
Customized Choreography and Requirement Template Models as a Means for

Addressing Software Architects’ Challenges

Nebojša Taušan, Sanja Aaramaa, Pasi Kuvaja,

Jouni Markkula, Markku Oivo

Department of Information Processing Sciences

University of Oulu

Oulu, Finland

{nebojsa.tausan, sanja.aaramaa, pasi.kuvaja,

jouni.markkula, markku.oivo}@oulu.fi

Jari Lehto

Segment Manager

Nokia Networks

Espoo, Finland

jari.lehto@nsn.com

Abstract—Software architecture designs are useful artifacts;

however, their development and maintenance are considered

challenging. To better understand the possible causes for these

challenges, this article presents a case-study intended to

discover and understand software architects’ challenges and to

propose domain-specific models to address these challenges.

The main results of the case-study include a) the classification

of challenges in software architecture design as well as an

interpretation of the rationale behind these challenges, and b)

two domain-specific models for addressing architects’

challenges through architectural design. The proposed models

are expected to facilitate communication between development

teams, and to improve the technical aspects of the information

content of requirements.

Keywords- Software Architecture; Case-study;

Choreography; Requirements Engineering; Challenge.

I. INTRODUCTION

Throughout the software product life cycle, well-
established Software Architecture (SA) design is considered
a valuable asset that can guarantee several quality aspects, as
well as efficient development and maintenance work [1].
Today, software architects have a substantial amount of
knowledge and a plethora of methods and tools at their
disposable; still, well-established SA designs are scarce. One
of the reasons for this situation is that, according to Falessi et
al. [2], there is no SA design methodology that can
simultaneously meet all the needs of an architect. In this
study, the assumption is that the growing complexities of SA
design challenges are one of the main reasons for the
scarceness of well-established SA designs. The plethora of
challenges that architects face during their work is reported
in several empirical studies. Some of these studies are
presented in more detail in the following paragraphs.

Smolander and Päivärinta [3] analyzed stakeholders
participating in SA design and reported their problems in
relation to SA. The problems, or challenges, that were
expressed by software architects included: a) the continuous
lack of skilled architects, which resulted in a need for well-
documented SA specifications, and b) the communication
mismatch, which results from architects’ need to
communicate with other stakeholders who often lack the
necessary technical knowledge and insights.

In [4], Bosch presents his view on SA design challenges
along with proposals for how to overcome them. These
challenges include the lack of first-class representation,
cross-cutting and intertwined design decisions, high costs of
change, design rules and constraints violations, and obsolete
design decisions failing to be removed from SA designs.

The challenge of enriching existing software
development practices with architectural thinking is reported
by Lattanze in [5]. Besides the conclusion that common
methods of disseminating architectural knowledge do not
work, the author proposes a list of challenges that lead to
challenge state. Among others, the list includes the lack of
resources for SA design, the ill-treatment of architecture
activities, lack of career path for architects, and the fact that
created SA designs are not used.

One of the promising ways to overcome architects’
development challenges is the utilization of a Model-Driven
Engineering approach [6]. In short, this approach allows
architects to identify the areas in SA design that they see as
particularly challenging and express these areas with
Domain-Specific Models (DSM). The identified areas are
then specified and managed using the concepts, rules and
relationships defined in the DSM. The utilization of the
domain-specific approach for the specifications and
management is expected to yield several benefits, such as
better comprehension of specifications, faster development
and enhanced productivity [7][8][9]. The Model-Driven
Engineering approach represents the overall context of this
study.

To better understand and learn about SA design
challenges in a real-life setting, a case-study with four
software development companies was conducted. The main
results are presented in this article. The main study goals
were to identify a software architect’s challenges and to
propose DSMs as a means to address those challenges.
Stated goals were reached by answering to the following
research questions:

 RQ1: What challenges do software architects face
during the development and maintenance of software
architecture design?

 RQ2: How to address the identified challenges with
domain-specific models?

These research questions were answered by conducting
and analyzing five interviews with software architects,

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

analyzing additional interviews from previous studies,
consulting the relevant literature, analyzing company-
specific documentation, and closely collaborating with
industry experts.

The stated case-study goals are also aligned with the
goals of the AMALTHEA project. AMALTHEA is a
European ITEA2 project of which this study is a part of, and
its main goals include the development of an open source
tool integration platform, the creation of an engineering
methodology, and the specification of a tool-chain that will
support all relevant software development areas with
methods and DSMs [10]. The case-study results support
AMALTHEA’s goals by identifying the challenges faced by
software architects on the basis of which the DSMs will be
proposed. Proposed DSMs will serve as a foundation for the
development of distinct tools which will become a part of
AMALTHEA tool-chain.

The structure of this article consists of six sections. The
following section, Section II, introduces the research method.
This section is followed by the research results, which are
described in Section III and Section IV. A validity discussion
is presented in Section V. Concluding remarks and future
research directions are outlined in Section VI.

II. RESEARCH METHOD

In this study, software architects, their challenges and
model proposals are studied in their natural context.
Accordingly, the case-study approach was selected as an
overall research approach [11]. The research activities within
the case-study were divided into two major phases, each of
which sought to provide the answer to one research question.
In the first phase, the SA design challenges were identified,
categorized and interpreted based on knowledge gathered
through an interview of the company experts. In the second
phase, new DSMs were developed in such a way as to
address the identified challenges. The knowledge resulting
from the first phase represented the inputs to the activities in
second phase. The two phases of the case-study, labeled as
Phases A and B, together with the corresponding topics
under investigation, the relationships between those topics,
and RQs they answer, are presented in Figure 1. The
research activities undertaken in these phases are described
in more detail in the subsections bellow.

A. Research Phase A

The main purpose of Phase A was to provide the
knowledge necessary for the development of DSM

proposals. Since the DSMs seek to address the challenges
faced by architects, the knowledge here implies concrete
challenges, which were categorized and interpreted. For this
purpose, the researchers adapted the thematic analysis
method following Miles and Huberman’s guidelines [12].
The main reason that a qualitative method was selected for
this phase is that such a method provides a useful starting
point for studying phenomena for which existing knowledge
is scarce [13]. SA design challenges can be seen as such a
phenomenon. The adaption of the thematic analysis will be
presented through the two major phases: data collection and
data analysis.

Data collection: According to Falessi et al. [14],
empirical methods, such as interviews, are suitable data
collection techniques for studying SA. Following this
recommendation, the authors used five interviews as the
primary source of information for this study. The interviews
were conducted during the first quarter of 2012, with
interviewees who were working in the role of a software
architect, and who had between 10 and 26 years of
experience in software development.

The interviews were conducted as semi-structured, which
allowed researchers to define the themes of interest, but also
allowed interviewees to express their views regarding these
themes in the way that was most suitable for them. Broad
themes covered by the interview questions included
interviewees’ backgrounds, their understanding of what SA
is, things that are seen as challenges and things that are seen
as improvements. Additional data about the interviews are
included in Table I.

In addition to the interview data, the large ICT company
with which the authors collaborated provided company-
specific documentation related to technical analysis. This
documentation included: templates, process and work
descriptions, example requirements and test specifications.
This documentation was mostly used in Phase B, during the
development of models, but it was also used as a means to
better understand the interview response and to put these
responses in context. For the purpose of data triangulation,
supplementary interviews from a previous study [15] were
utilized as well. Relevant information about interviewees
from these supplementary interviews is presented in Table I.

To ensure the accuracy and the high quality of the data,
the following measures were taken: a) The questionnaire
used for the data collection was developed by a single
researcher, but reviewed by at least two senior researchers
and one industry expert. This was also the case for the
supplementary interviews used during the study. b) The
interviews were recorded, transcribed, and sent to

TABLE I. INTERVIEW DATA

Company Type Country Method Duration

A Large ICT A Telephone call 1 h

A Large ICT A Face to face 1.5 h

B SME ICT A Telephone call 1 h

C SME ICT B Telephone call 1.5 h

D Consultant A Face to face 2 h

Supplementary interviews

A Large ICT C Telephone call 1 h

A Large ICT D Telephone call 1.5 h

Category

Stakeholder

(Software architect)
Challenge Interpretation

Domain-Specific

Model

1

1

1

1

1

1 1m

m

m

1

m

has

has

includes

addresses

explains

has

Research

Phase A

Answers RQ1

Research

Phase B

Answers RQ2

Figure 1. Case study overview.

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

the interviewees for verification and for the clarification of
terms that were unclear to the researchers. Upon finalization
of the analysis, the results were sent for verification to
industry experts in the form of technical reports and were
presented in the workshops. c) Researchers worked under
non-disclosure agreements and the project consortium
agreement, which protected the privacy of the interviewees.

 Data analysis: To aid the analysis, interview transcripts
and company-specific data were imported into the NVivo
tool [16], which is a software package for qualitative data
analysis. A distinctive feature of this tool allowed the
researchers to work on the same data sources and to
continuously have insight into one another’s work. This
feature was especially useful because it allowed for mutual
verification of work “on the fly”.

At the core of the thematic analysis approach is the
technique of coding. Coding allows a researcher to relate
pieces of text that are of interest to the analysis with specific
names or codes. The subsequent analysis of the text under
each code facilitates the development of themes (i.e.,
categories) and for the rendering of interpretations. Code and
category development, as well as their interpretations, are
used to structure the explanation of the data analysis.

Code development: First, every piece of text that
interviewees explicitly mentioned as a challenge, as well as
text, that based on the researchers’ expertise was known to
be a challenging aspect of SA design, was encoded. The
pieces of text under each code helped researchers gain a
deeper understanding of SA-related problems and to
formulate these problems as the challenges presented in this
article. These challenges are the foundational concept of this
study since they represent the basis for the development of
DSMs (cf. Figure 1).

Category development: Newly formulated challenges
were expressed as new codes. In the following iteration, the
interview transcripts were re-coded using these new codes.
The coded text was further analyzed to find commonalities,
and in this case, four themes reflecting the underlying causes
for the identified challenges were proposed. These themes, or
categories, were used to organize the challenges and to
facilitate their interpretation.

Interpretation: The final step in the data analysis was
interpretation, in which the researchers combined and
summarized what had been learned from the interviews with
their own existing knowledge and experience. The main goal
of this step was to go beyond the challenges and categories,
to add the explanations and rationales behind these
challenges.

The challenges, categories, interpretations, and
relationships between them are illustrated in Figure 1, and,
together, they represent the core knowledge necessary for the
development of DSM proposals.

B. Research Phase B

Research Phase B used the results from the previous

research phase for the development of DSM proposals. For

this purpose, a number of workshops were organized in

which industry experts, together with researchers, analyzed

the challenges, categories, and their interpretations. During

these workshops, challenging areas for which DSMs could

be developed were identified. The first such area was

described as the lack of system-level agreement on

responsibilities during the implementation phase, while the

second area was identified as the lack of adequate technical

information in the requirement document.

Once these areas were identified, the researchers

consulted the relevant literature and used company-specific

materials and their own expertise to structure proposals for

addressing the challenges through DSM. For the first

identified area, a choreography-based DSM was proposed,

while, for the second, researchers proposed a DSM for the

dynamic requirement template. These two proposals were

developed for the context of the case company which

develops large embedded software systems and, therefore,

were strongly influenced by the case company’s practice.

Still, the ideas within proposals are considered generic

enough to be useful to architects in other companies as well.

The way in which the developed DSMs relate to the

previous research phase is illustrated in Figure 1, while the

more elaborate explanations of research results (i.e.,

challenges, categories, interpretations, and DSMs), are

presented in the following two sections.

III. SOFTWARE ARCHITECTS’ CHALLENGES

In this section, the results of the research Phase A are
presented. These results were obtained using interview data
and the thematic analysis approach, and they include the
identified challenges, categories, and interpretations. Here,
the derived categories are used to organize the presentation
of concrete challenges and their corresponding
interpretations.

A. Challenges, categorization and interpretation

The identified challenges are organized into four
categories: knowledge, global software development, system
size and complexity, and architectural viewpoints. This
categorization seeks to reflect the underlying causes for the
identified challenges.

Knowledge category: The development of SA designs,
or architecting, is a knowledge-intensive process. Large
amounts of both theoretical and practical knowledge are
required to fulfill daily tasks. The analysis of the collected
data revealed five challenges whose causes can be traced to
the lack of knowledge. These challenges are summarized in
Table II, and their interpretation is presented in the text
below.

TABLE II. KNOWLEDGE RELATED CHALLENGES

ID Challenge

K1 Architecting is usually experience based, without any clear

statement about the rationales for design constructs or decisions.

K2 Architecting is done in the uncertain conditions. Needed
information is missing.

K3 Architecting is done in the uncertain conditions Needed

information is not reliable.

K4 Software architect replacement.

K5 Communicating the architecture between the developers.

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 K1: SA theory and SA design techniques are not
sufficiently included in the educational background of
software architects. Consequently, each architect devises his
or her own personal understanding about SA concepts and
practices and uses this understanding to specify the
underlying logic behind SA designs. Since these design
specifications are heavily burdened with architects’ personal
experiences and understandings, communicating designs to
other architects becomes a challenge.

K2: Architects often do not receive the information
necessary for their work. This leads to additional time
consumption for information gathering and the usage of
informal communication channels. What is discussed and
agreed during informal communication can be important for
understanding certain architectural solutions, but it often
remains undocumented and can be forgotten.

K3: Two explanations for this challenge are possible: a)
differences in education and experience can cause
misunderstandings, and b) large systems are often
documented from specific points of view. What is
meaningful from one viewpoint can be irrelevant from
another.

K4: During their work, architects gain knowledge about
systems, interdependencies, processes, people, and
customers, and they use this knowledge to develop SA
designs. In some cases, architects are displaced during the
course of development. The work done by a displaced
architect is often poorly documented and experience based
(see also K1), and for these reasons it takes a significant
amount of time to train the novice architect who will
continue the work of the outgoing architect.

K5: Employees often have different understandings about
the same concepts. Terms like component, domain, and
functional area are defined in the literature, but they are often
interpreted differently by practitioners or used differently in
different contexts. Refer also to challenges K1 and K3.

Global software development category: Software
development companies often operate across several
locations worldwide. In such a development setting, project
teams are formed with developers coming from various
cultural backgrounds and time zones and who communicate
using non-native languages. Our analysis revealed four
problems that can be linked to such a development setting
(cf. Table III).

G1: Two explanations for this challenge are possible: a)
For most team members, working in global development
setting means communicating in a non-native language.
Communicating complex issues requires a high level of
language proficiency, which does not always exist. b) Global
communication is done via different tools, such as emails,
faxes, Wikis and voice calls. These means are not necessarily
considered good substitutes for face-to-face communication.

G2: Due to mergers and acquisitions, companies are

faced with the task of imposing different rules and practices.
For example, if one company uses agile development, while
another uses a traditional development approach, employees
will be obligated to accept a new way of working.

G3: Personal acquaintances and face-to-face
communication is highly appreciated among architects, and
often seen as the best method of problem solving. However,
this type of communication in global software development
setting requires a substantial amount of resources; therefore,
it always has to be justified in terms of the costs and benefits
that will accompany it.

G4: Due to the variety of tasks and the large number of
teams that are scattered throughout the globe, the precise
responsibilities of architects are not always clear.

System size and complexity category: The interviewees
work with software systems that are considered large and
complex. The phrase “large and complex” emphasizes the
variety of different implementation technologies, software
platforms, development teams and features that such systems
support. Size and complexity cause a number of challenges.
The interview analysis revealed six of these challenges,
which are presented in Table IV.

S1: The development of an architecture for large
software systems is hampered by frequent changes, such as
a) changes in organization (similar to G2), b) changes in, for
example, requirement and feature documents, c) changes in
release content, and d) changes in technology.

S2: Different teams prefer different practices and
technologies. Sometimes, these technologies are mutually
exclusive, and in these circumstances architects must decide
in favor of one technological solution.

S3: System functionality can often be implemented in
different architectural parts. A consensus must be reached
among architects regarding which functionality will be
allocated to which architectural part. This is especially
important in cases for which various architectural parts are
also distinct sellable items. Allocating functionality in one
architectural part, means making that part a more lucrative
investment option for customers.

S4: Large systems have a large number of stakeholders.
Each stakeholder has his or her own vision for how the
system should work, which is expressed through specific
requirements. Often these requirements conflict with one
another, and it is up to the architects to decide how to
reconcile these conflicts.

S5: Systems tend to become large, while architects tend
to become focused only on distinct parts. This state results in
a loss of understanding about systems “as a whole”. Systems
are only valuable as a “systems” - that is, as a whole. If
several parts are preforming well, but other parts are creating

TABLE III. GLOBAL SOFTWARE DEVELOPMENT CHALLENGES

ID Challenge

G1 Difficulties in communicating tasks and results.

G2 Merging different architecting practices.

G3 Lack of personal acquaintances and face-to-face communication.

G4 Architects’ responsibilities are not clear.

TABLE IV. SIZE AND COMPLEXITI CHALLENGES

ID Challenge

S1 Architecting in a changing environment.

S2 Architecting in a heterogeneous environment.

S3 Architecting in a competitive environment.

S4 Architecting in a conflicting environment.

S5 Narrowly focused architecting.

S6 Models and tools are not sufficient for current architecting needs.

S7 Architecture and implementation often (mis)align.

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

bottlenecks, the overall system’s performance becomes
questionable. The performance of all parts must be balanced
and planned - so that the overall performance is optimized.

S6: Conventional modeling techniques and tools are not
sufficient for architects’ needs. For example, the model or
format of a requirement can be sufficient for one group of
stakeholders, but insufficient for another. Different groups,
working on different problems, have different expectations
for models and tools.

S7: Large systems have large architectures that must be
followed by developers. However, there are no means by
which to verify that, for example, the source code for the
release actually follows the architecture. Since new releases
tend to reuse old designs, this misalignment can result in
huge losses in time and resources.

Architectural viewpoints category: Viewpoints
represent one of the crucial concepts for documenting
software architecture. Architecture is actually expressed as a
collection of views [17][18] based on several viewpoints.
Each viewpoint emphasizes elements, and provides data that
are significant only for specific concern(s) tied to a particular
viewpoint. Other elements and data are omitted for clarity
reasons. Based on their needs, architects can develop a
feature viewpoint, a component viewpoint, a performance
viewpoint, a maintenance viewpoint, and many others
viewpoints they find useful. However, besides benefits, the
existence of different viewpoints also causes challenges (cf.
Table V).

V1: Each viewpoint represents a “world” for itself. It has
its own purpose terminology, conceptualization and rules
which must be known and understood in order to be
effectively used, discussed and decided. Sometimes
employees discuss things from the perspective of different
viewpoints. This can lead to communication problems,
which hamper the development process.

V2: A viewpoint addresses certain concern(s), but it does
not exist in isolation. Typically, viewpoints rely on each
other, meaning that updating one viewpoint often requires
updating and validating other viewpoints as well. These
relationships are often neither explicit, nor maintained.

V3: A reference architecture is an artifact whose purpose
is to be shared across all development teams. It represents a
common vision, or a shared mental model that sets common
rules and terminology. The system described from this
particular viewpoint is often seen as a reference for
communication and development. The study revealed,
however, that the reference architecture is not always
properly maintained.

V4: Architectural designs, or views, are not used to their
full potential. Often only a small portion of a design is used,
while the rest of the information it offers remains neglected.

V5: Development problems are often discussed from
only one viewpoint, and, as a result, wrong design decisions
are made. For example, a static structure can be useful for an
efficient breakdown of work, but it would be risky to use
such a structure as a solution for certain other problems such
as requirements breakdowns.

V6: In order to reach its full potential, a viewpoint must
be used and understood by all interested stakeholders. A
company that operates worldwide may encounter problems
in enforcing certain viewpoints or practices related to these
viewpoints throughout all of their global departments (refer
also to G1).

IV. DOMAIN-SPECIFIC MODELS PROPOSAL

In this section, the results of the second research phase
are presented. These results include two DSMs which were
developed based on the identified challenges and which seek
to address two subsets of those challenges. The structure for
the presentation of the two models includes the following
parts: a) context which explains the circumstances from
which the challenges were identified; b) challenge area,
which explains the architects’ interest and identifies which of
the identified challenges the model includes; c) proposal,
which provides a description of the proposed DSM; and d)
theory, which presents a short overview of the theoretical
foundations underpinning the proposed DSM.

Both DSM proposals share a common underlying
assumption, which is that there is an interrelationship
between the product breakdown and the way in which
development teams are organized. The logic of the “product-
team breakdown” assumption is known in software
development and reported in, for example, [19]. A simplified
version of this logic is illustrated in Figure 2.

A system as a whole is subdivided into several logical
components, which are further subdivided into more fine
grained logical components. These components are mapped
into real, physical software components, which are illustrated
as the leaves of the hierarchy on the left side of Figure 2.
Software development teams are organized following the
same hierarchical structure. As illustrated, the board of
architects is responsible for the high level conceptualization
of the overall system, which is then operationalized by
architects and their development teams. Each development
team is responsible for a dedicated logical component, and
its corresponding physical components. With this assumption
in mind, the following subchapters present the detailed
explanations of the two proposals.

Software system

Logical

component

Logical

component

Logical

component
...

Logical

component

Development

team

Architect

Development

team

Development

team

Physical components

System conceptualization

Architect Architect

Board of software architect

Figure 2. A system breakdown and team organization.

TABLE V. CHALLENGES RELATED TO VIEWPOINTS

ID Challenge

V1 Employs are not aware of the existence of different viewpoints

V2 Relationship between viewpoints is not clearly visible

V3 No common, comprehensive reference architecture

V4 Architectural designs (views) are used too narrowly

V5 Architectural designs (views) are misused

V6 Difficulties in enforcing viewpoints

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

1) Proposal 1: Choreography based agreements
Context: The case company employs several hundred

developers in its R&D division. The main task of those
developers is to ensure the continuous evolution and
maintenance of a large, embedded software system. The
developers are organized in teams and, as illustrated in
Figure 2, each team is responsible for a distinct, logical part
of the system. Due to the large number of teams which are
typically dispersed across different geographical, national,
and cultural locations, developers are often unaware of their
role in the “big picture”. The “big picture” here denotes an
understanding of how a developer’s everyday work is
aligned with the work of other teams and how it affects the
functioning of a system as a whole.

Challenge area: There is no system-level agreement that
would increase developers’ awareness regarding who does
what, and in which order. This leads to work duplication,
reworks, frequent delays, and a loss of opportunities from the
parallelization of work. The problem of duplication of work,
for example, is explicitly stated by one of the interviewees:

“Truly, there is not such a company-level function where
a decision could be made that a specific solution is

implemented in a specific product and not in some other
product. In practice, there may be several products that
provide technical solution for system level need, and, in

addition, all the solutions are standardized.”
This challenge area can be seen as a collection of several

of the challenges faced by architects’ which have been
previously identified. These challenges are K5, S3, S5, S6
and, partially, G1. An explanation of the proposal and the
rationale for why it can be seen as a potential solution to
these challenges is given in the text below.

Proposal: A choreography model is a way to intervene in
the challenge area. The proposal is to select, customize, and
provide tool support for the choreography modeling, by
supplementing it with domain-specific content, and by
merging it with additional models. Initial work on domain-
specific supplements is begun, and some of the results are
explained in Taušan et al. [20], where the way how different
implementation of middleware features are affecting the
choreography model is studied.

The goal behind the merger of choreography and other
models is to create more ways for architects to express their
designs. For example, the WS Choreography model [21]
prescribes constructs for representing, e.g., the interaction. A
merger provides an additional option to express interactions
using techniques such as UML state charts, or UML-
collaborations.

Theory: Choreography represents a system-level view of
the interactions between distinct system parts [22]. The
semantics of a choreography model allow architects to
capture and analyze the use case in terms of participants,
their roles, their messages, and the order in which those
messages are exchanged in order to fulfill the use case [23].
Referring to Figure 2, each participant represents a distinct
development team or engineering unit within the company.
The role indicates the contribution of the architectural part,
which is embodied in physical components under the team’s
responsibility. Messages and message ordering have to do

with what is exchanged between the roles, as well as when
the exchange occurs. The simplified illustration of the
choreography model instance is presented in Figure 3. Here,
four teams (teams x, y, z, and q) are participating in fulfilling
the use-case, while the components under their responsibility
take six roles (roles A, B, C, D, E and F).

The semantics of the choreography model, the
experiences published in literature, and the possibilities for
customizations were the main arguments for proposing it as a
potential solution for the challenges in the challenge area.
These arguments are discussed in more detail below.

The challenge of communicating the SA (ID: K5) is
explained through the ambiguity and misunderstanding of
the concepts in use. One way to address this challenge is to
customize the choreography model by including domain-
specific concepts. The rationale behind this approach
involves reported evidence that the inclusion of domain-
specific concepts can improve the comprehension and
readability of specifications [7][8], which are at the core of
this challenge. Moreover, this approach partially addresses
the challenge of communicating tasks and results (ID: G1).

The challenge related to competing environments (ID:
S3) involves allocating functionality to a set of architectural
parts. Choreography natively supports the role concept for
documenting the contribution that an architectural part
provides to the fulfillment of the use-case. In the proposed
approach, the focus is on the role, as a means of addressing
this challenge, by providing the methodological and tool
support for role identification and management. The
rationale for using the role to understand the contribution of
architectural parts at the analysis level, and to relate this to
physical components during the implementation, is claimed
to be a good practice by Kruger [24] and by Kruger, Nelson
and Venkatesh [25].

The challenge of the narrow focus (ID: S5) involves
comprehending the system as a whole and ensuring its
performance. The reason choreography is seen as a suitable
approach for this challenge is that it natively captures the
interactions needed for the system-level use cases. As such,
it imposes and documents the collaboration of all interested
teams and provides insights into the roles that each team has.
Regarding performance issues, the existing literature offers
evidence that organizing systems according to a
choreography model can result in better performance
[26][27].

++

Role A

Role B
Role A

Role C

Role B

Role F

++

Role D

Role E

Team x

Team y

Team z

Team q

Team y

Team x

Team x
Team z

Figure 3. Choreography model.

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

The challenge of inadequate models (ID: S6) will be
addressed through the merger of a choreography model and
other models which are used by industry partners. Allowing
architects to use their own preferred modeling techniques,
together with the domain-specific constructs offered by the
choreography model can be seen as an adequate response to
this challenge.

2) Proposal 2: Dynamic requirement template
Context: In the case company, requirements are elicited

by customer teams and then communicated to product
management. At first, an initial screening is undertaken to
quickly determine whether a requirement has the potential to
bring value to the customer. If a value is identified, the
requirement is analyzed in more detail from business and
technical feasibility points of view (see Aaramaa et al. [15]
for more details about such an analysis). This particular
proposal improves the information content that is needed for
the technical feasibility analysis.

Challenge area: Collecting the needed requirement
information from customers and communicating this
information to product management, and then to software
architects, is the task of customer teams. The template for
collecting and recording requirements, however, lacks the
necessary technical information, and the reliability of the
information in the requirement specifications is questionable.
In addition, distinct technical information content has to be
provided to describe each architectural part.

The direct consequence of this challenge is that architects
use a significant portion of their time trying to find the
necessary information, before they can begin the technical
feasibility study and implementation of the requirement. This
inefficient use of architects’ time is only one example of the
issues that are prevalent in this area, and it is also recognized
by one of the interviewees:

“And because they [customer teams] are technically not
that well-trained or they don’t have that kind of deep

knowledge about the new functionality, (…) and then we
[software architects] always have to make new and new

inquiries towards them, to go back to the customer in order
to get more information.”

This challenge area can also be seen as a collection of
several architects’ challenges that have previously been
identified. These challenges include K2 and K3, as well as,
partially, S1, S5 and S6. An explanation of our proposal and
the theory that supports it is presented in the text below.

Proposal: The dynamic requirement template consists of
two parts: a common and a specific part. The common part is
the same for all requirements and consists of data such as the
requirement’s ID, name, priority, and description. The
specific part is tied to a distinct part of the system or to a
logical component, as is shown in Figure 2, and it consists of
data that are relevant only for that specific system part. The
main idea here is to use the specific part of the template to
allow architects and their teams to define the information
content that is relevant to their work.

This model of a requirement template is illustrated in
Figure 4. The architects and their teams define the
information content which includes data that have to be
collected from customers, the descriptions of those data,

guidance how to collect them, and criteria for the collected
data’s completeness. This information content forms the
specific part of the requirement template. When this is done,
the model is ready for instantiation by customer teams.

There are three distinct steps that can be identified during
the template instantiation: a) recording data from the
common part, b) understanding which parts of the systems
are affected by the requirement and c) recording the specific
part of the requirement for the identified system part. When
these steps are completed, the requirement specification can
be passed to the architects for technical feasibility analysis
and implementation. It is expected that, due to the provision
of focused technical data, architects and developers can do
their work more efficiently.

Theory: The model behind the dynamic requirement
template proposal is motivated by the idea that SA has a
strong influence on Requirement Engineering (RE), and that
including SA-related items in a requirement specification
may result in different benefits. Some of the studies
supporting this idea are presented below.

One of the first publications to focus on this idea is the
panel discussion presented in Shekaran et al. [28]. In this
panel, participants expressed their views on how SA is
present in RE and outlined expected benefits. These benefits
included an understanding of the resistance to change; the
consistency, comparability, and feasibility of the
requirements; and the consideration of different design
alternatives.

Ferrari et al. [29] conducted a controlled experiment to
understand the impact of architectures on new system
requirements. The authors claimed that by considering SA
during RE (among other things), analysts could elicit 10%
more architecturally relevant requirements, 10% more
“important” requirements, 7% more crosscutting
requirements, and more implementation and interoperability
requirements.

According to Cervantes et al. [30], frameworks as SA
concepts influence RE. Frameworks can impose constraints
such, as testability and developer skills, or create new system
requirements. The example of new requirements is the case
when the utilization of a concrete technology demands the
usage of a concrete application type. By considering this
constraint early, (i.e., in RE), losses in later development
phases can be avoided.

Architect and

team x

Architect and

team y

Architect and

team z

Logical

component A

Logical

component B

Logical

component C

Physical components

Requirement

-common part-

Specific part A Specific part CSpecific part B

Figure 4. A dynamic requirement template.

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

V. VALIDITY DISCUSSION

The validity of a case-study, according to Yin [31],
constitutes four aspects: construct validity, internal validity,
external validity and reliability. There are several issues that
may threat the validity aspects, and these were considered
throughout the study.

If the researchers and the interviewees do not understand
the concepts to be studied in the same way, a threat to
construct validity is introduced. This threat was mitigated in
this study through the rigorous peer review of the interview
questionnaires that were used to collect the data for both the
primary and the supplementary interviews.

The utilization of supplementary interviews can represent
another threat to validity, since these data were collected for
another purpose and, thus, must be considered as third-
degree data [11]. Using this type of third-degree data,
however, may also mitigate threats to validity, since such
data’s use triangulates the data; moreover in this particular
study, the results of the additional interviews were in line
with the primary set of data. Thus, the additional interviews
addressed the validity threat to generalizability that resulted
from the relatively low number of interviewees in the
primary set.

The fact that the researchers have years of experience of
research co-operation in the context of the case company
also poses a threat to reliability in the form of researcher
bias. To mitigate this threat, measures for ensuring data
quality and correctness were taken. These were presented in
Section II.

A threat to internal validity relates to possibilities to
generalize the results and draw cause–relationship
conclusions from those results. This case-study did not seek
to analyze causal relationships, so, from that viewpoint
internal validity has not been considered.

External validity concerns how much an analysis’s
results can be generalized, (i.e., used in other companies).
The analysis results for this study were based on qualitative
data from four companies, which develop different types of
systems in different domains. The diversity of the
interviewees suggests that categories and challenges could be
identified in other contexts as well. The improvement
proposals, however, were developed in cooperation with
experts from a single company. Beyond the educated opinion
that these proposals are applicable in similar type of
companies or context, no other argument can be provided
regarding external validity. Therefore, a threat to external
validity remains.

VI. CONCLUSION AND FUTURE WORK

SA design is a solid approach to ensuring software
quality and longevity. Its importance in software
development is undoubtedly confirmed by one of the
interviewees who, for example, claimed that:

“When we have it, [software architecture] work comes
much easier.”

The goals expressed in the AMALTHEA project,
however, represent an additional empirical argument that SA
design practices still need improvements. Consequently, this
article presents our results from the study in AMALTHEA

project which is conducted to improve the understanding of
what architects perceive as challenging in their daily
practice, as well as to develop ways to address these
challenges with DSM.

The main results of this study are two DSM proposals.
These DSMs were developed using the discovered
challenges, the challenge categories (which were devised to
reflect the underlying causes), and the interpretations of the
challenges. In addition, existing literature, company-specific
material and researcher’ expertise were also used during the
DSM development.

These results are also seen as answers to the research
questions that where stated at the beginning of this paper. In
short, based on the data analysis, RQ1 is answered by
identifying, categorizing, and interpreting the architects’
challenges. To answer RQ2, the researchers used the RQ1
answers and proposed two DSMs: namely, choreography-
based agreements and the dynamic requirement template.
These two proposals have yet to be validated. It should be
also noted that, based on the identified challenges, additional
DSMs could be derived as well. Which combination of
challenges an architect sees as suitable for addressing
through DSM is highly influenced by the architect’s
experience and the development context.

In addition to using these results, software architects can
also recognize the derived categories and use them to predict
possible challenges they will face if, for example, their
company operates in a global software development setting,
their product becomes large and complex, or multiple
viewpoints are in use. It is also important to emphasize that
the knowledge category can be seen as a pervasive category,
which is present regardless of software size, complexity, the
utilization of viewpoints or global software development
settings. The list of challenges under each category can be
seen as the concrete points that can either be addressed
through an architect’s choice of development practice, or
serve as a means through which to raise architects’
awareness about the particular challenge.

In future work, the two proposals will be fully
customized to fit the case company’s context. Customization
will include various tasks, such as specifying of the
information content for the dynamic requirement template,
supplementing the choreography model with details that are
relevant to the developers, and developing software support
for the proposals. Additionally, the authors plan to conduct a
series of evaluations with industry practitioners to validate
and improve the two proposals.

ACKNOWLEDGMENTS

This study was supported by ITEA2 and TEKES. The
authors would like to express their gratitude to the
interviewees for their time and effort, and to the
AMALTHEA partners for their cooperation. The authors are
also grateful to J. Peltonen from the Tampere University of
Technology for his valuable suggestions regarding the
choreography model proposal.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software architecture
in practice. Addison-Wesley Professional, 2003.

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

[2] D. Falessi, G. Cantone, and P. Kruchten, “Do architecture
design methods meet architects’ needs?,” The Working
IEEE/IFIP Conference on Software Architecture
(WICSA’07), 2007, pp. 5.

[3] K. Smolander and T. Päivärinta, “Describing and
communicating software architecture in practice: observations
on stakeholders and rationale,” In Advanced Information
Systems Engineering, 2002, pp. 117–133.

[4] J. Bosch, “Software architecture: The next step,” in Software
architecture, 2004, pp. 194–199.

[5] A. J. Lattanze, “Infusing Architectural Thinking into
Organizations.,” IEEE Software, vol. 29, no. 1, 2012, pp. 19 –
22.

[6] D. C. Schmidt, “Model-driven engineering,” Computer, IEEE
Computer Society, vol. 39, no. 2, 2006, pp. 25 – 31.

[7] T. Kosar, M. Mernik, and J. C. Carver, “Program
comprehension of domain-specific and general-purpose
languages: comparison using a family of experiments,”
Empirical Software Engineering, vol. 17, no. 3, 2012, pp.
276–304.

[8] M. Völter, “Architecture as Language,” IEEE Softw., vol. 27,
no. 2, 2010, pp. 56–64.

[9] A. Van Deursen, P. Klint, and J. Visser, “Domain-Specific
Languages: An Annotated Bibliography,” Sigplan Notes, vol.
35, no. 6, 2000, pp. 26–36.

[10] “AMALTHEA,” 2014. [Online]. Available:
http://www.amalthea-project.org/. [Accessed: 09-May-2014].

[11] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,”
Empirical Software Engineering, vol. 14, no. 2, 2008, pp.
131–164.

[12] M. B. Miles and A. M. Huberman, Qualitative data analysis:
An expanded sourcebook. Sage, 1994.

[13] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian,
“Selecting empirical methods for software engineering
research,” in Guide to advanced empirical software
engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds.
Springer, 2008, pp. 285–311.

[14] D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten,
“Applying empirical software engineering to software
architecture: challenges and lessons learned,” Empirical
Software Engineering, vol. 15, no. 3, 2010, pp. 250–276.

[15] S. Aaramaa, T. Kinnunen, J. Lehto, and N. Taušan,
“Managing Constant Flow of Requirements: Screening
Challenges in Very Large-Scale Requirements Engineering,”
Product-Focused Software Process Improvement, 2013, pp.
123–137.

[16] “NVivo 10 research software for analysis and insight,” 2014.
[Online]. Available:
http://qsrinternational.com/products_nvivo.aspx. [Accessed:
09-May-2014].

[17] “42010-2011 - ISO/IEC/IEEE Systems and software
engineering - Architecture description,” IEEE Computer
Society. 2011.

[18] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers,
and R. Little, Documenting software architectures: views and
beyond. Pearson Education, 2002.

[19] N. Nagappan and T. Ball, “Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case
Study,” First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007), 2007, pp. 364–
373.

[20] N. Taušan, J. Lehto, P. Kuvaja, J. Markkula, and M. Oivo,
“Comparative Influence Evaluation of Middleware Features
on Choreography DSL,” The Eighth International Conference
on Software Engineering Advances (ICSEA 2013) IARIA,
2013, pp. 184–193.

[21] D. Burdett and N. Kavantzas, “WS choreography model
overview,” W3c Work. Draft. W3C, 2004.

[22] R. Dijkman and M. Dumas, “Service-oriented design: A
multi-viewpoint approach,” International journal of
cooperative information systems, vol. 13, no. 4, 2004, pp.
337–368.

[23] A. Mahfouz, L. Barroca, R. Laney, and B. Nuseibeh, “From
organizational requirements to service choreography,” World
Conference on Services-I, 2009, pp. 546–553.

[24] I. H. Krüger, “Service specification with MSCs and roles,”
IASTED Conference on Software Engineering, 2004, pp. 42–
47.

[25] I. H. Krüger, E. C. Nelson, and P. K. Venkatesh, “Service-
based software development for automotive applications,”
Proceedings of the CONVERGENCE 2004, 2004, pp. 0.

[26] S. Cherrier, Y. M. Ghamri-Doudane, S. Lohier, and G.
Roussel, “Services collaboration in wireless sensor and
actuator networks: orchestration versus choreography,” IEEE
Symposium on Computers and Communications (ISCC
2012), 2012, pp. 411–418.

[27] G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda,
“Decentralized orchestration of composite web services,”
Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, 2004, pp.
134–143.

[28] C. Shekaran, D. Garlan, M. Jackson, N. R. Mead, C. Potts,
and H. B. Reubenstein, “The role of software architecture in
requirements engineering,” Proceedings of the First
International Conference on Requirements Engineering,
1994, pp. 239–245.

[29] R. Ferrari, J. A. Miller, and N. H. Madhavji, “A controlled
experiment to assess the impact of system architectures on
new system requirements,” Requirements Engineering, vol.
15, no. 2, 2010, pp. 215–233.

[30] H. Cervantes, P. Velasco-Elizondo, and R. Kazman, “A
Principled Way to Use Frameworks in Architecture Design,”
IEEE Software, vol. 30, no. 2, 2013, pp. 46–53.

[31] R. K. Yin, Case study research: Design and methods, vol. 5.
Sage, 2009.

63Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

