
Inverted Run-Time Behavior of Classic Data Structures on Modern Microprocessors:
Technical Background and Performance Guidelines

Michael Bogner, Andreas Hofer, Maria Hronek, Franz Wiesinger

University of Applied Sciences Upper Austria
Department of Embedded Systems Engineering

Hagenberg, Austria
Email: {michael.bogner, andreas.hofer, maria.hronek, franz.wiesinger}@fh-hagenberg.at

Abstract—Classic data structures, such as vectors and lists are
used for storage and organization of data. Certain basic oper-
ations have a specified run-time behavior, which is essentially
influenced by the choice of the data structure. However, fur-
ther advances in the development of modern microprocessors
have achieved sophisticated optimizations in hardware. These
optimizations affect the run-time behavior of certain operations,
which further affects the choice of data structures. This paper
presents the results of our research activities focused on the im-
pacts of these changed conditions. We selected various algorithms
and operations frequently used in todays software development.
Remarkable differences and modified characteristics will be
discussed. The performances of both selected data structures,
namely vector and list, have been determined empirically using
the programming language C++. The results are interpreted and
discussed in terms of run-time complexity and modern processor
development.

Keywords–performance patterns; sequence container; run-time
complexity; modern microprocessors;

I. INTRODUCTION

The performance of microprocessors increased greatly in
recent years. This was possible mainly because of sophisticated
optimizations in processor architecture, achieved by modern
processor development. One substantial reason for the high
processing speed of modern Central Processing Units (CPUs)
is the hierarchy of various storage levels of cache memory
on the processor die. But, in our consideration, also the
main memory is important. It is critical to organize data
as efficiently as possible in the main memory in order to
get maximum performance. Different container data structures
allow us to select the appropriate organization. However,
not all container types benefit in the same way of modern
processor architecture, which leads to different performance
gains. Under these changed conditions, current approaches
need to be reconsidered.

For the comparison in this paper, we have selected data
structures from the Standard Template Library (STL) of the
widely used C++ programming language. As performance is
a key aspect, we decided to avoid languages which have
managed runtime features or rely on virtual machine support,
or use Just-In-Time compilation (JIT) and garbage collection.
C++ compiles to native code, is platform independent and
comes with efficient container implementations of the STL,
which substantially reduces interfering side effects.

The selected containers are std::vector and std::list. Both
are basic sequence containers, but as generally known, rely on

completely different implementations. The std::vector uses a
strict byte-sequence and therefore guarantees a contiguous stor-
age space in memory [1]. In contrast, the std::list is a doubly
linked list which represents the simplest form of a graph-based
data structure, except for the rarely used single linked list.
This is a significant difference for the microprocessor, and this
paper analyses right this aspect. Advanced data structures like
sets and trees are variants of these basic implementation types.
Usually, they use hash functions or other optimizations to gain
algorithmic benefits. But these algorithmic optimizations are
not directly related to the performance of the microprocessor.

The theory teaches that each data structure has its advan-
tages depending on the scenario. Operations such as inserting,
deleting, or accessing elements have a proven run-time behav-
ior, which is described by the asymptotic run-time complexity
or the big O-notation [2]. This notation makes it possible to
specify the run-time as a function of the problem size. Or in
other words algorithms can be classified by how they respond
to changes in the container size. In software development, this
classification essentially influences the choice of data structure.

For the reasons mentioned above, this paper investigates
whether classical selection criteria for list and vector, de-
scribed by the O-notation are still valid or not. In order to
achieve the objective, prototype implementations on both data
structures were evaluated. The performances were determined
empirically on a common workstation; for details, see Section
III-B. To measure the run-time and the run-time behavior,
various algorithms and operations were selected, which are
frequently used in today software development. The results
were interpreted and discussed in terms of run-time complexity
and modern processor development. Finally, the main rules
that can be held responsible for the results are filtered out, to
get general performance patterns. These performance patterns
represent some guidelines for todays software development on
modern microprocessors.

Already Niklaus Wirth noted the importance of data struc-
tures in order to create effective applications [3], as data
organization is highly relevant. There are quite a lot text
books and papers introducing elementary and advanced data
structures and corresponding algorithms like [4], including
its O-notation. Professional usage of the C++ standard tem-
plate library containers and their performance guarantees are
covered by Musser et al. [5]. To analyse already existing
applications, Liu and Rus [6] present a tool for detecting
poor data structure selection in C++ programs, which gives
a context sensitive performance advice. An automated tool to

615Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



generate cost models of given data structures is introduced by
Jung [7]. After a training phase to understand the effect of
architectural behavior, the statistical data are then fed into a
machine learning model which tries to determine the optimal
data structure. Its vision is to build it into data structure
libraries so that the compiler can automatically select the best
implementation.

The paper has the following structure: The first Section
presents a short introduction. Section II describes the develop-
ment of modern processor architectures and why that prefers
specific data structures. Section III presents the methodological
approach of the test procedure. Also the selected performance
tests are presented. The most distinctive test results are pre-
sented and analyzed in Section IV. Section V shows the main
rules that can be held responsible for the results, whereas the
final thoughts are presented in Section VI.

II. MODERN PROCESSOR ARCHITECTURES

This section gives important background information that
can be made responsible for the special effects discussed in
this paper. These include a short introduction of the properties
of modern processor architectures and their effect on classic
data structures. Especially, the memory architecture and how
modern CPUs optimize memory accesses are points which
are addressed, because almost exclusively array data structures
benefit from certain optimizations of modern microprocessors,
as we see below. Particularly, in view that the memory access
is a growing bottleneck, such things can be critical and lead
to significant shifts in the performance analysis.

According to Moore’s Law, the integration density of
transistors on integrated circuits doubling every two years [8]
[9], which made more complex and fast CPUs possible. Thanks
to a better understanding of the architecture, the Instruction
Level Parallelism (ILP) and increasing clock speeds allows
to raise the processor performance considerably long time.
Described by ILP, the executed Instructions Per Clock cycle
(IPC) of the processor were increased. This was achieved by
techniques such as pipelining, super scalarity, out-of-order-
execution, branch-prediction or speculative execution [10].

One of the biggest challenges during this development was
to design memory systems that can provide the processor fast
enough with data. Because the increase in speed of modern
processors is not accompanied by a corresponding acceleration
of the memory systems. This means that memory access is
quite slow in relation to processor performance. Figure 1 shows
the development of memory and processor performance since
1980 - note the logarithmic scaling in this diagram to be able
to display the large gap in this development. The memory line
starts with 64 KiB DRAM 1980 and reached an annual latency
increase of factor 1.07. The speed increase at the processors
reached factor 1.25 until 1986, 1.52 until 2004 and 1.2 after
2004 [11].

Not only the latency, but also the bandwidth to the memory
system is important for the CPU. These two points stay
in strong conflict to each other. Therefore, a technique for
increasing the memory bandwidth often results in an increase
of latency, and vice versa. The higher the speed of processors
grows, the harder it is to realize a memory, which can provide

Figure 1. Performance of processors and latency of the memory plotted over
time [11].

data fast enough in a few clock cycles. Therefore, the memory
system was an increasing bottleneck [12].

To minimize this problem at least, modern processors have
various cache levels on die. The purpose of the cache is to
take the last used memory words, whereby the new access
to them is greatly accelerated. If a sufficiently large amount
of the required data is present in the cache, the effective
memory latency shrinks enormously. This advantage is tried
to maximize with several cache levels [12].

To reach their target, caches feature a variety of op-
timization; many of them use the memory address of the
corresponding data (address locality): The so-called spatial
locality refers to the observation that memory locations, that
are numerically similar to locations which were accessed
recently, will be accessed in the near future with increased
probability. This property is exploited by caches reading more
data than requested, in the assumption to predicting future
accesses. Such optimizations are called prefetching, as data
will be already prefetched from the main memory [12]. In
terms of the performance tests in this paper, it should be noted
that almost exclusively array data structures benefit from these
optimizations, because of their contiguous memory order. For
lists with a scattered memory order, such optimizations are
nearly useless.

III. METHODOLOGICAL APPROACH

This section shows the methodological approach perform-
ing the test. The selected tests are described and their purpose
is explained. Also, the test system is presented with the hard-
ware and software base. Finally, criteria of the test procedure
are determined.

A. Selected performance tests

In principle, we selected various algorithms and operations
frequently used in todays software development. We tried to
figure out the respective advantages and disadvantages of the
two data structures on an modern microprocessor and want to
illustrate if classical selection criteria for list and vector are still
valid. In Table I, the selected performance tests are presented.
The first tests will cover basic operations, such as inserting or
deleting elements. Subsequent test cases also check moving,
comparing, swapping or sorting items in the containers - in

616Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



various combinations and executions. Not all test cases modify
the size of the data structures; some only change the order of
the data within the containers or are read-only tests. Details
are noted in Table I.

TABLE I. SELECTED PERFORMANCE TESTS: EXECUTED TEST CASES
AND THEIR DESCRIPTION AND PURPOSE

Test case Description

Filling
data
structures

This is one of the most common operations in general. The elements
in each of the newly declared containers are inserted at the back. In
addition, also a vector is tested which gets the final size communicated
via vector::reserve.

Clearing
data
structures

It is tested how quickly a filled container can be cleared completely.
Since vector::clear does not change the capacity, for a fair comparison
a new container is created using vector::swap.

Insert
front

Also the insertion of elements on other positions are meaningful test
scenarios. In this test case, additional elements will be inserted at the
front of already filled containers.

Insert
middle

It is measured how long it takes to insert additional elements in the
middle of already filled data structures. The respective advantages and
disadvantages of the two test candidates can be very well shown in
this test case.

Insert
sorted

In contrast to insert middle, in this test case the insertion point must be
found first, so the elements in the data structures have to be accessed.
The test starts with empty containers.

Reversing
data
structures

This test case reverses the order of the values in the containers. The
first value becomes the last one, the second value the last but one
etc. Therefore, the last value becomes the first value of the reversed
container. It is shown how efficient elements in the containers can be
swapped.

Is sorted It is checked whether sorted containers are actually sorted. It just
depends on how fast the data structures can be run through and
accessed, making this text case clearly different from the previous.

Calculation
of the
arithmetic
mean

The arithmetic mean is calculated over the containers. Similar to the
previous point it must be iterated through the data structures. Not
merely elements must be compared with each other, but also arithmetic
operations occur.

Delete
all occur-
rences of
a number

In this test case, the deletion of specific numbers is measured. This pro-
cess is repeated with all numerical values until the data structures are
completely empty. Also different implementation variants are tested
using the vector, to show the respective advantages and disadvantages.

Stable
sort

A frequently occurring operation is also the sorting of data structures,
which is represented by this test case. As the sorting algorithm of the
std::list is stable, the vector uses also a stable sorting algorithm for a
fair comparison.

Delete all
duplicates

Every container is filled ten times in a row with the same number. It
will be measured how long it takes to delete all duplicates. With one
run though the data structures, the size is reduced to a tenth of its
original value, what this test case clearly differ from the others.

Double
each
element

Each element in the containers is placed next to the current position
again. Thereby the container size is doubling. The advantages and
disadvantages of the vector compared to the list can be illustrated
nicely in this test case.

B. Test system

The performance tests took place on the following system:

• Intel R© CoreTM Processor i5-3570K, 4 x 3.40GHz

• Corsair R© Memory 16 GiB DDR3-1333 CL9

• Intel R© Media Series DH77EB Mainboard

• Samsung R© SSD 830 Series 256GB, SATA 6Gb/s

• Microsoft R© WindowsTM 7 Home Premium 64-bit
with Service Pack 1 (March 2013)

The chosen test system represents a common workstation,
no high-end device or special hardware. This should demon-
strate the general validity of the test results on widespread
available systems. The Intel R© CoreTM family has not changed

significantly in those points relevant for the test, eg. from used
Ivy Bridge model to the current Haswell architecture. The
respective tests were implemented using Visual Studio 2010
Ultimate with Service Pack 1 and was compiled with compiler
version 16.00.40219.01. Furthermore, the x64 version was
used as a release build. The default settings of Visual Studio
were used, with optimization level ”O2 maximize speed”.

C. Criteria of the test procedure

In order to ensure meaningful results, the following criteria
have been defined:

• It was ensured that there is no main memory overflow.
Because outsourcing of data on the hard drive would
lead to significant performance degradation. The con-
tainers are small enough to find place in the main
memory in any case.

• Dynamic frequency scaling (Enhanced Intel R©
SpeedStep R© Technology (EIST) and Intel R© Turbo
Boost Technology) has been disabled. Therefore, the
processor is running with the base clock of 3.4 GHz
during the tests.

• Every test result has been repeated several times
and the arithmetic mean has been extracted from the
times of the measurements. This avoid measurement
errors and reduce the possible impact of background
processes from the operating system. Details will be
shown in Section IV.

• To evaluate the run time behavior, five different con-
tainer sizes were selected for each test case.

• The selected value type of each data structure is
integer. Therefore, each element represents a four-byte
signed value.

IV. PRESENTATION AND ANALYSIS OF THE RESULTS

Three test cases out of the twelve shown in section III-A are
now presented and analyzed in detail. These most distinctive
test cases, which provide particularly remarkable results are
”Filling data structures”, ”Insert sorted” and ”Stable sort”. The
results were interpreted and discussed in terms of run-time
complexity and modern processor development.

A. Filling data structures

In this test case, the elements in each of the newly declared
containers are inserted at the back. In addition, also a vector
is tested which gets the final size communicated via vec-
tor::reserve, avoiding typical resize operations. The respective
container sizes and the results are shown in Figure 2. In order
to ensure sufficient runtime, each test ran 100 times and run
times were summed up.

The vector dominates this comparison against the list.
Beyond that the vector that has reserved all required memory
before the measurement is nearly three times as fast as the
normal vector. Both containers allow the insertion at the end
with the run-time complexity of O(1), but there are significant
differences in detail: the vector allocates memory always for
multiple elements, to avoid of requesting new memory every

617Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



0

500

1000

1500

2000

2500

100 Mio. 200 Mio. 300 Mio. 400 Mio. 500 Mio.

se
co

n
d

s 

elements 

Fill 

list

vector

res. vector

Figure 2. Filling data structures: The elements are inserted at the back. The
res. vector gets the final size communicated via vector::reserve.

time. But if the vector is stored in a too small memory
area, the entire container must be copied into a larger storage
area, because of the contiguous memory order. Of course, the
reserved vector does not have this problem, because it gets the
final size at the very beginning.

For the list, it does not matter where the elements are
stored in the memory. Because it is a doubly linked list with
a tail pointer, it has also direct access to the last element.
However, due to the link pointers, much more memory must
be requested, and also the correct connectivity of the list nodes
must be ensured. Much more salient is that the list must
request for each node separately new memory. There must be
permanently found free space on the heap, which represents a
considerable overhead. This explains why the vector dominates
the list.

B. Insert sorted

In this test case, both containers insert the same random
numbers in sorted order. Before a new number can be inserted,
the insertion position must be found. The range of these
numbers moves between zero to 10,000. At the beginning,
both data structures are empty. Figure 3 shows the results with
different container sizes for vector and list.

0

500

1000

1500

2000

2500

3000

100000 200000 300000 400000 500000

se
co

n
d

s 

elements 

Insert sorted 

list

vector

Figure 3. Insert sorted: list and vector in each case insert the same random
numbers in sorted order.

It can be seen that the vector dominates this comparison
very clearly. Because of its direct access to every element, the
vector could use a binary search algorithm to find in O(log(n))
the insertion position. However, the list must be run through

linearly element by element. But this is not the only reason
for the big advantage of the vector. Figure 4 shows a vector
comparison, once with linear and once with binary search
algorithm. The binary search algorithm is of course faster,
but the difference is not large enough to justify the enormous
advantage over the list.

0

20

40

60

80

100

120

140

100000 200000 300000 400000 500000

se
co

n
d

s 

elements 

Vector comparison: linear vs. binary search algorithm 

linear

binary

Figure 4. Vector comparison linear vs. binary search algorithm: The vector
is with both algorithms much faster than the list.

Since the actual insertion of elements in a list takes hardly
any time, finding the insertion position and allocating a new
list node are responsible for the high run-time of the list. When
the list must be linearly traversed, the address of the successor
node can only be determined if the current list node is already
loaded from the memory. Because of this data dependency,
neither the compiler, nor the CPU has any opportunities to
optimize. This explains the poor performance of the list.

1

10

100

1000

10000

100000 200000 300000 400000 500000

se
co

n
d

s 

elements 

Insert sorted in logarithmic scale 

list

vector

Figure 5. Insert sorted in logarithmic scale: In addition to the better run-time,
also the better run-time behavior of the vector can be seen.

On the other side, the vector can be very well optimized
thanks to its well-defined data order in the memory. It must be
shifted on average half of the container on every insertion, but
this takes in relation significantly less time than the list requires
finding the insertion position and allocating a new list node.
Figure 5 shows the same results as in Figure 3 in logarithmic
scale. The vector needs O(log(n)) to find the insertion position
and O(n) to insert elements within the container. Although
the list find the insertion position in O(n) and insert elements
within the container in O(1), the vector has not only the better
run-time, but also the the better run-time behavior.

618Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



C. Stable sort

In this test case, it is measured 1,000 times to sort the data
structures. Both containers will be filled with the same random
numbers in the range of zero to 10,000. Since list::sort is a
stable function [13], for a fair comparison std::stable sort is
used for the vector. Both functions guarantee a time complexity
of O(n ∗ log(n)) [14]. Figure 6 shows the results of this
comparison.

0

200

400

600

800

1000

1200

1400

1600

100 Mio. 200 Mio. 300 Mio. 400 Mio. 500 Mio.

se
co

n
d

s 

elements 

Stable sort 

list

vector

Figure 6. Stable sort: The same random numbers are sorted stable. It is clearly
seen that the vector is in advantage, thanks to direct access and compact data.

1

10

100

1000

10000

100 Mio. 200 Mio. 300 Mio. 400 Mio. 500 Mio.

se
co

n
d

s 

elements 

Stable sort in logarithmic scale 

list

vector

Figure 7. Stable sort in logarithmic scale: despite identical time complexity,
the better run-time behavior of the vector can be seen.

Again, the vector dominates this test relatively clear. The
direct access on each element in O(1) and the much more
compact data structure of the vector have a positive effect
again. Although both sorting algorithms guarantee a time
complexity of O(n ∗ log(n)), the vector also has a better run-
time behavior, as shown in Figure 7. The O-notation only
represents the worst case for the growth of the running time,
which does not have to occur.

V. EVALUATION

On the basis of theoretical considerations of vector and
list, most people would think that it depends on the specific
test case which container dominates which test. The run-time
complexity of the data structures is quite equal in most of the
used tests. But as the results show, a significant advantage of
the vector can be seen. The vector dominates all tests with
a single exception: ”Insert front”. There, the list has a clear
advantage, because no element must be shifted. The smallest
differences in run-time and run-time behavior show the test

cases ”Insert Middle”, ”Is sorted” and ”Calculation of the
arithmetic mean”. But even there the vector is at least twice
as fast as the list, thanks to the direct access (”Insert Middle”)
and the faster linear traversing (other two test cases). In the
test cases ”Double each element”, ”Delete all occurrences
of a number” and ”Delete all Duplicates” it is important to
consider the characteristics of the vector. Linear traversing
and the following insertion or deletion leads to unnecessarily
high running times. But thanks to the direct access, elements
could be doubled or deleted within the container with very less
shift operations, which leads to a significant domination of the
vector over the list. At the test cases ”Clearing data structures”
and ”Reversing data structures” the vector is approximately
ten times faster than the list. This is possible because of the
comprehensible storage area of the vector, all elements can
be cleared at once and the elements within the container can
be easily swapped. The run-time behavior is quite equal in
”Reversing data structures” but at ”Clearing data structures”
the vector has also the better run-time behavior.

But, what are the reasons for this clear result under the
given test conditions? In this section, the main rules are filtered
out from the amount of data that can be held responsible for
these results. We have worked out four performance patterns
representing some guidelines for todays software development
on modern microprocessors.

1) Linear traversing the data structures: It is found
across all tests that linear traversing of the data struc-
tures leads to significant differences in the duration
time between vector and list. The vector benefits from
the consecutive order of the elements in memory.
This leads firstly to a maximum utilization of the
limited caches. On the other hand it can be very well
optimized, for example when elements are loaded
speculatively already in advance. Such optimizations
are becoming increasingly important, because main
memory is becoming more and more slowly in rela-
tion to processor performance.
The elements of the list are scattered in memory, so
they must be found costly and the memory access
is poorly predictable. The address of the successor
node can only be determined, if the current node
has been read from the memory. Through this
data dependency, the access to a list node can
hardly be optimized, pre-loading data from memory
(prefetching) is often impossible. Therefore, it takes
far too long to go through a list.

2) Access to items: Often, a data structure should
not be linear iterated, instead it must be random
accessed on particular elements. The vector benefits
from being able to access any element in constant
very short time. This benefit allows to more than
compensating other disadvantages. For example,
when elements within a data structure should be
inserted, deleted or swapped. The vector could use
a binary search algorithm to find a specific element
within a sorted container and also benefits from his
direct access at sorting or reversing the container.
The list does not have this advantage; direct access
is only at the beginning and the end of the list
possible. For any other element, the list must be

619Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



linearly traversed starting from the ends - with the
same problems as shown previously.

3) Inserting and deleting elements: The insertion and
deletion of elements at different positions of the data
structures shows an ambivalent picture. At the end of
the container the vector allows a very fast insertion
and deletion of elements. The vector allocates mem-
ory always for multiple elements, to avoid requesting
new memory every time. If the vector is stored in
a too small memory area, the entire container must
be copied into a larger storage area, because of the
contiguous memory order. It is also possible to tell the
vector the final container size at the very beginning,
so all memory is requested directly whereby elements
can be inserted even faster. When elements should be
deleted at the end, the vector needs not to free any
memory or iterate through the container, instead the
elements can simply be cutted off, without changing
the capacity of the container.
The list, however, must be run through in any case,
with the exception of the first and the last node. Also,
every time a new element is inserted or deleted, the
list must request new memory or free used memory
on the heap, which represents a considerable over-
head. In addition, because of the administrative data,
significantly more memory is used and the correct
connectivity of the list nodes has to be ensured.
Therefore the list needs significantly more time at
the end of the container for such operations.
But the farther away from the end of the container
elements should be inserted or deleted, the sooner
the list has the advantage. The structure (interlinking)
of the list has to be changed only locally. The vector
must move a substantial number of elements when
inserting or deleting, depending on the distance to the
end of the container. This is an expensive operation.
Therefore, insertion or deletion at the beginning of
the vector should be avoided if possible. Usually
this problem could be avoided or at least alleviated
by clever optimizations or simply by using std::deque.

4) Memory and cache utilization: An aspect that
should also be addressed is the high memory con-
sumption of the list. The random order of the list
nodes in memory leads to a high share of administra-
tive data. At least two pointers need to be stored per
element in a doubly linked list. What leads to 16 bytes
per element management data in a 64-bit application.
If there is not enough main memory available, it
would lead to a significant drop in performance,
because data must be outsourced on the hard drive.
Beyond that, this large administrative data make the
limited caches ineffective, because more overhead
and less useful data are stored. The random order
of the list nodes leads also to a high number of
load operations from main memory, because in the
worst case every list node must be loaded separately.
On the other side the vector requires very little
administrative data and therefore allows storing data
very compact. This allows utilizing the main memory
and the limited caches best. And because of the

contiguous storage area, multiple vector elements can
be loaded at once from the main memory.

VI. CONCLUSION AND FUTURE WORK

Summarizing, it can be said that modern microprocessors
show a quite different run-time behavior for certain opera-
tions than one would expect looking at the corresponding
O-notation. In the mentioned cases, it is simply misleading
following the O-notation, which finally results in low perfor-
mance of the application.

Certain optimizations of modern microprocessors prefer
data structures with a coherent storage area. For lists, opti-
mizations such as pre-fetching algorithms, are nearly useless,
because of the data dependency of the link-pointer. The address
of the successor node can only be determined if the current
list node is already loaded from the memory, which makes
it nearly impossible for modern microprocessor architectures
to optimize the access to subsequent data. Against this back-
ground and the increasingly limited memory system, expensive
memory accesses should be designed as predictable as possible
and data should be kept compact to utilize the limited cache
best. Such challenges prefer data structures with a coherent
storage area.

It turns out that classical selection criteria for list and vector
have been undermined by modern processor development in
some way. So far, the insertion or deletion of elements within
the amount of data was a clear domain of the list, since no
shift operations are necessary. Today, even the shifting of the
vector elements up to a specific position is more efficient than
the linear iteration through the list to find the insertion position.
If one takes into account certain characteristics of the vector,
such data structures should clearly be preferred.

In the future, the performance of CPUs will still increase
and additional potential for optimization will continue to
prefer data structures with a comprehensible storage area.
The so-called prefetching, the speculative load of data from
memory, brings an enormous advantage for the vector. The
data dependency of the list, which allows neither the CPU nor
the compiler to optimize usefully, is a serious problem. This
should be considered in software development.

Future work will evaluate additional data structures to
get a more comprehensive picture about the run-time and
the run-time behavior of different data structures on modern
microprocessors.

REFERENCES

[1] G. Pomberger and H. Dobler, Algorithms and Data Structures - A
Systematic Introduction to Programming. Pearson Studium, 2008.

[2] D. E. Knuth, “Big omicron and big omega and big theta,” SIGACT
News, vol. 8, no. 2, Apr. 1976, pp. 18–24.

[3] N. Wirth, Algorithms + Data Structures = Programs. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1978.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

[5] D. R. Musser, G. J. Derge, and A. Saini, STL Tutorial and Reference
Guide: C++ Programming with the Standard Template Library, 2nd ed.
Addison-Wesley, 2009.

620Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances



[6] L. Liu and S. Rus, “Perflint: A context sensitive performance advisor
for c++ programs,” in Proceedings of the 7th annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization, Seattle,
WA, 2009, pp. 265–274.

[7] C. Jung, “Effective techniques for understanding and improving data
structure usage,” Ph.D. dissertation, Georgia Institute of Technology,
2013.

[8] G. E. Moore, “Cramming more components onto integrated circuits,”
Proceedings of the IEEE, vol. 86, no. 1, 1998, pp. 82–85.

[9] G. E. Moore, “Progress in digital integrated electronics,” Electron
Devices Meeting, 1975 International, vol. 21, 1975, pp. 11–13.

[10] J. L. Hennessy and D. A. Patterson, Computer Organization and Design
- The Hardware / Software Interface, 5th ed. Morgan Kaufmann, 2013.

[11] J. L. Hennessy and D. A. Patterson, Computer Architecture - A
Quantitative Approach, 5th ed. Morgan Kaufmann, 2011.

[12] A. Tanenbaum, Computer Architecture: Structures - Concepts - Basics,
5th ed. Pearson Studium, 2006.

[13] B. Stroustrup, The C++ Programming Language, 4th ed. Addison-
Wesley, 2013.

[14] U. Breymann, C++ - Introduction and professional Programming,
9th ed. Carl Hansen, 2007.

621Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances


