments.

According to Díaz et al. [3] and Ghaman et al. [5], the
combination of SPL and ASD principles allows eliminating
long term investment in up-front design, especially in
volatile markets where it would represent a non-profitable
investment in the long term with huge losses due to no-
longer useful core assets or never used ones. It allows also
dealing with situations where there is lack of knowledge
about domain engineering, or where no speculation can be
made.

Many works discuss the application of agility to SPL: In
[6], agility is used in the design phase and the benefices of its
introduction by gaining in speed are demonstrated. Noor et
al. [10] used a collaborative approach to introduce agility
when planning and scooping the Product Line (PL). They
used some agile development principles, such as valuing
customer collaboration and high degree of flexibility. Urli et
al. [11] described the application of agility for SPL evolution
through a case study, using Composing Feature Models
(CFM); they first built an information broadcasting system
for a limited academic structure, but then had to deal with
larger institutions and numerous customers, which

represented multiple devices and sources of information.
Therefore, they used a SPL demarche for the re-engineering
of their system and, as they had to interact continuously with
the customers, they sought lightness and introduced agility to
their approach. This decision helped them reach simplicity
(they decomposed the requirements in features with fine
granularity) and be more reactive to the customers’ needs.
Another approach was established by Ghanam and Maurer
[12], who used a Test Driven Development (TDD) method to
deal with agility in SPL. They introduced SPL demarche in
an agile environment that uses eXtreme Programing (XP),
and instead of using requirement documents to begin
development, they used Acceptance Tests (AT) generated
through the XP process as test artifacts, which are the basis
for the model adopted.

III. TRACEABILITY IN AGILE SOFTWARE PRODUCT LINES

In such a complex environment (i.e., ASPL), where we
have to manage variability in a constantly evolving context,
it is very important to insure traceability along the software
development process.

However, based on the observation made by the review
in [3], and completed with our literature analysis, we noticed
that very few researches deal explicitly with the problematic
of traceability in ASPL, knowing that managing traceability
is very important in such evolving environments. Therefore,
we choose to discuss the problematic of traceability in
ASPL, given the challenges that it presents.

A. Traceability in Software Product Lines

Traceability helps follow the components’ life, link
between different software artifacts, from requirements to
source codes and backwards and, in a larger scale, helps
verify that all requirements have been implemented and the
artifacts documented [13]. It is also a mean to consider
different architecture choices and identify errors, and to
facilitate communication between stakeholders [14].
Traceability is very helpful when it comes to maintenance
and evolution as it allows analyzing and controlling the
impact of changes [15].

SPL add complexity to the traceability due to their reuse
characteristics and the variability management [16]. Berg et
al. [17] proposes a conceptual variability model to deal with
traceability in SPL and consider that, in addition to the two
dimensions of traceability in a simple software (i.e., phases
of development and levels of abstraction), for SPL there is
need to add variability as a third dimension. They propose to
handle SPL variability, and especially the traceability
problematic, by adopting a three dimensions conceptual
variability model that uses feature modeling to manage
variability and traceability. Anquetil et al. [14][16] added a
fourth dimension, namely evolution, to link between the
different versions of every artifact, and a fifth one,
versioning, to trace components’ changes in time.

In the next section, we will draw up a state of the art of
traceability in ASPL, based on the five traceability
dimensions, as presented by Anquetil et al. [14]: (1)
refinement traceability that links abstract artifacts to more
concrete ones that realize them (no variability), (2) similarity

530Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

traceability for links between artifacts at the same level of
abstraction (requirements, design, etc.), (3) use-variability
traceability for instantiation links (from DE to AE), (4)
realize-variability traceability to link between the variant and
the artifact that realizes it at the DE level, (5) versioning
traceability to link two successive versions of an artifact.

B. State of the art of traceability in Agile Software Product

Lines

In this section, we will draw up a listing of works that
present a methodology for introducing agility in SPL, and
discuss those methods according to the following questions:
(1) What are the traceability dimensions (according to [14])
does the presented methodology cover? (2) Which agile
method is used? (3) At which stage of SPL is the agility
introduced? (4) How does it deal with traceability?

Our first observation is that not all the methodologies
found in literature propose solutions that take into
consideration traceability (Table I). One assumption might
be that it depends on the stage where agility is used. In fact,
in [24], agility was applied in scoping, and all the work was
focalized on it. In the other papers, at least refinement
traceability is covered.

Papers that approach the architectural problematic and
variation points [12][18][22][23] cover another dimension:
variability traceability, with a link type “realize”. The
approach presented in [12][18], which uses acceptant tests,
and the one that combines workflow and web services [22]
handle also the variability traceability with a link type “use”.

TABLE I. WORKS ANALYSIS ACCORDING TO TRACEABILITY

DIMENSIONS

Traceability dimensions

Refinement
Similari

ty

Variability

(Use)

Variability

(Realize)

Versioni

ng

[10][12][18]–

[22]
- [12][18][22]

[12][18][22][2

3]
[19]

TABLE II. WORKS ANALYSIS ACCORDING TO THE AGILE METHOD

Reference Agile method
Level of agility

application

How traceability is

applied

[23] Scrum Architecture

Using Product

Line Architectural
Knowledge

(PLAK)

metamodel and
Design decision by

documenting

adding features

and changing

features

[12][18] XP Requirements AT

[24] Agility principles Scoping -

[10]

Agility principles

applied though
Collaboration

Engineering

planning

ThinkLets +

collaborative

process

[19] Evo
Requirements
management

Impact Estimation
Tables (IET)

[20][21]

Agility principles
and XP at

« Preparing for

Derivation » phase

Product

Derivation
-

Reference Agile method
Level of agility

application

How traceability is

applied

[26]

Some agile
principles

(Flexible, quick,

adaptable, user-
oriented)

Design to
architecture

WebServices +

workflow +
WebPads-based

approach

In [19], versioning traceability is addressed through the

use of Impact Estimation Tables. Iterations (and accordingly
components changes) are listed for each goal per project and
per release.

In general, there is a lack in covering several traceability
dimensions in ASPL approaches literature. Also, concerning
the agile methods (Table II), many works are based only on
agility principles [10][20][24]. XP approach is also widely
used [12][18][20][21]. However, by using AT, [12] and [18]
cover three of the five traceability dimensions and propose
an approach that covers the entire process, from
requirements to code units.

IV. OUTLOOK AND CONTRIBUTION

Based on our researches, we found the study of ASPL a
challenging field that did not gain yet sufficient maturity,
especially when it comes to managing traceability. In fact, in
case of ASPL, we need to consider the agile characteristics
of the environment. Adding agility means frequent
requirements’ change, even late in development, and
continuous interaction with customers. Also, while agility
tries to avoid heavy processes and excessive documentation,
traceability needs more produced and maintained documents.

In the works related to ASPL, as discussed in the
previous section, there is lack of managing traceability: not
all the ASPL methodologies proposed in literature deal with
traceability and, for those taking it into consideration, the
agile configuration proposed doesn’t allow tracing the whole
PL chain, according to the five traceability dimensions
detailed in [14].

Moreover, referring to our literature analysis, we noted
that only papers presenting an automated refactoring
approach used traceability in an efficient way: only really
affected elements in the SPL are localized and modified
before rebuilding the SPL [12][18][19].

Thus, for our contribution, we propose a methodology
based on markers for efficient traceability in an ASPL
environment: in a SPL, every produced element is the result
of specific concatenation and instantiation of some product
line components. Knowing this combination helps tracing
efficiently the product generation path by targeting only the
concerned components. Based on this observation, we are
establishing an approach that consists of adding a marker to
every SPL component. Each marker is unique and
encapsulates the component characteristics and, as a product
is the result of specific core assets instantiation, it inherits
from those core assets’ characteristics. Therefore, the idea is
to identify the product with a marker composed from the
corresponding core assets’ ones, and to create a link between
the components and the products, based on those markers.
The marking step is added to the core assets generation

531Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

process (see Figure 1). However, a special treatment is
reserved to variation points. In fact, variants share
characteristics with their parent components (i.e., variation
points). Thus, instead of generating a new marker for the
variants, we use a function for “marker mutation”. This
function allows modifying the variation point marker to
generate the variant’s one, while keeping the former’s
characteristics and adding the latter’s specific ones. It helps
lighten the process, as we are in an agile environment, and
establishing a realize-variability traceability link. By the end
of this process, a multidimensional marking matrix is
generated. Its dimensions correspond to core assets and its
cells to a combination of the corresponding markers. Thus,
each derived product is distinguished by a marker that
corresponds to a specific cell in the multidimensional matrix
(see Figure 2). However, in order not to complicate the
matrix and to preserve the agility of the environment,
(tracing the whole product generation process might be
heavy and costly, and even useless regarding the traceability
purpose in the developed ASPL), we introduce the concept
of “break-even point”. It represents the point of balance
between the desired level of traceability detail and the costs
of building and maintaining the system. It is flexible and
depends on the level of traceability needed. The aim of this
break-even point concept is to define a traceability limit
based on which we select only the core assets needed for the
product traceability. The product marker is then assembled
depending on the composition of those core assets in the
product. In order to define the parameters to consider for
establishing a break-even point, we are conducting a study to
outline the limitations of traceability in an agile environment.
We aim to determine, through this study, the level of
traceability that does not penalize the agility of the ASPL,
and we intend to evaluate this approach using graph theory
principles, to prove that the selected subgraph (connection of
core assets) can effectively allow tracing the products’
generation paths, knowing the environment constraints.

Figure 1. Core assets marking process

Figure 2. Link between products and marking matrix

V. CASE STUDY

To illustrate our approach, we present hereafter a case
study of offers implementation in the case of a
telecommunication operator.

Telecommunication market is very competitive and each
operator has to be reactive to the market changes. Also, with
the expansion of smartphones and intelligent home
equipment, trend is for broadband, high speed data
transmission, and free short messages and calls. Therefore,
offers share the same objectives but present them in different
ways, depending on the proposed services, the pricing and
the customer’s subscription. Moreover, to reach reactivity,
the telecommunication operator needs to propose new offers
with new services frequently. Considering those elements,
and in order to optimize development and deployment costs,
providers of network solutions use ASPL to implement the
offers: stakeholders (i.e., marketing staff) are continuously
involved and offers frequently changing (agility); they share
the same bases (common components) and differ depending
on the services proposed and the customer’s subscription
(variation points).

Another telecommunication market constraint concerns
revenue problematic: a critical error generated after
deploying an offer may cause important financial losses if
not quickly fixed, depending on the volume of traffic and
data transmission. That’s why reactivity in tracing product
generation path is very important.

With our approach, each generated product will have a
marker composed from those of its components. Thus, we
can easily identify the concerned elements to be checked and
fixed. We can also identify the other impacted products and
the related test cases to execute them and verify the product
integrity (see Figure 3). When an offer is initiated by the
management (based on market statistics and indicators,
decision making system, etc.), it is implemented as a result
of the instantiation of concerned components (use cases,
design components, realization components and test
scenarios) of the ASPL. Each component has its unique
marker (UCi, DCi, RCi and Ti) and the generated product’s
marker (UC1, DC1, RC1, RC2, T1, T2, T3) is a result of
their concatenation.

532Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Offers management

Offers use

cases

Offers design

components

Offers realisation

components
Offers test

scenario

New

product

(UC1,DC1,RC1,RC2,T1,T2,T3)
Figure 3. Simplified case study for telecommunication offers implementation

VI. CONCLUSION AND FUTURE WORK

Agile Product Line Engineering is a new promising
method in software engineering. It helps companies gain
flexibility, reactivity and customer satisfaction in a volatile
and competitive context while optimizing costs and efforts.

We discussed in this paper the problematic of traceability
in an ASPL through a state of the art, and proposed an
approach for ASPL traceability based on markers and break-
even points.

As the implementation of a break-even point requires a
balance between the desired level of traceability and the
costs of building and maintaining the agile system, our future
contribution will focus on the optimization of the granularity
and depth level of traceability in an ASPL.

REFERENCES

[1] L. M. Northrop, “SEI’s software product line tenets, ”IEEE
Softw., vol. 19, no. 4, 2002, pp. 32–40.

[2] K. Pohl, G. Böckle, and F. Van Der Linden, Software product
line engineering. 2005.

[3] J. Díaz, J. Pérez, P. P. Alarcón, and J. Garbajosa, “Agile
Product Line Engineering - A Systematic Literature Review,”
Softw. Pract. Exp., vol. 41, no. 8, 2011, pp. 921–941.

[4] K. Tian and K. Cooper, “Agile and software product line
methods: are they so different,” 1st Int. Work. Agil. Prod.
Line Eng. (APLE), collocated with 10th Int. Softw. Prod. Line
Conf., 2006.

[5] Y. Ghanam, F. Maurer, and K. Cooper, “A Report on the XP
Workshop on Agile Product Line Engineering,” ACM
SIGSOFT Softw. Eng. Notes, vol. 34, no. 5, 2009, pp. 25–27.

[6] R. Carbon, M. Lindvall, D. Muthig, and P. Costa, “Integrating
Product Line Engineering and Agile Methods : Flexible
Design Up-Front vs . Incremental Design,” in 1st
International Workshop on Agile Product Line Engineering
APLE06, 2006, pp. 1–8.

[7] M. Fowler and J. Highsmith, “The agile manifesto,” Softw.
Dev., vol. 9, 2001, pp. 28–35.

[8] L. Northrop and P. Clements, “Software Product Lines,”
Carnegie Eng. Inst., 2005, pp. 1–105.

[9] C. Krueger, “Eliminating the adoption barrier,” IEEE Softw.,
vol. 19, no. 4, Jul. 2002, pp. 29–31.

[10] M. a. Noor, R. Rabiser, and P. Grünbacher, “Agile product
line planning: A collaborative approach and a case study,” J.
Syst. Softw., vol. 81, no. 6, Jun. 2008, pp. 868–882.

[11] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser, “Using
composite feature models to support agile software product
line evolution,” in Proceedings of the 6th International
Workshop on Models and Evolution - ME ’12, 2012, pp. 21–
26.

[12] Y. Ghanam and F. Maurer, “Extreme Product Line
Engineering : Managing Variability and Traceability via
Executable Specifications,” in 2009 Agile Conference, 2009,
pp. 41–48.

[13] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder, and A.
Zisman, “Software Traceability: Trends and Future
Directions,” in ACM, 2014.

[14] N. Anquetil et al., “A model-driven traceability framework for
software product lines,” Softw. Syst. Model., vol. 9, 2010, pp.
427–451.

[15] Y. C. Cavalcanti et al., “Towards metamodel support for
variability and traceability in software product lines,” in
Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems - VaMoS ’11, 2011, pp. 49–57.

[16] N. Anquetil et al., “Traceability for Model Driven , Software
Product Line Engineering 2 Software Product Line,” ECMDA
Traceability Work. Proc., 2008.

[17] K. Berg, J. Bishop, and D. Muthig, “Tracing software product
line variability: from problem to solution space,” Proc. 2005
Annu. Res. Conf. South Africain Inst. Comput. Sci. Inf.
Technol. IT Res. Dev. Ctries., 2005, pp. 182–191.

[18] Y. Ghanam and F. Maurer, “An Iterative Model for Agile
Product Line Engineering.,” SPLC, 2008, pp. 377–384.

[19] B. G. K. Hanssen and T. E. Fægri, “Process fusion : an
industrial case study on agile software product line
engineering,” J. Syst. Softw., 2008, pp. 843–854.

[20] P. O’Leary, F. M. Caffery, I. Richardson, and S. Thiel,
“Towards agile product derivation in software product line
engineering,” 2009.

[21] P. O’Leary and F. McCaffery, “An agile process model for
product derivation in software product line engineering,” J.
Softw. Evol. Process, 2012.

[22] M. Karam, S. Dascalu, and H. Safa, “A product-line
architecture for web service-based visual composition of web
applications,” J. Syst. Softw., vol. 81, no. 6, 2008, pp. 855–
867.

[23] J. Díaz, J. Pérez, and J. Garbajosa, “Agile product-line
architecting in practice: A case study in smart grids,” Inf.
Softw. Technol., vol. 56, no. 7, Feb. 2014, pp. 727–748.

[24] M. Balbino, E. S. De Almeida, and S. Meira, “An Agile
Scoping Process for Software Product Lines,” in SEKE 2011 -
Proceedings of the 23rd International Conference on Software
Engineering and Knowledge Engineering, 2011, pp. 717–722.

533Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

