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Abstract—General recursive definitions contribute to the 

complexity of programming. This complexity could be reduced 

by reliance on established, well-understood programming 

patterns. Catamorphism-based recursion patterns simplify 

programming with little practical loss in expressive capability 

compared to general recursion, including the capability of 

defining new recursion patterns. Partial application of 

catamorphisms, sub-catamorphic recursion patterns and 

methods to symbolic data allows a comprehensive replacement 

of symbolic data with functional, or what we describe as 

“zoetic”, representations that inherently adopt the benefits of 

catamorphism-based programming. The considerable promise 

of this “Totally Functional” style confronts us with some 

exciting technical challenges. 

Keywords-component; Catamorphism, Fold, Functional, 

Recursion. 

I.  INTRODUCTION 

We contend that software is unduly complicated by the 
pervasive need to program interpreters for the computations 
inherent to symbolic data. By using instead functional 
representations that embody the fusion of characteristic 
interpretations into data, this pervasive complication can be 
minimized if not avoided, and programming thus 
significantly simplified. 

Our essential argument develops in logical sequence as 
follows: 

 recursion patterns such as list “foldr”, which 
generalize to catamorphisms on regular recursive 
datatypes, suffice to express and simplify a very 
wide range of common recursive definitions; 

 other useful and simplifying recursion patterns are 
also definable in terms of catamorphisms; 

 catamorphisms thus embody practically as well as 
theoretically (in terms of initial algebra semantics) 
the behaviours characteristic to abstract data types; 

 partial application of catamorphisms to typical 
symbolic representations of data yield functional 
representations that inherently possess these 
characteristic behaviours, i.e., a kind of liveness 
which we describe as “zoetic” from the Greek 
“zoion” meaning “animal” (as in “zoology”); 

 partial application of behaviours that are more 
specialized than the generic catamorphism, but are 
definable inevitably in terms of catamorphisms, also 

yield zoetic data; 

 programming with zoetic data simply involves their 
application to appropriate operands (just as with 
recursion patterns), rather than also having to 
program with explicit recursion the characteristic 
behavior of the datatype; 

 creation  of zoetic data can be effected by generator 
functions which are the derived counterparts of 
symbolic data constructors; 

 this enables a new style of programming (which to 
emphasise its distinctiveness from an earlier related 
development of “Total Functional Programming” [1] 
we call “Totally Functional Programming”, or TFP), 
in which a comprehensive supercession of symbolic 
data by functional representations can be achieved; 

 while the comprehensiveness of the foregoing 
program is unprecedented, important aspects of it are 
discernable in (and thus validated by) related fields 
of computer science. 

The presentation of the argument in this paper follows the 
above sequence. 

The consequent comprehensive replacement of symbolic 
data by functions requires first-class functions, hence we 
implicitly adopt functional programming [2] and functional 
languages. We choose Haskell [3] for purposes of 
illustration. 

II. CATAMORPHIC PROGRAMMING 

An approach to programming based entirely on canonical 
recursion patterns known as “catamorphisms” [4] is 
beneficial, viable and self-sufficient. Catamorphisms are 
more familiar as the list “reduce” or “foldr” functions of 
functional programming, but apply to all regular recursive 
types. 

A. General Recursion Too Complex 

Recursion patterns simplify and clarify programming, 
compared to the use of general iteration/recursion. Consider 
the case of recursively defining basic arithmetic operations 
on the simplest recursive datatype, of Natural numbers, in 
Fig. 1. This example exposes some key aspects of Haskell as 
follows: 

 declaration of datatypes (e.g., Nat) in terms of 
constructor functions (e.g., Zero and Succ) and their 
operand types where appropriate (i.e., Nat, thus 
defining a recursive type); 
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data Nat = Zero | Succ Nat 

 

add Zero b = b 

add (Succ a) b = Succ (add a b) 

 

mul Zero b = Zero 

mul (Succ a) b = add b (mul a b) 

 

exp a (Zero) = Succ Zero 

exp a (Succ b) = mul a (exp a b) 

Figure 1.  General recursive renditions of basic arithmetic operations. 

 

cataN Zero f x = x 

cataN (Succ n) f x = f (cataN n f x) 

 

add a b = cataN a Succ b 

mul a b = cataN a (add b) Zero 

exp a b = cataN b (mul a) (Succ Zero) 

Figure 2.  Catamorphic renditions of basic arithmetic operations. 

 definition of functions by recursion equations; 

 branching by pattern matching on function 
arguments; 

 function application by juxtaposition of operator and 
operand(s). 

(Further key novelties of functional languages and Haskell 
in particular will be explained as introduced in examples 
below.) 

In this general recursive rendition of arithmetic 
operations, the following deficiencies are apparent. 

Apart from the suggestive naming of the type and its 
constructors, there is nothing in the definition that compels 
treatment of members of the type as naturals, or indeed 
numbers of any kind; 

Instead, the obvious isomorphism between the concrete 
members of Nat and the abstract natural numbers needs to be 
implemented by an implicit interpreter that converts symbols 
into actions (in this case, iterative applications of other 
functions); 

A programmer needs to repeat the implementation of this 
interpreter at each usage of Nat entailing not just extra effort 
but the risk of inconsistent implementations leading to 
inconsistent (erroneous) behavior. 

Using however the “catamorphism” recursion pattern on 
Nat - cataN - the rendition becomes that of Fig. 2 which 
significantly remedies the above deficiencies, in that a 
uniform interpretation of the symbolic data is provided - i.e., 
cataN - which moreover derives directly from the type 
definition. 

B. Catamorphisms as Practical Basis 

The catamorphic pattern defined on Nat above 
generalises for regular recursive types. For example, the 
catamorphism - cataL - for (polymorphic) lists is as in Fig. 3. 
Note how in Haskell the type polymorphism on type List is 
signified by parameterization on list element type ‘t’. 
 

data List t = Cons t (List t) | Nil 

 

cataL Nil o b = b 

cataL (Cons x xs) o b = o x (cataL xs o b) 

-- versus 

foldr op b [] = b 

foldr op b (x:xs) = op x (foldr op b xs) 

Figure 3.  Catamorphisms and operations on lists. 

 

sumR Nil = 0 

sumR (Cons x xs) = x + sumR xs 

-- versus 

sumC xs = cataL xs (+) 0 

 

appendR Nil ys = ys 

appendR (Cons x xs) ys = 

   Cons x (appendR xs ys) 

-- versus 

appendC xs ys = cataL xs Cons ys 

Figure 4.  List processing examples. 

Observe also that (aside from a reordering of the usual 
presentation of operands) cataL is exactly the familiar 
“foldr” of functional programming (also known as “reduce”). 

The reader will also observe that just as with Nat above, 
operations on lists may be programmed using the uniform 
interpretation offered by cataL applied to other operations 
and data pertaining to the specific applications. See Fig. 4 for 
a comparison of explicit recursive vs. catamorphic 
definitions of some basic list processing functions. (Note 
how in Haskell the form “(θ)” denotes the function 
represented by operator ‘θ’, in this case binary addition 
represented by ‘+’.) 

What make catamorphisms attractive as a practical as 
well as a theoretical basis for programming are their 
properties as follows: 

 generality - existence for all regular recursive types, 
not just Nats or Lists 

 expressiveness - sufficient to define at least any 
function provably-terminating in second-order 
arithmetic [5], i.e., practically-speaking any 
reasonable function other than a Universal Turing 
Machine or other programming language interpreter; 

 essentiality - their embodiment of the initial algebra 
semantics [6] of the respective underlying datatypes, 
as the unique homomorphisms that define the 
applicable notion of initiality itself;  

C. Catamorphisms as Pragmatic Basis 

There are however other recursion patterns that appear to 
be necessary for the natural solution of programming 
problems. For example, compare the catamorphic renditions 
in Fig. 5 of the “insert” and “reverse” operations with their 
definitions in Fig. 6 using respectively the paramorphic [4] 
and “left fold” [2] recursion patterns. (N.B. our adoption 
henceforth of customary concrete syntax for the List type.) 
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-- insert element into ascending list 

insert e xs = 

  fst $ cataL xs 

  (\x (exs,xs) -> 

    (if e<x then e:x:xs else x:exs, x:xs) 

  ) 

  ([e],[]) 

 

-- reverse order of list elements 

reverse xs = 

  cataL xs 

  (\x xs’ -> (\rxs -> xs’ (x:rxs))) 

  (\rxs -> rxs) 

  [] 

Figure 5.  Catamorphic definitions of “insert” and “reverse”. 

 

insert e xs = 

  paraL xs 

  (\x exs xs -> 

    if e<x then e:x:xs else x:exs 

  ) 

  [e] 

 

reverse xs = lfold xs (\rxs x -> x:rxs) [] 

 

-- definitions of new recursion patterns 

 

-- like cataL but op also has list tail xs 

paraL (x:xs) o b = o x (paraL xs o b) xs 

paraL [] o b = b 

 

-- like cataL but op grouped from left 

lfold (x:xs) o b = lfold xs o (o b x) 

lfold [] o b = b 

Figure 6.  Alternative definitions of “insert” and “reverse”. 

 

paraL xs o b = 

  fst $ cataL xs 

  (\x (pxs,xs)->(\o b->(o x pxs xs, x:xs)) 

  (b, []) 

 

lfold xs o b = 

  cataL xs 

  (\x lxs -> (\b -> lxs (o b x))) 

  (\b -> b) 

  b 

Figure 7.  Catamorphic definitions of other recursion patterns. 

Important new Haskell features used here are as follows: 

 anonymous “lambda” functions, of the form 
(\ arguments -> body) 

 built-in list datatype, with constructors ‘:’ (for Cons) 
and “[ ]” (for Nil); 

 n-tuple data, with elements selected by pattern-
matching or by selector functions (e.g., “fst”); 

 low-precedence function application denoted by ‘$’. 

What allows us to continue to treat catamorphisms as a 
basis in the face of the above is that these other recursion 
patterns can be synthesized from catamorphisms without 
recourse to general recursion. The recursion patterns (such as 
paraL, lfold, etc.) can be defined using abstractions (higher-
order, as needed) from the definitions of the methods (such 
as insert, reverse, etc.), e.g., as in Fig. 7. 

D. Recursion Pattern/Application Hierarchy 

The consequence of the above is that all the reasonable 
methods (on regular recursive datatypes, such as natural 
numbers, lists, trees, etc.) we would want to program, and all 
the recursion patterns besides catamorphisms that we would 
want to use to program them, can be derived in a hierarchical 
manner, starting from catamorphisms and supplying 
instantiating operands at each level of refinement. 

For example, for lists: 

 the root, catamorphism level of the hierarchy is 
represented by cataL; 

 the intermediate, recursion pattern level of the 
hierarchy is represented by patterns derivable from 
the root, e.g., paraL; lfold; etc.; 

 the lowest, application level of the hierarchy is 
represented by actual list operataions, e.g., length; 
append; insert; reverse; etc. 

Note that members of the hierarchy at all levels are 
directly accessible from the root catamorphism, in some 
cases more conveniently (e.g., length) and in some cases less 
so when one of the intermediate recursion patterns is more 
convenient (e.g., reverse). In particular, the identity property 
of catamorphisms is that application of the catamorphism for 
a type to the constructors of that type returns the 
catamorphism, e.g., as follows: 

cataN n Succ Zero = n 

cataL xs (:) [] = cataL xs 

III. ZOETIC DATA 

The foregoing catamorphism-based recursion pattern 
approach to programming enables us to bypass completely 
symbolic data, and their interpretation. In the end, we 
directly construct “zoetic” representations of data, i.e., as 
functions, rather than the usual symbolic forms. 

A. Catamorphic Zoetic Data (CZD) 

CZD are the basic kind of zoetic data. They are formed 
by the partial application to symbolic values of the standard 
interpretation of their datatypes. The standard interpretation 
of each datatype remain exactly as exposed above, i.e., its 
catamorphism. As a result, each CZD is a function that 
implements that catamorphism on the underlying symbolic 
datatype. 

Thus, the advantage of CZD is that their usages no longer 
require any interpretations as reflected by explicit recursive 
definitions or by the explicit application of the interpreter for 
the type, i.e., its catamorphism. Instead, the CZD are simply 
applied to appropriate catamorphism operands. For example, 
compare the above definitions of arithmetic operations to 
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-- zoetic naturals 

zero = cataN Zero 

one = cataN (Succ Zero) 

-- etc 

 

-- zoetic arithmetic operations 

addz za zb = za succ zb 

mulz za zb = za (addz zb) zero 

expz za zb = zb (mulz za) one 

Figure 8.  Zoetic natural numbers and operations. 

those on natural number CZD as in Fig. 8. Observe how 
zoetic naturals are simply the partial applications of cataN to 
the symbolic values of type Nat. 

A final key Haskell feature found in the above is partial 
application of “curried” functions. For example, addz can 
equally be thought of as a function of one parameter “za” 
that returns a function of a further parameter “zb”, as well as 
a function of the same two parameters. Thus, e.g.,  
application of addz to the “zb” parameter of mulz denotes a 
function that will add “zb” to its further actual parameter. 

Now, we can define generators, i.e., the zoetic 
counterparts of symbolic data constructors but independent 
of them. For example, from specifications as in Fig. 9, we 
derive the respective zoetic counterparts zero and succ of 
Zero and Succ as in Fig. 10 (likewise for cons and nil). Note 
that the identity property for catamorphisms and symbolic 
data constructors applies for CZD and their generators, e.g., 
as per the identities as in Fig. 11. 

-- generally 

zn = cataN n 

 

-- specifically 

zero s z = cataN Zero -- as above 

succ (cataN n) = cataN (Succ n) 

Figure 9.  Specifications of zoetic natural number generators. 

 

zero f x 

= cataN Zero f x 

= x 

 

succ zn f x 

= succ (cataN n) f x 

= cataN (Succ n) f x 

= f (cataN n f x) 

= f (zn f x) 

 

-- similarly derivable 

cons x zxs o b = o x (zxs o b) 

nil o b = b 

 

-- etc. for other types 

Figure 10.  Zoetic natural number generators. 

 

 

succ zn succ zero = succ zn 

zero succ zero = zero 

 

cons z zxs cons nil = cons z zxs 

nil cons nil = nil 

Figure 11.  Identities for CZD. 

Just as with zoetic arithmetic, zoetic list processing also 
entails simple, non-interpretive provision of relevant 
catamorphic operands, e.g., as follows. 

zappend zxs zys = zxs cons zys 

zsum zxs = zxs addz zero 

B. Subcatamorphic Zoetic Data (SZD) 

The interpretation of symbolic data is not always given 
by a catamorphism, but maybe by some other method that 
can be defined catamorphically, i.e., found below 
catamorphisms in the recursion pattern/application hierarchy, 
hence “subcatamorphic”. 

For example, in Fig. 12 the method “memb” interprets 
binary trees as sets, with constructors Nd, Lf and Tip 
respectively signifying set union, singleton and empty sets. 
However, within the catamorphic programming paradigm 
essential to TFP, these other methods (exemplified here by 
memb) will be expressible as catamorphisms, e.g., as in Fig. 
13. 

As with CZD, we form zoetic data by the partial 
application to the symbolic data of the interpreter for the 
required characteristic behaviour. In this case, the partial 
application “memb bt” (for some bt :: Bt) yields a function 
that tests if some putative element e is actually a member of 
the set represented by bt. That is, the SZD form of a set is the 
familiar characteristic predicate representation.  

data Bt t = Nd (Bt t) (Bt t) | Lf t | Tip 

 

memb (Nd t1 t2) e = memb t1 e || memb t2 e 

memb (Lf x) e = x==e 

memb Tip e = False 

Figure 12.  Trees as sets. 

 

memb s e = 

  cataBt s 

    (\t1’ t2’ -> t1’ || t2’) 

    (\x -> x==e) 

    False 

 

-- catamorphism on Bt 

cataBt (Nd t1 t2) n l t = 

  n (cataBt t1 n l t) (cataBt t2 n l t) 

cataBt (Lf x) n l t = l x 

cataBt Tip n l t = t 

Figure 13.  Set membership as a catamorphism. 
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memb s e = 

  cataBt s 

    (\s1 s2 e -> s1 || s2) 

    (\x e -> x==e) 

    (\e ->False) 

    e 

Figure 14.  Catamorphic set membership with closed terms. 

 

memb s = 

  cataBt s 

    (\s1 s2 e -> s1 || s2) 

    (\x e -> x==e) 

    (\e ->False) 

Figure 15.  Catamorphic set membership as a characteristic predicate. 

 

union s1 s2 e = s1 e || s2 e 

single x e = x==e 

empty e = False 

Figure 16.  Declarations of generators for zoetic sets. 

Further, if we write the catamorphism operands as closed 
terms as in Fig. 14, then, as a corollary of the identity 
property of catamorphisms, these closed operands serve as 
generators of characteristic predicates. 

First, eta-reduction of the definition of memb exposes the 
zoetic set/characteristic predicate clearly as in Fig. 15. Then 
recognizing that the significance of the identity property is 
that catamorphism operands serve as constructor 
replacements, we see that catamorphism operands are 
inherently generators of whatever is the result of the 
catamorphism, in this case the zoetic set. So, finally 
rewriting the above operands in more convenient equational 
format gives the generator declarations of Fig. 16. The same 
technique applies for any SZD, subject of course to the 
condition that the characteristic method is definable as a 
catamorphism (which as we have seen is practically always). 

C. Recursion Patterns as SZD 

Just as applications such as “memb” give rise to SZD, so 
do the recursion patterns found below catamorphisms. For 
example, partial applications of the form “lfold xs” give rise 
to a class of list-like SZD, but which instead of having the 
catamorphic/foldr behavior of list CZD, behave as “left 
folds” with the binary operator ‘o’ grouped from the left. 

Further, just as with zoetic sets above, when we express 
the catamorphic definitions of recursion patterns with closed 
operands e.g. as in Fig. 17, these operands are also effective 
as generators. Continuing the example, first eta-reduce as in 
Fig. 18 which exposes the zoetic left-folding list as an 
identity between a partial application of the lfold method and 
a catamorphism. Then we simply read off the operands to the 
catamorphism and re-present them as generator declarations 
as in Fig. 19. 

 

lfold xs o b = 

  cataL xs 

  (\x lxs -> (\o b -> lxs o (o b x))) 

  (\o b -> b) 

  o b 

Figure 17.  Left fold as a catamorphism with closed terms. 

 

lfold xs = 

  cataL xs 

  (\x lxs -> (\o b -> lxs o (o b x))) 

  (\o b -> b) 

Figure 18.  Left fold as catamorphism partial application. 

 

lcons x lxs o b = lxs o (o b x) 

lnil o b = b -- NB same as nil CZD 

Figure 19.  Declarations of generators for left-folding zoetic lists. 

D. Zoetic Data Hierarchy 

The hierarchy of zoetic data (CZD and SZD) naturally 
parallels that of catamorphisms, other recursion patterns, and 
catamorphic methods as detailed above, in which descent in 
the hierarchy from most general CZD to more specialized 
SZD in achieved by application to appropriate operands. 

For example, from a zoetic list zxs we can first derive the 
variant lzxs with the same elements in the same sequence but 
with left-folding behavior, by applying zxs to the left-folding 
zoetic list generators thus: 

lzxs = zxs lcons lnil 

Next, we can calculate the reverse of zxs by applying 
lzxs to the appropriate operands to left-fold as follows: 

rzxs = lzxs (\rzxs x -> cons x rzxs) nil 

Note that the zoetic nature of the resulting list is achieved by 
use of the zoetic list generators cons and nil in the above, 
rather than symbolic list constructors (:) and [ ]. That is, if 
conventional lists were the required result, we would have 
written instead the following: 

rxs = lzxs (\rxs x -> x:rxs) [] 

(Further note how in this case the operands to the left-
folding zoetic list lxzs are precisely those given to lfold 
above in order to reverse a conventional list.) 

If desired, we can define a self-contained reverse 
operation, by application of successive sets of (sub-) 
catamorphism operands in stages reflective of the above, as 
per Fig. 20. A one-stage definition of zrev in Fig. 21 echoes 
the direct definition of list reversal as a catamorphism further 
above. This version however loses some of the transparency 
of the two-stage definition that results from being able to 
express zrev in its more natural left-folding form. 

Finally, it one exists, we can always recover the symbolic 
form of a zoetic datum by applying it to the symbolic 
constructors, e.g., as in Fig. 22. 
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zrev zs = 

  -- start with zs 

  zs 

  -- next transform into left-folding list  

  lcons lnil 

  -- finally give left-folding operands 

  (\rzxs x -> cons x rzxs) nil 

Figure 20.  Staged defintion of list reverse. 

 

zrev zs = 

  zs  

  (\x zxs’->(\rzxs -> zxs’ (cons x rzxs))) 

  (\rzxs -> rzxs) 

  nil 

Figure 21.  Direct catamorphic definition of list  reverse. 

 

-- an identity, not a function definition 

cons 'a' (cons 'b' nil) (:) [] = "ab" 

Figure 22.  Recovery of symbolic from zoetic data. 

IV. TOTALLY FUNCTIONAL PROGRAMMING  

Supported by the techniques presented above, our key 
key proposition in Totally Functional Programming (TFP) is 
the combination of three complementary factors. 

First, every data type has a characteristic behavior (for 
pure structures such as naturals, lists, trees, etc. it is their 
catamorphism; for more specialised types it is the 
characteristic method for the type e.g., for sets it is the 
memb(er) function); 

Second, the complexity of conventional programming 
derives significantly from the need to program the 
interpretation of these inherent behaviours from symbolic 
datatypes, which are typically intertwined with application-
specifics (e.g., the explicit recursive definitions of arithmetic 
operations far above); 

Finally, direct zoetic representations of data that embody 
these behaviours are specified as the partial applications of 
characteristic methods to the symbolic representations, and 
can be exploited simply by application to the further 
operands of the methods. The feasibility of TFP is enhanced 
by direct generation of CZD and SZD without having 
explicitly to apply the characteristic methods to symbolic 
data. 

A potential criticism of the key proposition of TFP is that 
whereas it posits a single behavior or characteristic method 
for each datatype, instead multiple methods are normal in 
programming. Our response is that the zoetic data hierarchy 
for each type adequately expresses any need for multiple 
behaviours: at the summit of the hierarchy is the 
catamorphism, from which all other behaviours can be 
derived; more specific behaviours can be found lower in the 
hierarchy. The designer of a zoetic datatype is thus free to 
choose a relatively general (= more methods) or specific (= 
fewer methods) behavior as circumstances require. 

V. RELATED WORK 

Aside from our own work (recently [7][8][9]), some 
aspects of TFP have been presaged (and therefore in a sense 
pre-validated) by others. However, none of these propose the 
comprehensive replacement of symbolic data with 
functional/zoetic representations as we do. 

A. TFP in Functional Programming 

Our conception of TFP can already be discerned in 
various aspects of functional programing: Church numerals 
[10] are CZD for the Nat type above; combinator parsers 
[11] are SZD for context-free grammars. 

B. Turner’s Total Functional Programming 

Turner’s already-cited [1] related conception of TFP has 
a common basis with ours in the avoidance of general 
recursion in favour of recursion patterns such as 
catamorphisms (and additionally anamorphisms - see below), 
but does not eschew symbolic data as we do. 

C. Language Design 

The history of language design can be thought of as a 
progressive retrofitting of “Church” concepts into a “Turing” 
context. TFP culminates that process by the complete 
replacement of Turing-style interpretation of symbolic data 
with Church-style direct definitions of (higher-order) 
functions. Some highlights of this process with particular 
relevance to TFP are as follows (in reverse chronological 
order). 

Backus [12] repudiated general recursion for a fixed set 
of “combining forms” (including list catamorphisms), but 
without generalization to other types. 

Dijkstra’s [13] emphasis on fixed control structures 
rather than arbitrary control flows (“goto” statements) can be 
thought of a similar in sprit to our (and Turner’s and 
Backus’) repudiation of general recursion. 

But long before, Backus equipped FORTRAN with the 
catamorphism on natural numbers, in the form of the DO-
loop. Our TFP of course offers the programmer significantly 
more facility than DO-loop programming. 

It is evident from this paper that modern functional 
languages (such as Haskell) at least encourage TFP. 
However, in order to avoid surprising limitations on zoetic 
operations, it will be necessary to adopt more powerful type 
systems (see Future Directions/Type-checking below). Also, 
in order to dispense with symbolic data completely, it will be 
necessary to handle infinite structures zoetically (see Future 
Directions/Codata and Corecursion below). 

VI. FUTURE DIRECTIONS 

TFP’s promise is also a stimulus to address some key 
technical challenges, in the following respects. 

With respect to computer science education: the 
simplicity of recursion-pattern-based programming (no need 
to program iteration or recursion; just “complete the blanks” 
by supplying catamorphic recursion patterns with the 
appropriate operands as in the examples above) suggests 
applicability to introductory programming teaching.   
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anL nxt end seed = 

   if end seed then [] 

   else 

      let (nxtelt, nxtseed) = nxt seed 

      in nxtelt : anL nxt end nxtseed 

evens = 

  anL (\s->(s+2,s+2)) (\_->False) 0 

 

odds = 

  anL (\s->(s+2,s+2)) (\_->False) 1 

 

fibs = 

  anL 

  (\(fa,fb)->(fa,(fb,fa+fb))) 

  (\_->False) 

  (0,1) 

Figure 23.  Anamorphic defintions of infinite streams. 

Regarding type-checking: the convenient type inference 
found in Haskell and other modern functional languages 
does not accept some simple CZD (arithmetic on Church 
numerals). It’s not yet clear if the existing candidates for the 
necessary more complex type systems are prohibitively 
inconvenient [14]. 

Regarding formal methods: just as catamorphisms (and 
CZD) possess more specific (and useful) laws than induction 
[15], what kind of more specialised laws are derivable 
among more specialised zoetic data (i.e., SZD)? With respect 
to course code refactoring: if zoetic data represent a clearer 
way to write programs, they should equally represent a good 
refactoring target, as indicated by some potentially useful 
results already [16][17]. 

Finally, regarding processing of infinite structures: 
catamorphisms are total functions on finite structures 
(“data”), but for practical computing, processing 
(“corecursion”) of (potentially) infinite structures (“codata”) 
is clearly necessary (e.g., a stream of transactions against a 
database; events to which a real-time operating system has to 
respond; etc.). The clear path to a solution [1] entails 
“anamorphisms” [4], as the categorical dual to 
catamorphisms, to provide the effective basis for zoetic 
representations of codata. For example, the anamorphism on 
lists (“anL” a.k.a. “unfold”) can be used to define (infinite) 
streams, as in Fig. 23. Note that in Haskell, the ‘_’ denotes 
an ignorable formal parameter, useful in defining constant 
functions. We are however yet to develop a presentation of 
anamorphism-based zoetic codata in the same 
comprehensive way that we have achieved for 
catamorphism-based zoetic data. 

VII. CONCLUSIONS 

Totally Functional Programming has the promise to 
fulfill the prospects of functional programming in several 
ways. Fundamentally, the essence of functional 
programming - “first class” functions - is exploited to 
simplify programming by bypassing pervasive interpretation 
with zoetic data that encapsulate the behaviours essential to 

data
Higher-order functions are also instrumental in realizing 

the pragmatics of TFP - for each type, a hierarchy from 
general (CZD) to specific (SZD) entities exists, the 
specialization relationship being implemented by application 
to catamorphism operands. 

Finally, as signified by the “front of stage” role it gives to 
zoetic data (compared to their hitherto relegation as 
theoretical curiosities as “Church” data representations), TFP 
completes an important stage in the last sixty or so years of 
work of restoring the Church perspective programming into 
the otherwise Turing-dominated worldview. 
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