
Scaling Agile Estimation Methods with a Parametric Cost Model

Carl Friedrich Kreß

Scientific Services

Cost Xpert AG

Augsburg, Germany

carl.friedrich.kress@costxpert.de

Oliver Hummel

Software Design and Quality

KIT

Karlsruhe, Germany

hummel@kit.edu

Mahmudul Huq

Scientific Services

Cost Xpert AG

Augsburg, Germany

mahmudul.huq@costxpert.de

Abstract— Estimating the likely cost of a software development

project is important with every process model. In agile settings,

story points have proven being a useful tool to predict effort

for small and medium sized projects or a few iterations.

However when projects grow larger, their effort usually grows

faster than a linear projection with story points would suggest.

This can be attributed to so-called diseconomies of scale, e.g.,

caused by the growing communication overhead and need for

refactoring in large projects. Although these effects are sup-

ported by all long-established parametric cost models, such as

COCOMO, they are not yet taken into account with agile story

point estimation. In this paper, we show how to calculate the

magnitude of these non-linear effects to create awareness for

this problem in the agile community. As a remedy, we propose

three solutions to combine story points with COCOMO II in

order to create advanced estimation methods that can be

applied to large agile projects.

Keywords-software cost estimation; COCOMO; agile; Scrum.

I. INTRODUCTION

Agile development approaches were initially aiming on
software projects with manageable size and complexity. Due
to their iterative and priority-driven implementation
approach, they have become popular in many organizations.
Even though – to our knowledge – there has been no
scientific evidence that agile development projects are more
successful than traditional approaches [1] so far, agile
methods – like every other method or technique in software
engineering – only seem to be helpful when conditions are
right [2]. Nevertheless, it is not yet clear whether their
perceived success is caused by increased development
efficiency or just by the ability to steadily deliver working
increments of a system under development. Nevertheless,
this perceived success after decades of failed waterfall
projects has raised the demand for scaling agile development
approaches for larger undertakings. The scaling of agile
projects is usually done organically, i.e., in a stepwise
manner by splitting one team after a sprint to form the nuclei
for two new teams that can then be filled with new additional
people. As often reported in literature (see, e.g., [3]), this
approach seems to work reasonably well in practice.

At the time being, agile approaches seem quite successful
when it comes to estimating and planning two or three
sprints ahead by analyzing the remaining user stories with
the next highest priorities. Estimating the effort for complete
agile projects, however, is a non-trivial challenge for various
reasons. Many agile practitioners hence argue that it does not
make sense to estimate a moving target (i.e., steadily

changing requirements), but advocate to utilize a best effort
design to cost approach that delivers as much functionality as
the budget allows, billed on a time and material basis.
Clearly, however, this is not satisfying from a management
and controlling point of view: thus, it has led to the
recommendation to elicitate and analyze more requirements
in early iterations than can be implemented in order to
quickly gain a coarse overview after a project has started [4].
Assuming that the size of each user story has finally been
estimated in so-called story points [14], this would allow the
prediction of a project’s overall effort with the help of a
burndown chart as soon as an initial velocity of the develop-
ment team has been established after some initial sprints. The
underlying estimation approach is similar to so-called expert
judgments [9] that are a popular estimation method in non-
agile environments.

From the perspective of large projects, however, both
approaches suffers from a severe limitation that has only
rarely been considered so far, especially in agile contexts:
story points (as well as expert judgments) are a form of
bottom-up estimation that predicts the overall project effort
based on a linear projection ignoring so-called diseconomies
of scale. The latter term describes the fact that larger
development projects usually require disproportionally more
effort than smaller projects, which can mainly be attributed
to the growing communication and coordination overhead in
larger undertakings [5]. Thus, although story-point-based
estimation has proven to work reasonably well for projects of
manageable size, it comes with significant drawbacks when
it should be put to use in larger development efforts. Another
issue that has recently been reported by practitioners is the
increasing amount of refactoring required in growing agile
projects. Although common sense clearly suggests that an
incrementally extended system will require regular refac-
torings in order to remain maintainable and extensible, this
continuously increasing technical debt [6] is ignored by the
current, linear effort prediction via story points.

In order to highlight and overcome these limitations, the
remainder of this paper is organized as follows: after going
into more detail on the problem of diseconomies of scale and
technical debt in Section II, we propose a set of three
enhancements for agile estimation in Section III that will
support agile developers in overcoming this challenge. The
basic idea is to use some mathematics of the parametric
estimation method COCOMO II in combination with the
story point method to achieve more reliable effort estimates.
Since our proposals can be used in different project contexts,

156Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

we briefly highlight their intended area of application in
Section IV before we conclude our paper in Section V.

II. BACKGROUND

Various surveys have shown that even companies that
adopted agile development methods still rely on traditional
upfront project estimation and planning in many cases for
business reasons. This is mainly because of the need to
provide a project budget and status reports to customers or
middle and top management, as, e.g. discussed by Sillitti and
Succi [7]. We suppose that this necessity is not going to
change anytime soon since project management standards
like, PRINCE2 [17], that demand for a business justification,
i.e., a cost-benefit analysis become more and more
mandatory. Hence, even if the “domestic policy” of a
development team is a settled agile methodology, in large
enterprises and most customer relationships there will always
be the need for a plan-based “foreign policy” justifying the
expected effort to stakeholders outside the development
team. The same need for planning in advance holds true from
a strategic point of view. Assume, for example, that a
company wants to evaluate a time-to-market strategy for a
certain product. This again underlines the necessity for an
estimation that quickly enables strategic planning before or
at least soon after project start.

The practical need for dependable estimation in large
agile projects is also enforced by emerging agile develop-
ment models like the so-called agile fixed price. The clue is
already in the name: in this model, a fixed price is agreed
upon by suppliers and customers before or soon after the
project is started [8]. Obviously, in order to be able to fix a
price, the entire project scope must be determined in
advance. Within the fixed price project the customer can then
still decide what parts of the whole Information Technology
(IT) product are to be developed with higher priority in an
agile manner. This combination allows minimizing risks by
setting a clear scope while at the same time providing a
flexible –that is agile– project environment.

A. Diseconomies of Scale

As mentioned previously, agile estimates for the whole
product backlog are relying on a linear effort projection:
Agile teams measure how many story points they can deliver
within a sprint and how much effort is required to do so. If,
for example, a team can deliver 50 story points with 10
Person Month (PM) of effort, it can be concluded that, e.g.,
300 remaining story points will roughly require 60 PM. Of
course, one needs to steadily live with the risk that changing
or misunderstood requirements will permanently disrupt this
prediction and hence, most agile practitioners limit their
estimations on the next two or three sprints. However,
especially the management in larger organizations, usually,
requires an upfront or early estimation of the whole project
effort. The important aspect from an estimation point of view
is that the pragmatic approach described above fully ignores
the non-linearity of the size-effort relation in large software
development projects, as already pointed out by Brooks [5]
and Boehm [13]. This so-called diseconomy of scale has
been confirmed subsequently by the regression analyses of

every major parametric cost estimation model in use today,
such as COCOMO II, REVIC, PRICE, and SEER [10].
However, it has to be acknowledged that there has been
some controversy around this issue (see, e.g., [11]). Results
that indicate slight economies of scale in smaller projects
[12] are reflected in the COCOMO II model, which allows
exponents smaller than 1 (see next section). But, even if such
economies of scale can be reached in smaller projects, this
amplifies schedule risks when projects need to scale as it
could mean switching from economies of scale to
diseconomies of scale.

The following Figure 1 demonstrates how an “over-
linear” effort increase in large projects can indeed become a
severe risk for the accuracy of agile effort estimations. It
illustrates this graphically by contrasting a linearly growing
effort curve (red lines), where effort is growing proportional
to the expected size, with a nominal effort curve (shorter
purple lines) calculated with Boehm’s COCOMO II model
[9]. Moreover, we have added two curves showing
COCOMO II estimates under more and less complex project
settings.

Figure 1. Linearly projected effort estimate against non-linear estimates

using COCOMO II.

Clearly, in large projects the inherent empirical process
control of agile methods would detect a decrease of develop-
ment velocity over the course of the project (or at least the
increasing refactoring efforts that have been reported by
many practitioners once the code base has reached a
significant size) and hence will better approximate the real
effort over time. However, as described above the driver for
estimation is the need to look ahead into the future for a
significant amount of time and to present a realistic estimate
for the overall effort expected for a project. This is where
agile estimation as just presented has its weaknesses,
especially when projects become larger. Ignoring this non-
linear effort growth may lead to a dangerous underestimation
of effort and in turn project duration that can endanger at
least the business case of a project, if not the whole project
itself.

0

500

1000

1500

2000

2500

3000

0

Ef
fo

rt
 in

 P
M

Project size in kSLOC

Linear
projection

Non-
complex
estimate

Nominal
estimate

Complex
estimate

 100 200

157Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

B. Parametric Cost Models

Parametric cost models, like COCOMO II that we
exemplarily present in this section, are based on a regression
analysis of numerous projects. They usually require the
estimated size of a project under consideration in kilo Source
Lines of Code (kSLOC) and various complexity factors as
input parameters. As soon as these are determined, the
following formula (1) can be applied to calculate the
expected development effort in person months:

 ∏

 (1)

with A being a calibration constant describing the
productivity, the expected size of a system is usually derived
with the help of a functional size measure for the
requirements, such as Function Points [9]. The other factors
need to be determined by analysts from a project’s context.
Values and explanations for the Scale Factors (SF) required
for calculating E and the Effort Multipliers (EM) can be
looked up in the COCOMO II model definition [9].

However, function points, the conversion to Lines of
Code, and the determining of the project parameters all bear
an inherent inaccuracy so that estimation is also not a trivial
task for traditional (i.e., non-agile) development approaches.
As is visible in formula (1), COCOMO directly reflects non-
linear growth through the exponent E (which is usually
larger than one, but can also be slightly smaller, cf. Banker
et al. [12]). Moreover, it also distinguishes between effort
caused by the functional size (in kSLOC) with its exponent E
on the one hand and the effort caused by the product of
various so-called EMs, on the other hand. The effort
multipliers represent the difficulty caused by non-functional
requirements such as reusability needs or constraints in
execution time as well as cost drivers such as overall product
complexity or a desired internationalization. This distinction
is nevertheless important since COCOMO II assumes that
effort caused by the functional size grows in a non-linear
fashion while the effort multipliers (although they
themselves are discrete values) have a linear effect on the
effort projection, as they just multiply the effort without an
exponent.

As mentioned before, COCOMO II requires rating
several scale factors that are deemed responsible
fordiseconomies of scale. The following list gives a brief and
simplified summary of these ratings:

 Precedentedness: rates if the product or project type
is similar to previous ones.

 Development Flexibility: rates the software
conformance to requirements and external
interfaces.

 Team Cohesion: accounts for communication
overhead because of difficulties in synchronizing
stakeholders.

 Process Maturity: rates the maturity of the
development process according to CMMI levels.

 Architecture / Risk Resolution: rates the maturity of
the risk management concerning development risks

as well as the percentage of development schedule
devoted to establishing the software architecture.

Even though COCOMO II [9] was not developed with

agile projects in mind, especially the last parameter reflects a
circumstance that all software development projects do have
in common, and that agile project are especially prone to: not
putting (enough) upfront effort into the development of a
decent software architecture can drastically increase the
technical debt of a project and will increase refactoring
overhead over the course of the project.

C. Error Calculation

The COCOMO II model can also be used to calculate the
magnitude of error of a story point estimate like it was
depicted in Figure 1 before. For that purpose, we assume that
the functional size of the project simply increases by an
arbitrary factor , for the moment. Thus, the linear model
used by agile teams would estimate the expected effort as:

Here, velocity is given as story points per person month.
There is no normalization factor that describes how to
measure a single story point. This means, the number of
story points can be of arbitrary size, depending on the habits
of the agile team and it will only become meaningful when
set in relation to person month needed per story point, thus
describing the velocity of a specific team [15]. On the other
hand, integrating the growth factor into the COCOMO II
formula causes a non-linear effort increase. This is shown in
the following formula: since g is multiplied to the size it is
under the influence of the exponent E:

 ()

To better illustrate the difference, we calculated the error
as the fraction between both calculations. A 10 PM reference
project would match a functional size of about 3.25
 This value is determined by “backward
calculation” of COCOMO II for an effort of 10 PM, with
scale factors set to high and all effort multipliers set to
nominal, see (5). If, for example, the functional size growth
factor between the reference project and another one is
 the difference between the linearly interpolated
estimate of 100 PM and the non-linear nominal scaling
estimate equates to:

 (

)

In other words, the calculation in (4) demonstrated that
even for a relatively small project a story point based effort
prediction is prone to underestimate effort about one third.

III. SCALING AGILE ESTIMATION METHODS

In this section, we propose three solutions with
increasing accuracy to better represent the growing

158Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

communication overhead in large agile projects. They all
work by combining the parametric cost model COCOMO II
with common agile estimation practices. As such they are
simply based on the common agile artefacts like user stories
and story points. However, since there is no absolute size
reference for one story point, it is not possible to simply use
absolute story point counts in the formulas that we are
suggesting in the following three solutions. In order to
circumvent this problem, we have to work with the relation
between story points and not the story points themselves.
The same issue and solution must be considered for even
simpler user story based estimates.

 All presented solutions make use of the following data
points. This reference data can be gathered during regularly
sized projects (or initial sprints before scaling up the team)
and allows determining the regular productivity of the team.
In the following Sub-sections III.A, III.B and III.C, we will
show three ways how to use this information to calculate the
productivity of the upcoming larger project, that is, when the
overall team size is scaled up. The following reference data
is needed to determine the initial productivity:

 Story points delivered,

 Number of user stories and

 Effort in person month needed or kSLOC
written.

A. Analogy-based Estimation using the Number of User

Stories

If only a ballpark figure is needed (e.g., early in a
project), we suggest the following simple approach to derive
a coarse estimate that is merely based on the number of user
stories and an analogy to a previous project or an initial
increment. Using the COCOMO II formula presented above
and the effort actuals of the previous project/increment, a
functional size analogue for the functionality that the team
delivered before can be derived by rearranging the
COCOMO II formula using kSLOC:

 (

)

When we consider the separation between growth caused
by functional size and effort multipliers as explained before,
this approach can only be applied under the following
circumstances: 1) The user stories of the reference and the
current project are of comparable size, that is their size
differences are small for both projects. 2) The stories for the
upcoming project are written in the same manner as in the
reference project, especially in terms of the average size of a
user story. 3) The effort multipliers do not change between
the reference project and the current project, which is
implicitly given when the reference data is coming from the
same project.

Usually, these conditions will hold true when the
upcoming project refers to the same class of products as the
last project, e.g., when building a company’s standard
product like an interactive web application merely for a
different customer. In these cases it is usually not necessary

to rate the effort multipliers again. Combined with the
assumption that the user stories are similar in size, the ratio
between the number of user stories of the reference project
()and the number of user stories in the upcoming
project () would then represent the change in
functional size:

This calculated value can then be used for effort
estimation with the help of the COCOMO II equation:

Although we are omitting a potential change of effort
multipliers between the reference project and the upcoming
project for sake of a quick estimate (i.e., EMnew = EMref), we
do take the non-linear scaling factors (SFj included in E) into
account that are responsible for non-linear effort growth.

B. Analogy-based Estimation using Story Points

In order to improve the accuracy of the previous
approach, it should be obvious that user stories weighted
with story points produce better results as they also take size
and complexity of the requirements into account. Concerning
the distinction between functional size and effort multipliers
discussed before, we can assume that a story point estimate
is actually an amalgam of the functional size of the IT
product and effort multipliers corresponding to the IT
product.

Since the agile team judges effort multipliers implicitly
when assigning story points, COCOMO II’s effort multiplier
ratings can be used to make this explicit as explained in the
following. First, in order to eliminate this effect from the
story point estimate and to gain a value for the pure
functional size of the product we need to determine the effort
multipliers [9] and “remove” them from the story point value
through the following division:

Second, based on these considerations we suggest the
following steps to combine the “purified” story point
estimate with the COCOMO II model in order to gain a
reliable estimate for larger projects that also incorporates
non-linear scaling effects:

1. Determine the functional size a team is able to deliver

using kSLOC by backward calculation of COCOMO II
(5).

2. Again it is necessary to determine how the functional size
of the upcoming project changes in relation to the
reference project. Thus, in order to merely relate the
functional size of both projects with each other, we need
to eliminate the effort multipliers from both story point
estimates. The new functional size can then be derived
as:

159Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 (

)

3. Now, these values can be used to calculate the expected
effort, this time including the effort multiplier rating for
the new product EMnew as well as a new evaluation of the
scale factors Enew depending on the new team
constellation and product environment:

 (10)

C. Parametric Estimation Measuring SLOC

The previous two approaches are simple in the regard
that they only use parameters well known to every agile
developer and some algebra. However, the “backward”
calculation (5) of the functional size of the reference system
may lead to an additional estimation uncertainty that can
actually be avoided. When reference code (or an initial
increment of a new project) is available, it becomes possible
to directly measure the size of the existing code base with
some metric tool, ideally the COCOMO II code counting
tool of Boehm’s group at the University of Southern
California [16]. This will increase the accuracy of the
estimates with concrete numbers.

Based on such a concrete SLOC measure, it becomes
possible to project the expected size of the new project again
using the rule of three and the ratio of story points and effort
multipliers as before (9). As shown above, it is then merely
required to determine the scale factors and effort multipliers
for the reference project and the new project. The result can
then be easily used to estimate the overall effort required for
the project by using the COCOMO II formula already used
in (10). In other words, this third approach predicts the non-
linear effort portion to be expected in a large development
project with the COCOMO II model, based on a typical agile
size measurement with story points.

IV. DISCUSSION

As the number of user stories is usually available before
a concrete story point estimate, the method from III.A can be
used in quite early stages, perhaps even before a project is
actually started. When presenting the solution above, we
suggested that the effort multipliers would not change
between the reference project and the upcoming project. This
makes sense as it might be difficult to rate the effort
multipliers at such an early point in time. However, if time,
resources, and the necessary information are available, this
solution can even be refined by rating the effort multipliers
and integrating them into the estimate as in the story-point-
based solution (analogue to (9)).

The latter was designed with the goal in mind to be easily
applicable by any agile team while providing good
estimation results. It can be used after all user stories have
been written and assigned a story point value. This,
obviously, requires analyzing all user stories close to the
beginning of a project even when they merely have a low
priority. While analyzing more requirements than can be
implemented in order to gain an overview of a project

quickly is sometimes recommended in literature [4], many
agile practitioners merely look ahead for two or three sprints
and leave further stories untouched until they become
relevant for short term planning. This approach obviously
clashes with the business need of effort prediction. We do
not see a simple solution for this dilemma, but regard the
upfront analysis of user stories as a viable compromise that
allows effort predictions without generating too much
overhead.

Besides the value that the estimate provides from a
business point of view for reliable product planning, we see
an even higher value for agile teams: When asked to come
up with an estimate, traditional agile estimation methods do
not provide the means for anything else than a linear scaling.
Thus, early in a project when the team size is still small,
agile teams may be trapped by the self-created benchmark
without a chance to predict reduced productivity when the
project is scaled up later. Using our solution they can make
the diseconomies of scale transparent and understandable to
management by rating the COCOMO II scale factors and
using the non-linearity of this model.

As mentioned above, we currently assume that a direct
SLOC measurement would yield the most promising esti-
mation results (although this measure is admittedly not
undisputed itself it is probably the most accurate approach
that is available today). This is because the SLOC that have
been delivered during a reference project or a number of
reference sprints best describe the actual productivity of a
team. In addition the SLOC value could for example allow
gathering historical data to determine a mean productivity
factor. It could thus also be used to do a full COCOMO II
calibration as described by Boehm et al. [9] in order to match
a team’s productivity even better. Thus, the SLOC-based
solution is probably best suited for advanced agile teams that
want to further improve their estimation accuracy.

Moreover, since COCOMO II defines SLOC very
carefully, it should be made sure that the tool used to
measure the reference SLOC complies with this definition in
order to reduce sources of potential deviations. Whether the
measurement of SLOC conducted with an organization’s
code metrics tool largely differs from the original COCOMO
II SLOC counting definition can easily be verified by cali-
brating it with values delivered by the COCOMO II counting
tool mentioned in Section III.C at least once or by directly
using the latter to measure the SLOC.

Another interesting question that should certainly
become subject of future research is the question how “pure”
story point estimates reflect the functional size of a user story
or how far they are “polluted” with the extra functional effort
multipliers identified in COCOMO II. In Section III.B we
have made the latter assumption, however, a closer look in
the COCOMO II manual [9] suggest that some may be
implicitly considered during story point estimation and
others may be ignored. Hence, we feel that even common
story point estimation could benefit from explicit consider-
ation or exclusion of these factors. As our mathematical
solution only evaluates the change between the effort multi-
pliers of the reference project and the upcoming project, our

160Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

model should fortunately not be directly affected by the
outcome of this future work.

V. CONCLUSION

The Agile Manifesto’s intention [18] was not to create a
reliable estimation method. It was about values and work
culture, thus hit the nerve of the time and has inspired several
successful agile development approaches. However,
basically all agile methodologies were initially aiming on
smaller projects with small teams and only recently ideas for
scaling them in a stepwise manner have been added. As we
have described in this paper, even agile projects are often
under a significant outside pressure to deliver reliable effort
estimates. The larger projects, the larger this pressure will
usually become. Exactly such larger software development
projects have to deal with so-called diseconomies of scale
caused by the growing need for communication and
coordination amongst their personnel due to the growing size
and complexity of the software system. This non-linear
increase of development effort with project size, is not
reflected in current agile estimation techniques based on
story points and hence poses a serious risk of under-
estimation for larger projects.

In this paper, we described three advanced ideas to better
deal with this challenge by combining agile estimation
techniques with elements from the proven parametric cost
model COCOMO II, as initially developed by Barry Boehm.
Although in this early stage, the ideas look promising; it is
obvious that the next step must be an investigation of their
practical relevance. To our knowledge, there is no study that
would have looked into the non-linear effort increase in large
agile projects and hence no empirical data is readily
available that could be used to validate our model. However,
well managed agile projects that have tracked their develop-
ment efforts should allow applying all three proposed
approaches in retrospect so that predicting their overall effort
based on the velocity of, e.g., the first three sprints and
COCOMO II should become possible.

Even though a lot of work still needs to be done, we
conclude that the combination of agile estimation methods
and parametric cost models can be seen as a promising way
for agile estimation in the 21st century software engineering
that might help better predicting the growing communication
and refactoring overhead in large agile projects.

VI. REFERENCES

[1] T. Dyba and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review.”, Information and
Software Technology, vol. 50, iss. 9–10, August 2008, pp.
833-859.

[2] T. Chow and D.B. Cao, “A survey study of critical success
factors in agile software projects”, The Journal of Systems
and Software, vol. 81, iss. 6, June 2008, pp. 961-971.

[3] Paasivaara, S. Durasiewicz, and C. Lassenius, “Distributed
agile development: Using Scrum in a large project”, Proc.
IEEE International Conference Global Software Engineering,
2008, pp. 87-95.

[4] C. Larman, Applying UML and Patterns, Prentice Hall, Upper
Saddle River, 2005.

[5] F. Brooks, The Mythical Man Month, Essays on Software
Engineering, Addison-Wesley, 1975.

[6] P. Kruchten, R.L. Nord, I. Ozkaya, “Technical Debt – From
Metaphor to Practice”, IEEE Software, vol. 29, iss. 6,
November/December 2012, pp. 18-21.

[7] A. Sillitti and G. Succi, “The Role of Plan-Based Approaches
in Organizing Agile Companies”, Cutter IT journal, vol. 9,
iss. 2, 2006, pp. 14-19, URL: http://goo.gl/CYRvJK
(retrieved: January 2014).

[8] A. Opelt, B. Gloger, W. Pfarl, and R. Mittermayr., Agile
Contracts: Creating and Managing Successful Projects with
Scrum, Hoboken, 2013.

[9] B.W. Boehm et al., Software Cost Estimation with COCOMO
II, Prentice Hall, Upper Saddle River, 2000.

[10] R. Jensen, A.W. Armentrout, and R.M. Trujillo, “Software
Estimating Models: Three Viewpoints.”, CrossTalk, February
2006, pp. 23-29, URL: http://goo.gl/ACfzDk (retrieved:
January 2014).

[11] B.A. Kitchenham, “The Question of Scale in Software – why
cannot researchers agree?”, Information and Software
Technology, vol. 44, iss. 1, January 2002, pp. 13-24.

[12] R.D. Banker, H. Chang, and C.F. Kemerer, “Evidence on
economies of scale in software development”, Information
and Software Technology, vol. 36, iss. 5, May 1994, pp. 275-
282.

[13] B.W. Boehm, Software Engineering Economics, Prentice
Hall, 1981.

[14] R.L. Nord and J.E. Tomayko, “Software Architecture-Centric
Methods and Agile Development”, IEEE Software, vol. 23,
iss. 02, March-April 2006, pp. 47-53.

[15] M. Cohn, Agile Estimating and Planning, Prentice Hall,
Upper Saddle River, 2005.

[16] URL: http://sunset.usc.edu/research/CODECOUNT
(retrieved: January 2014).

[17] Great Britain. Office of Government Commerce: “Managing
successful projects with PRINCE2”, TSO 2009

[18] URL: http://agilemanifesto.org/ (retrieved: January 2014).

161Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

http://sunset.usc.edu/research/CODECOUNT
http://agilemanifesto.org/

