
Fundamentals, Prospects and Challenges for Totally Functional Programming Style

Paul Bailes, Leighton Brough, Colin Kemp

School of Information Technology and Electrical Engineering

The University of Queensland,

St Lucia, QLD Australia

{p.bailes, l.brough, c.kemp}@uq.edu.au

Abstract—General recursive definitions contribute to the

complexity of programming. This complexity could be reduced

by reliance on established, well-understood programming

patterns. Catamorphism-based recursion patterns simplify

programming with little practical loss in expressive capability

compared to general recursion, including the capability of

defining new recursion patterns. Partial application of

catamorphisms, sub-catamorphic recursion patterns and

methods to symbolic data allows a comprehensive replacement

of symbolic data with functional, or what we describe as

“zoetic”, representations that inherently adopt the benefits of

catamorphism-based programming. The considerable promise

of this “Totally Functional” style confronts us with some

exciting technical challenges.

Keywords-component; Catamorphism, Fold, Functional,

Recursion.

I. INTRODUCTION

We contend that software is unduly complicated by the
pervasive need to program interpreters for the computations
inherent to symbolic data. By using instead functional
representations that embody the fusion of characteristic
interpretations into data, this pervasive complication can be
minimized if not avoided, and programming thus
significantly simplified.

Our essential argument develops in logical sequence as
follows:

 recursion patterns such as list “foldr”, which
generalize to catamorphisms on regular recursive
datatypes, suffice to express and simplify a very
wide range of common recursive definitions;

 other useful and simplifying recursion patterns are
also definable in terms of catamorphisms;

 catamorphisms thus embody practically as well as
theoretically (in terms of initial algebra semantics)
the behaviours characteristic to abstract data types;

 partial application of catamorphisms to typical
symbolic representations of data yield functional
representations that inherently possess these
characteristic behaviours, i.e., a kind of liveness
which we describe as “zoetic” from the Greek
“zoion” meaning “animal” (as in “zoology”);

 partial application of behaviours that are more
specialized than the generic catamorphism, but are
definable inevitably in terms of catamorphisms, also

yield zoetic data;

 programming with zoetic data simply involves their
application to appropriate operands (just as with
recursion patterns), rather than also having to
program with explicit recursion the characteristic
behavior of the datatype;

 creation of zoetic data can be effected by generator
functions which are the derived counterparts of
symbolic data constructors;

 this enables a new style of programming (which to
emphasise its distinctiveness from an earlier related
development of “Total Functional Programming” [1]
we call “Totally Functional Programming”, or TFP),
in which a comprehensive supercession of symbolic
data by functional representations can be achieved;

 while the comprehensiveness of the foregoing
program is unprecedented, important aspects of it are
discernable in (and thus validated by) related fields
of computer science.

The presentation of the argument in this paper follows the
above sequence.

The consequent comprehensive replacement of symbolic
data by functions requires first-class functions, hence we
implicitly adopt functional programming [2] and functional
languages. We choose Haskell [3] for purposes of
illustration.

II. CATAMORPHIC PROGRAMMING

An approach to programming based entirely on canonical
recursion patterns known as “catamorphisms” [4] is
beneficial, viable and self-sufficient. Catamorphisms are
more familiar as the list “reduce” or “foldr” functions of
functional programming, but apply to all regular recursive
types.

A. General Recursion Too Complex

Recursion patterns simplify and clarify programming,
compared to the use of general iteration/recursion. Consider
the case of recursively defining basic arithmetic operations
on the simplest recursive datatype, of Natural numbers, in
Fig. 1. This example exposes some key aspects of Haskell as
follows:

 declaration of datatypes (e.g., Nat) in terms of
constructor functions (e.g., Zero and Succ) and their
operand types where appropriate (i.e., Nat, thus
defining a recursive type);

559Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

data Nat = Zero | Succ Nat

add Zero b = b

add (Succ a) b = Succ (add a b)

mul Zero b = Zero

mul (Succ a) b = add b (mul a b)

exp a (Zero) = Succ Zero

exp a (Succ b) = mul a (exp a b)

Figure 1. General recursive renditions of basic arithmetic operations.

cataN Zero f x = x

cataN (Succ n) f x = f (cataN n f x)

add a b = cataN a Succ b

mul a b = cataN a (add b) Zero

exp a b = cataN b (mul a) (Succ Zero)

Figure 2. Catamorphic renditions of basic arithmetic operations.

 definition of functions by recursion equations;

 branching by pattern matching on function
arguments;

 function application by juxtaposition of operator and
operand(s).

(Further key novelties of functional languages and Haskell
in particular will be explained as introduced in examples
below.)

In this general recursive rendition of arithmetic
operations, the following deficiencies are apparent.

Apart from the suggestive naming of the type and its
constructors, there is nothing in the definition that compels
treatment of members of the type as naturals, or indeed
numbers of any kind;

Instead, the obvious isomorphism between the concrete
members of Nat and the abstract natural numbers needs to be
implemented by an implicit interpreter that converts symbols
into actions (in this case, iterative applications of other
functions);

A programmer needs to repeat the implementation of this
interpreter at each usage of Nat entailing not just extra effort
but the risk of inconsistent implementations leading to
inconsistent (erroneous) behavior.

Using however the “catamorphism” recursion pattern on
Nat - cataN - the rendition becomes that of Fig. 2 which
significantly remedies the above deficiencies, in that a
uniform interpretation of the symbolic data is provided - i.e.,
cataN - which moreover derives directly from the type
definition.

B. Catamorphisms as Practical Basis

The catamorphic pattern defined on Nat above
generalises for regular recursive types. For example, the
catamorphism - cataL - for (polymorphic) lists is as in Fig. 3.
Note how in Haskell the type polymorphism on type List is
signified by parameterization on list element type ‘t’.

data List t = Cons t (List t) | Nil

cataL Nil o b = b

cataL (Cons x xs) o b = o x (cataL xs o b)

-- versus

foldr op b [] = b

foldr op b (x:xs) = op x (foldr op b xs)

Figure 3. Catamorphisms and operations on lists.

sumR Nil = 0

sumR (Cons x xs) = x + sumR xs

-- versus

sumC xs = cataL xs (+) 0

appendR Nil ys = ys

appendR (Cons x xs) ys =

 Cons x (appendR xs ys)

-- versus

appendC xs ys = cataL xs Cons ys

Figure 4. List processing examples.

Observe also that (aside from a reordering of the usual
presentation of operands) cataL is exactly the familiar
“foldr” of functional programming (also known as “reduce”).

The reader will also observe that just as with Nat above,
operations on lists may be programmed using the uniform
interpretation offered by cataL applied to other operations
and data pertaining to the specific applications. See Fig. 4 for
a comparison of explicit recursive vs. catamorphic
definitions of some basic list processing functions. (Note
how in Haskell the form “(θ)” denotes the function
represented by operator ‘θ’, in this case binary addition
represented by ‘+’.)

What make catamorphisms attractive as a practical as
well as a theoretical basis for programming are their
properties as follows:

 generality - existence for all regular recursive types,
not just Nats or Lists

 expressiveness - sufficient to define at least any
function provably-terminating in second-order
arithmetic [5], i.e., practically-speaking any
reasonable function other than a Universal Turing
Machine or other programming language interpreter;

 essentiality - their embodiment of the initial algebra
semantics [6] of the respective underlying datatypes,
as the unique homomorphisms that define the
applicable notion of initiality itself;

C. Catamorphisms as Pragmatic Basis

There are however other recursion patterns that appear to
be necessary for the natural solution of programming
problems. For example, compare the catamorphic renditions
in Fig. 5 of the “insert” and “reverse” operations with their
definitions in Fig. 6 using respectively the paramorphic [4]
and “left fold” [2] recursion patterns. (N.B. our adoption
henceforth of customary concrete syntax for the List type.)

560Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

-- insert element into ascending list

insert e xs =

 fst $ cataL xs

 (\x (exs,xs) ->

 (if e<x then e:x:xs else x:exs, x:xs)

)

 ([e],[])

-- reverse order of list elements

reverse xs =

 cataL xs

 (\x xs’ -> (\rxs -> xs’ (x:rxs)))

 (\rxs -> rxs)

 []

Figure 5. Catamorphic definitions of “insert” and “reverse”.

insert e xs =

 paraL xs

 (\x exs xs ->

 if e<x then e:x:xs else x:exs

)

 [e]

reverse xs = lfold xs (\rxs x -> x:rxs) []

-- definitions of new recursion patterns

-- like cataL but op also has list tail xs

paraL (x:xs) o b = o x (paraL xs o b) xs

paraL [] o b = b

-- like cataL but op grouped from left

lfold (x:xs) o b = lfold xs o (o b x)

lfold [] o b = b

Figure 6. Alternative definitions of “insert” and “reverse”.

paraL xs o b =

 fst $ cataL xs

 (\x (pxs,xs)->(\o b->(o x pxs xs, x:xs))

 (b, [])

lfold xs o b =

 cataL xs

 (\x lxs -> (\b -> lxs (o b x)))

 (\b -> b)

 b

Figure 7. Catamorphic definitions of other recursion patterns.

Important new Haskell features used here are as follows:

 anonymous “lambda” functions, of the form
(\ arguments -> body)

 built-in list datatype, with constructors ‘:’ (for Cons)
and “[]” (for Nil);

 n-tuple data, with elements selected by pattern-
matching or by selector functions (e.g., “fst”);

 low-precedence function application denoted by ‘$’.

What allows us to continue to treat catamorphisms as a
basis in the face of the above is that these other recursion
patterns can be synthesized from catamorphisms without
recourse to general recursion. The recursion patterns (such as
paraL, lfold, etc.) can be defined using abstractions (higher-
order, as needed) from the definitions of the methods (such
as insert, reverse, etc.), e.g., as in Fig. 7.

D. Recursion Pattern/Application Hierarchy

The consequence of the above is that all the reasonable
methods (on regular recursive datatypes, such as natural
numbers, lists, trees, etc.) we would want to program, and all
the recursion patterns besides catamorphisms that we would
want to use to program them, can be derived in a hierarchical
manner, starting from catamorphisms and supplying
instantiating operands at each level of refinement.

For example, for lists:

 the root, catamorphism level of the hierarchy is
represented by cataL;

 the intermediate, recursion pattern level of the
hierarchy is represented by patterns derivable from
the root, e.g., paraL; lfold; etc.;

 the lowest, application level of the hierarchy is
represented by actual list operataions, e.g., length;
append; insert; reverse; etc.

Note that members of the hierarchy at all levels are
directly accessible from the root catamorphism, in some
cases more conveniently (e.g., length) and in some cases less
so when one of the intermediate recursion patterns is more
convenient (e.g., reverse). In particular, the identity property
of catamorphisms is that application of the catamorphism for
a type to the constructors of that type returns the
catamorphism, e.g., as follows:

cataN n Succ Zero = n

cataL xs (:) [] = cataL xs

III. ZOETIC DATA

The foregoing catamorphism-based recursion pattern
approach to programming enables us to bypass completely
symbolic data, and their interpretation. In the end, we
directly construct “zoetic” representations of data, i.e., as
functions, rather than the usual symbolic forms.

A. Catamorphic Zoetic Data (CZD)

CZD are the basic kind of zoetic data. They are formed
by the partial application to symbolic values of the standard
interpretation of their datatypes. The standard interpretation
of each datatype remain exactly as exposed above, i.e., its
catamorphism. As a result, each CZD is a function that
implements that catamorphism on the underlying symbolic
datatype.

Thus, the advantage of CZD is that their usages no longer
require any interpretations as reflected by explicit recursive
definitions or by the explicit application of the interpreter for
the type, i.e., its catamorphism. Instead, the CZD are simply
applied to appropriate catamorphism operands. For example,
compare the above definitions of arithmetic operations to

561Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

-- zoetic naturals

zero = cataN Zero

one = cataN (Succ Zero)

-- etc

-- zoetic arithmetic operations

addz za zb = za succ zb

mulz za zb = za (addz zb) zero

expz za zb = zb (mulz za) one

Figure 8. Zoetic natural numbers and operations.

those on natural number CZD as in Fig. 8. Observe how
zoetic naturals are simply the partial applications of cataN to
the symbolic values of type Nat.

A final key Haskell feature found in the above is partial
application of “curried” functions. For example, addz can
equally be thought of as a function of one parameter “za”
that returns a function of a further parameter “zb”, as well as
a function of the same two parameters. Thus, e.g.,
application of addz to the “zb” parameter of mulz denotes a
function that will add “zb” to its further actual parameter.

Now, we can define generators, i.e., the zoetic
counterparts of symbolic data constructors but independent
of them. For example, from specifications as in Fig. 9, we
derive the respective zoetic counterparts zero and succ of
Zero and Succ as in Fig. 10 (likewise for cons and nil). Note
that the identity property for catamorphisms and symbolic
data constructors applies for CZD and their generators, e.g.,
as per the identities as in Fig. 11.

-- generally

zn = cataN n

-- specifically

zero s z = cataN Zero -- as above

succ (cataN n) = cataN (Succ n)

Figure 9. Specifications of zoetic natural number generators.

zero f x

= cataN Zero f x

= x

succ zn f x

= succ (cataN n) f x

= cataN (Succ n) f x

= f (cataN n f x)

= f (zn f x)

-- similarly derivable

cons x zxs o b = o x (zxs o b)

nil o b = b

-- etc. for other types

Figure 10. Zoetic natural number generators.

succ zn succ zero = succ zn

zero succ zero = zero

cons z zxs cons nil = cons z zxs

nil cons nil = nil

Figure 11. Identities for CZD.

Just as with zoetic arithmetic, zoetic list processing also
entails simple, non-interpretive provision of relevant
catamorphic operands, e.g., as follows.

zappend zxs zys = zxs cons zys

zsum zxs = zxs addz zero

B. Subcatamorphic Zoetic Data (SZD)

The interpretation of symbolic data is not always given
by a catamorphism, but maybe by some other method that
can be defined catamorphically, i.e., found below
catamorphisms in the recursion pattern/application hierarchy,
hence “subcatamorphic”.

For example, in Fig. 12 the method “memb” interprets
binary trees as sets, with constructors Nd, Lf and Tip
respectively signifying set union, singleton and empty sets.
However, within the catamorphic programming paradigm
essential to TFP, these other methods (exemplified here by
memb) will be expressible as catamorphisms, e.g., as in Fig.
13.

As with CZD, we form zoetic data by the partial
application to the symbolic data of the interpreter for the
required characteristic behaviour. In this case, the partial
application “memb bt” (for some bt :: Bt) yields a function
that tests if some putative element e is actually a member of
the set represented by bt. That is, the SZD form of a set is the
familiar characteristic predicate representation.

data Bt t = Nd (Bt t) (Bt t) | Lf t | Tip

memb (Nd t1 t2) e = memb t1 e || memb t2 e

memb (Lf x) e = x==e

memb Tip e = False

Figure 12. Trees as sets.

memb s e =

 cataBt s

 (\t1’ t2’ -> t1’ || t2’)

 (\x -> x==e)

 False

-- catamorphism on Bt

cataBt (Nd t1 t2) n l t =

 n (cataBt t1 n l t) (cataBt t2 n l t)

cataBt (Lf x) n l t = l x

cataBt Tip n l t = t

Figure 13. Set membership as a catamorphism.

562Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

memb s e =

 cataBt s

 (\s1 s2 e -> s1 || s2)

 (\x e -> x==e)

 (\e ->False)

 e

Figure 14. Catamorphic set membership with closed terms.

memb s =

 cataBt s

 (\s1 s2 e -> s1 || s2)

 (\x e -> x==e)

 (\e ->False)

Figure 15. Catamorphic set membership as a characteristic predicate.

union s1 s2 e = s1 e || s2 e

single x e = x==e

empty e = False

Figure 16. Declarations of generators for zoetic sets.

Further, if we write the catamorphism operands as closed
terms as in Fig. 14, then, as a corollary of the identity
property of catamorphisms, these closed operands serve as
generators of characteristic predicates.

First, eta-reduction of the definition of memb exposes the
zoetic set/characteristic predicate clearly as in Fig. 15. Then
recognizing that the significance of the identity property is
that catamorphism operands serve as constructor
replacements, we see that catamorphism operands are
inherently generators of whatever is the result of the
catamorphism, in this case the zoetic set. So, finally
rewriting the above operands in more convenient equational
format gives the generator declarations of Fig. 16. The same
technique applies for any SZD, subject of course to the
condition that the characteristic method is definable as a
catamorphism (which as we have seen is practically always).

C. Recursion Patterns as SZD

Just as applications such as “memb” give rise to SZD, so
do the recursion patterns found below catamorphisms. For
example, partial applications of the form “lfold xs” give rise
to a class of list-like SZD, but which instead of having the
catamorphic/foldr behavior of list CZD, behave as “left
folds” with the binary operator ‘o’ grouped from the left.

Further, just as with zoetic sets above, when we express
the catamorphic definitions of recursion patterns with closed
operands e.g. as in Fig. 17, these operands are also effective
as generators. Continuing the example, first eta-reduce as in
Fig. 18 which exposes the zoetic left-folding list as an
identity between a partial application of the lfold method and
a catamorphism. Then we simply read off the operands to the
catamorphism and re-present them as generator declarations
as in Fig. 19.

lfold xs o b =

 cataL xs

 (\x lxs -> (\o b -> lxs o (o b x)))

 (\o b -> b)

 o b

Figure 17. Left fold as a catamorphism with closed terms.

lfold xs =

 cataL xs

 (\x lxs -> (\o b -> lxs o (o b x)))

 (\o b -> b)

Figure 18. Left fold as catamorphism partial application.

lcons x lxs o b = lxs o (o b x)

lnil o b = b -- NB same as nil CZD

Figure 19. Declarations of generators for left-folding zoetic lists.

D. Zoetic Data Hierarchy

The hierarchy of zoetic data (CZD and SZD) naturally
parallels that of catamorphisms, other recursion patterns, and
catamorphic methods as detailed above, in which descent in
the hierarchy from most general CZD to more specialized
SZD in achieved by application to appropriate operands.

For example, from a zoetic list zxs we can first derive the
variant lzxs with the same elements in the same sequence but
with left-folding behavior, by applying zxs to the left-folding
zoetic list generators thus:

lzxs = zxs lcons lnil

Next, we can calculate the reverse of zxs by applying
lzxs to the appropriate operands to left-fold as follows:

rzxs = lzxs (\rzxs x -> cons x rzxs) nil

Note that the zoetic nature of the resulting list is achieved by
use of the zoetic list generators cons and nil in the above,
rather than symbolic list constructors (:) and []. That is, if
conventional lists were the required result, we would have
written instead the following:

rxs = lzxs (\rxs x -> x:rxs) []

(Further note how in this case the operands to the left-
folding zoetic list lxzs are precisely those given to lfold
above in order to reverse a conventional list.)

If desired, we can define a self-contained reverse
operation, by application of successive sets of (sub-)
catamorphism operands in stages reflective of the above, as
per Fig. 20. A one-stage definition of zrev in Fig. 21 echoes
the direct definition of list reversal as a catamorphism further
above. This version however loses some of the transparency
of the two-stage definition that results from being able to
express zrev in its more natural left-folding form.

Finally, it one exists, we can always recover the symbolic
form of a zoetic datum by applying it to the symbolic
constructors, e.g., as in Fig. 22.

563Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

zrev zs =

 -- start with zs

 zs

 -- next transform into left-folding list

 lcons lnil

 -- finally give left-folding operands

 (\rzxs x -> cons x rzxs) nil

Figure 20. Staged defintion of list reverse.

zrev zs =

 zs

 (\x zxs’->(\rzxs -> zxs’ (cons x rzxs)))

 (\rzxs -> rzxs)

 nil

Figure 21. Direct catamorphic definition of list reverse.

-- an identity, not a function definition

cons 'a' (cons 'b' nil) (:) [] = "ab"

Figure 22. Recovery of symbolic from zoetic data.

IV. TOTALLY FUNCTIONAL PROGRAMMING

Supported by the techniques presented above, our key
key proposition in Totally Functional Programming (TFP) is
the combination of three complementary factors.

First, every data type has a characteristic behavior (for
pure structures such as naturals, lists, trees, etc. it is their
catamorphism; for more specialised types it is the
characteristic method for the type e.g., for sets it is the
memb(er) function);

Second, the complexity of conventional programming
derives significantly from the need to program the
interpretation of these inherent behaviours from symbolic
datatypes, which are typically intertwined with application-
specifics (e.g., the explicit recursive definitions of arithmetic
operations far above);

Finally, direct zoetic representations of data that embody
these behaviours are specified as the partial applications of
characteristic methods to the symbolic representations, and
can be exploited simply by application to the further
operands of the methods. The feasibility of TFP is enhanced
by direct generation of CZD and SZD without having
explicitly to apply the characteristic methods to symbolic
data.

A potential criticism of the key proposition of TFP is that
whereas it posits a single behavior or characteristic method
for each datatype, instead multiple methods are normal in
programming. Our response is that the zoetic data hierarchy
for each type adequately expresses any need for multiple
behaviours: at the summit of the hierarchy is the
catamorphism, from which all other behaviours can be
derived; more specific behaviours can be found lower in the
hierarchy. The designer of a zoetic datatype is thus free to
choose a relatively general (= more methods) or specific (=
fewer methods) behavior as circumstances require.

V. RELATED WORK

Aside from our own work (recently [7][8][9]), some
aspects of TFP have been presaged (and therefore in a sense
pre-validated) by others. However, none of these propose the
comprehensive replacement of symbolic data with
functional/zoetic representations as we do.

A. TFP in Functional Programming

Our conception of TFP can already be discerned in
various aspects of functional programing: Church numerals
[10] are CZD for the Nat type above; combinator parsers
[11] are SZD for context-free grammars.

B. Turner’s Total Functional Programming

Turner’s already-cited [1] related conception of TFP has
a common basis with ours in the avoidance of general
recursion in favour of recursion patterns such as
catamorphisms (and additionally anamorphisms - see below),
but does not eschew symbolic data as we do.

C. Language Design

The history of language design can be thought of as a
progressive retrofitting of “Church” concepts into a “Turing”
context. TFP culminates that process by the complete
replacement of Turing-style interpretation of symbolic data
with Church-style direct definitions of (higher-order)
functions. Some highlights of this process with particular
relevance to TFP are as follows (in reverse chronological
order).

Backus [12] repudiated general recursion for a fixed set
of “combining forms” (including list catamorphisms), but
without generalization to other types.

Dijkstra’s [13] emphasis on fixed control structures
rather than arbitrary control flows (“goto” statements) can be
thought of a similar in sprit to our (and Turner’s and
Backus’) repudiation of general recursion.

But long before, Backus equipped FORTRAN with the
catamorphism on natural numbers, in the form of the DO-
loop. Our TFP of course offers the programmer significantly
more facility than DO-loop programming.

It is evident from this paper that modern functional
languages (such as Haskell) at least encourage TFP.
However, in order to avoid surprising limitations on zoetic
operations, it will be necessary to adopt more powerful type
systems (see Future Directions/Type-checking below). Also,
in order to dispense with symbolic data completely, it will be
necessary to handle infinite structures zoetically (see Future
Directions/Codata and Corecursion below).

VI. FUTURE DIRECTIONS

TFP’s promise is also a stimulus to address some key
technical challenges, in the following respects.

With respect to computer science education: the
simplicity of recursion-pattern-based programming (no need
to program iteration or recursion; just “complete the blanks”
by supplying catamorphic recursion patterns with the
appropriate operands as in the examples above) suggests
applicability to introductory programming teaching.

564Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

anL nxt end seed =

 if end seed then []

 else

 let (nxtelt, nxtseed) = nxt seed

 in nxtelt : anL nxt end nxtseed

evens =

 anL (\s->(s+2,s+2)) (_->False) 0

odds =

 anL (\s->(s+2,s+2)) (_->False) 1

fibs =

 anL

 (\(fa,fb)->(fa,(fb,fa+fb)))

 (_->False)

 (0,1)

Figure 23. Anamorphic defintions of infinite streams.

Regarding type-checking: the convenient type inference
found in Haskell and other modern functional languages
does not accept some simple CZD (arithmetic on Church
numerals). It’s not yet clear if the existing candidates for the
necessary more complex type systems are prohibitively
inconvenient [14].

Regarding formal methods: just as catamorphisms (and
CZD) possess more specific (and useful) laws than induction
[15], what kind of more specialised laws are derivable
among more specialised zoetic data (i.e., SZD)? With respect
to course code refactoring: if zoetic data represent a clearer
way to write programs, they should equally represent a good
refactoring target, as indicated by some potentially useful
results already [16][17].

Finally, regarding processing of infinite structures:
catamorphisms are total functions on finite structures
(“data”), but for practical computing, processing
(“corecursion”) of (potentially) infinite structures (“codata”)
is clearly necessary (e.g., a stream of transactions against a
database; events to which a real-time operating system has to
respond; etc.). The clear path to a solution [1] entails
“anamorphisms” [4], as the categorical dual to
catamorphisms, to provide the effective basis for zoetic
representations of codata. For example, the anamorphism on
lists (“anL” a.k.a. “unfold”) can be used to define (infinite)
streams, as in Fig. 23. Note that in Haskell, the ‘_’ denotes
an ignorable formal parameter, useful in defining constant
functions. We are however yet to develop a presentation of
anamorphism-based zoetic codata in the same
comprehensive way that we have achieved for
catamorphism-based zoetic data.

VII. CONCLUSIONS

Totally Functional Programming has the promise to
fulfill the prospects of functional programming in several
ways. Fundamentally, the essence of functional
programming - “first class” functions - is exploited to
simplify programming by bypassing pervasive interpretation
with zoetic data that encapsulate the behaviours essential to

data.
Higher-order functions are also instrumental in realizing

the pragmatics of TFP - for each type, a hierarchy from
general (CZD) to specific (SZD) entities exists, the
specialization relationship being implemented by application
to catamorphism operands.

Finally, as signified by the “front of stage” role it gives to
zoetic data (compared to their hitherto relegation as
theoretical curiosities as “Church” data representations), TFP
completes an important stage in the last sixty or so years of
work of restoring the Church perspective programming into
the otherwise Turing-dominated worldview.

REFERENCES

[1] D. A. Turner, “Total Functional Programming”, J. Universal
Computer Science, vol. 10, no. 7, 2004, pp. 751-768.

[2] J. Hughes, “Why Functional Programming Matters”, The
Computer Journal, vol. 32, no. 2, 1989, pp. 98-107.

[3] The Haskell Programming Language,
http://www.haskell.org/haskellwiki/Haskell, retrieved: 11
August 2014.

[4] E. Meijer, M. Fokkinga, and R. Paterson, “Functional
Programming with Bananas, Lenses, Envelopes, and Barbed
Wire”, Proc. FPCA 1991, LNCS vol. 523, 1991, pp. 142-144.

[5] J. Reynolds, “Three approaches to type structure,
Mathematical Foundations of Software Development”, LNCS
vol. 185, 1985, pp. 97-138.

[6] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens,
“Generic Programming - An Introduction”, in S. Swierstra, P.
Henriques and J. Oliveira (eds.), Advanced Functional
Programming, LNCS, vol. 1608, 1999, pp. 28-115.

[7] C. Kemp, “Theoretical Foundations for Practical ‘Totally-
Functional Programming’ ”, PhD Thesis, The University of
Queensland, St Lucia, 2009.

[8] P. Bailes and L. Brough, “Making Sense of Recursion
Patterns”, Proc. 1st FormSERA: Rigorous and Agile
Approaches, IEEE, 2012, pp. 16-22.

[9] P. Bailes, L. Brough, and C. Kemp, “Higher-Order
Catamorphisms as Bases for Program Structuring and Design
Recovery”, Proc. IASTED SE, 2013, pp. 775-782.

[10] H. Barendregt, The Lambda Calculus - Its Syntax and
Semantics 2nd ed., North-Holland, Amsterdam, 1984.

[11] G. Hutton, “Higher-order functions for parsing”, Journal of
Functional Programming, vol. 2, 1992, pp. 323-343.

[12] J. Backus, “Can programming be liberated from the Von
Neumann style? A functional style and its algebra of
programs”, Comm. ACM, vol. 9, 1978.

[13] E. Dijkstra, “Goto Statement Considered Harmful”, Comm.
ACM, vol. 11, 1968, pp. 147-148.

[14] D. Vytiniotis, S. Weirich, and S. L. P. Jones, “Boxy types:
inference for higher-rank types and impredicativity”, Proc.
ICFP 2006, 2006, pp. 251-262.

[15] G. Hutton, “A Tutorial on the Universality and
Expressiveness of Fold”, Journal of Functional Programming,
vol. 9, 1999, pp. 355-372.

[16] J. Launchbury and T. Sheard, “Warm Fusion: Deriving Build-
Catas from Recursive Definitions”, Proc. FPCA 1995, ACM,
New York, 1995, pp. 314-323.

[17] S. Mak and T. van Noort, Recursion Pattern Analysis and
Feedback, Center for Software Technology, Universiteit
Utrecht, 1986.

565Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

