
Can Functional Size Measures Improve Effort Estimation in SCRUM?

Valentina Lenarduzzi
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell'Insubria

Varese, Italy

valentina.lenarduzzi@gmail.com

Davide Taibi
Software Engineering Research Group

University of Kaiserslautern

Kaiserslautern, Germany

taibi@cs.uni-kl.de

Abstract—In SCRUM projects, effort estimations are carried

out at the beginning of each sprint, usually based on story

points. The usage of functional size measures, specifically

selected for the type of application and development

conditions, is expected to allow for more accurate effort

estimates. The goal of the work presented here is to verify this

hypothesis, based on experimental data. The association of

story measures to actual effort and the accuracy of the

resulting effort model was evaluated. The study shows that

developers’ estimation is more accurate than those based on

functional measurement. In conclusion, our study shows that,

easy to collect functional measures do not help developers in

improving the accuracy of the effort estimation in Moonlight

SCRUM.

Keywords: Software Effort Estimation, Agile Development,

SCRUM effort estimation, Functional measurement.

I. INTRODUCTION

Agile methodologies call for different and possibly more
complex effort estimation techniques than other
methodologies [10]. This is due to the iterative nature of
projects that use agile methods and the lack of detailed
requirements and specifications at the beginning of the
project.

Several effort estimation models have been defined based
on user experience or on previous project results but, due to
the differences between different development
methodologies, the applicability of those estimation models
appears to be limited.

In this work, we focus on SCRUM [13] as reference
process (see Figure 1).

Figure 1: SCRUM Development Process

Requirements in SCRUM are collected in the “product
backlog” and described as “user stories”.

During the Sprint Planning Meeting, the team estimates
the effort for the user stories in the product backlog based on
their experience on implementing similar user stories. Then,
they predict the amount of user stories they believe can
develop in the upcoming sprint. The consequence is that
teams need to adjust their project plan, during each sprint
meeting.

SCRUM does not prescribe a unit of measure to estimate
the effort. Common estimating methods include numeric
sizing, t-shirt sizes, and story points.

In this work, we investigate if it is possible to use
functional measures to help developers increase the accuracy
of the effort estimation in SCRUM.

For this reason, we conducted an empirical study on a
SCRUM project developed with Moonlighting SCRUM [7],
a version of SCRUM slightly adapted for part-time
developers working in non-overlapping hours.

The remainder of this paper is organized as follows:
Section 2 describes related work. Section 3 presents the
context where we applied this study. Section 4 first
introduces the research questions and derive goals and
hypotheses, then elaborates on the measurement instruments
and study design. Section 5 presents the results of the study.
Section 6 describes the threats to validity and finally Section
7 draws conclusions and gives an outlook on future work

II. RELATED WORKS

Several empirical studies report that developers usually

underestimate their effort in agile processes, compared to

other methodologies [10]. Other studies analyzed the

accuracy of the effort planned and spent for implementing

user stories, reporting overoptimistic and sometimes

unrealistic initial estimates [4][11]. Moreover, a case study

run by Chao also reported that the effort estimation does not

improve over time [4].
One of the first attempts to help developers improve the

estimation in SCRUM has been published by Jamieson in
2005 [1]. Jamieson identified a set of estimation problems in
SCRUM such as the need of budget reallocation due to the
requirement volatility resulting in heavy and costly change
management.

Lavazza [8] identified a set of potential problems such as
the different nature of the user stories, the size of a sprint and
velocity. Moreover, he also highlighted the importance of
choosing the correct granularity level for measures and
collect historical data.

Buglione et al. [6] proposed to apply functional size
measurement methods in a late stage of the process, when
requirements become available and are more stable.

173Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Ziauddin et al. [14] propose an early estimation model
for SCRUM based on historical data. They calculate the
effort based on the number of user stories, the team velocity,
the sprint duration adjusting the results based on a set of
influencing factors such as the team composition,
environmental factors and team dynamics. The model has
been calibrated on 21 SCRUM projects and provides a good
accuracy. However, the model is only suitable for projects
where the requirements are clear and fixed at the beginning
of the project.

Fuqua [16] ran a controlled experiment with the goal of
understanding if functional measurement in XP-Projects can
help to produce a more accurate schedule, and if functional
measurement can help to predict how long it will take to
implement a story. Results show that Function Points (FP)
are unable to estimate the required effort. Moreover, FP have
a too fine granularity and require sizeable measurement
effort due to the complexity of the FP measurement process.

Finally, a recent work published by Popli and Chauhan
[12], proposes to use a new unit of measure: the “sprint
points”. Sprint Points are calculated combining information
related to the project type, requirement quality, hardware and
software requirements, requirements complexity, data
transactions and number of development sites.

III. CONTEXT

In this section, we describe the development process we
analyzed in our study and the application that was developed.

This work is based on the development of Process
Configuration Framework (PCF), an online tool to classify
software technologies and identify tool chains in specific
domains [15]. PCF is a relatively small application,
composed of 12,500 effective lines of code, calculated
without considering comment lines, empty lines, and lines
containing only brackets. The development started in
February 2013, based on an existing prototype, and the first
version of the tool was released at the end of May 2013.

PCF is developed in C#/Asp.net with a simple 3-tier
architecture that allows the development of independent
features among developers. This allows developers to work
independently on the data layer, on the business layer and on
the presentation layer.

We deal with a special case of SCRUM process. In fact,
special development conditions called for some changes of
the SCRUM process.

The development was carried out by four part-time
developers (Master‟s students) with 2 to 3 years‟ experience
in software development. Developers work in non-
overlapping hours and, to manage a good level of
communication, an online forum is used for the daily
meeting, as prescribed by Moonlight SCRUM [7]. Moreover,
sprint retrospectives, planning, and retrospective discussions
are led by means of an online integrated tool
(http://www.rallydev.com), which allows us to record sprint
reports, manage product backlog, and draw burn-down
charts.

The development process was organized as follows.

a) The duration of each sprint is three weeks

b) Daily meeting are replaced by reporting on an

online forum twice a week

c) A user story can be assigned only to a single

developer

d) Every developer works in isolation.

The work is coordinated by the SCRUM master via the
weekly meetings.

IV. THE CASE STUDY

We formulate the goal for our study following the Goal
Question Metric approach [5] as:

analyze the development process for the purpose of
evaluating the effectiveness of estimation measures from the
viewpoint of the developers in the context of a moonlight
SCRUM development process

A. Metrics

Since measures are collected to estimate effort, a
characteristic of these measures is that they can be measured
before development. So, in principle we expect that it is
possible to build a model that, by linking the development
effort to the measures, provides an estimation tool that can
be used in conjunction with (and possibly even in place of)
the usual agile estimation techniques.

Another characteristic of the measures is that they must
be fast and easy to collect, since they have to fit in an agile
process, where little time and effort can be dedicated to
measurement activities. Moreover, the proposed measures
are easy to collect, so that any developer can perform the
measurement without problems.

To measure user stories, we considered the usage of
traditional functional size measures, possibly adapted to the
agile context. However, plain function points such as IFPUG
(International Function Point User Group)[18] or COSMIC
function point [19] measures could not be used. In fact, we
noticed several problems, including the following:

 The most popular functional size measures use
processes (Elementary process or Functional
process) as the element to be measured. This is
reasonable when the smallest development step (for
instance, a sprint in a regular SCRUM process, or
an iteration in a RUP process) addresses several
processes.
However, in our case the development of a single
process could span multiple sprints. Accordingly,
knowing the size of a process could hardly help
estimate the work to be done in a single sprint.

 Several sprints involved working mainly on the
Graphical User Interface (GUI) of the application.
So, functional size measures would not help
estimate the effort required.

 Implementation-level details (like the number of
interactions with the server or the number of
database tables involved in the operations) appeared
to affect the required effort.

174Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Based on the aforementioned constraints, we defined the
following measures to be collected during the planning
game:

 Actual effort: number of hours spent per user story.
This information is tracked by developers and
collected at the beginning of each spring.

 Story Type: we collect this information so as to
classify the user stories based on the type of
development.
o New feature: user stories that involve the creation

of a new feature.
o Maintenance: bug fixing or requirement changes for

an existing feature.

 Functional measures. Since standard Function Points
such as IFPUG or FISMA require a lot of effort to be
collected, and most of required information is not
available in our context, we opt for the Simplified
Function Points (SiFP) [17]

SiFP are calculated as SiFP= 7 * #DF + 4.6 * #TF
where #DF is the number of data function (also known as
logic data file) and #TF is the number of elementary
processes (also known as transactions).

We collect SiFP instead of IFPUG Function Points, since
SiFP provides an “agile” and simplified measure, compatible
with IFPUG Function Points [17].

Moreover, before running this study, we asked our
developers what information they take into account when
estimating a user story. All developers answered that they
consider four pieces of information, based on the complexity
of implementing the GUI and the number of functionalities
to be implemented. They usually consider each GUI
component as a single functionality that requires the sending
or receiving of the information to the database. The
complexity of the communication is related to the number of
tables involved in the SQL query.

For these reasons, we also consider the following
measures:

 GUI Impact: null, low, medium, high: complexity of
the GUI implementation identified by the developers.

 # GUI components added: number of data fields
added (eg. Html input fields)

 # GUI components modified: number of data fields
modified

 # database tables: number of database table used in
the sql query.

We can consider this last measure as a functional size
measurement with a very low level of granularity, even
though not directly comparable to SiFP or IFPUG Function
Points.

B. Study Procedure

The measures identified are collected during each sprint

meeting by the SCRUM master, in an Excel spreadsheet.

After each sprint we collect the actual effort spent for

each story, in order to validate results.

Measures must be collected in a maximum of 5 minutes

per user story, at the end of the usual SCRUM planning

game, so as to not influence the normal execution of the

required SCRUM practices.

Developers were informed, through an informed consent

that the information is collected for research purposes and

will never be used to evaluate them.

V. RESULTS

We ran the study analyzing the data for 4 months. We ran
6 sprints of three weeks each with 4 developers working
part-time for the entire period.

Table I reports descriptive statistics on the user stories
per story type. As shown in this table, the vast majority of
the user stories are related to the development of new
features (65%) while only 35% on maintenance.

Considering GUI impact (Table II), we can see that most

of the user stories are related to the development of

graphical features with high or medium complexity.

Functional measures have been collected only for 55 user

stories (40.4%) since the remaining user stories do not

contain enough information for functional size measurement

(e.g., GUI features do not deal with data transactions).

As expected, the number of GUI components added or

modified increase paired with the GUI impact while

unexpectedly, the higher the GUI impact, the lower is the

number of hours required for implementing a user story.

TABLE I. ACTUAL EFFORT PER STORY TYPE

 All New Feature Maintenance

User stories 136 99(73%) 37 (27%)

E
ff

o
rt

 p
e
r

u
se

r
 s

to
r
y

(h
o

u
r
s)

 Avg 3.16 3.68 1.96

Median 2.00 2.00 2.00

Std. Dev 2.91 3.28 1.01

TABLE II. EFFORT AND GUI COMPONENT ADDED OR MODIFIED

(GUI_COMPONENTS) PER USER STORY PER GUI IMPACT

GUI

Impact

Story Type

All New Feature Maintenance

Null

#User Stories 11 6 5

AVG (hours) 3.12 1.91 1.6

AVG (GUI_Comp) 5.27 3.67 0.2

Low

#User Stories 30 26 4

AVG (hours) 3.68 2.46 1

AVG (GUI_Comp) 1.33 1.44 1

Medium

#User Stories 40 30 10

AVG (hours) 1.96 3.50 1.70

AVG (GUI_Comp) 5.02 6.13 0

High

#User Stories 55 37 18

AVG (hours) 1.30 4.90 2.20

AVG (GUI_Comp) 8.28 7.89 9.05

175Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Descriptive statistics for the SiFP collected for the user

stories (see Table III) show that user stories with a null GUI

Impact (user stories that do not deal with the user interface)

have the higher number of SiFP, followed by the stories with

a high GUI impact.

TABLE III. SIFP PER USER STORY PER GUI IMPACT

GUI

Impact

Story Type

 All New Feature Maint.

All
#User Stories 55 47 8

AVG (SiFP) 6.1 5.76 8.58

Null
#User Stories 7 2 5

AVG (SiFP) 9.12 6.4 12.51

Low
#User Stories 19 18 1

AVG (SiFP) 4.66 4.8 2.2

Medium
#User Stories 22 20 2

AVG (SiFP) 5.69 6.06 1.96

High
#User Stories 7 7 0

AVG (SiFP) 8.79 8.79 /

After the analysis of descriptive statistics, we
investigated the correlations from actual effort and:

 SiFP

 GUI components (Added + Modified)

 GUI components added, modified and database
tables

Here, we report the results for all user stories and for
each GUI impact and story type, so as to understand if this
information can improve the estimation accuracy.

The analysis of correlations among SiFP and effort
reported in all user stories does not provide any statistical
significant result (Table IV – column “All Projects” and
Figure 2), showing a very low goodness of fit
(MMRE=81.4%, MdMRE=135.3%).

The analysis was then carried out by clustering stories
per story types and GUI impact. Results obtained after the
clustering show the same behavior, except for stories
implementing new features with a low GUI impact (Table IV
– Column “GUI Impact Low – Features”). In this case,
results are statistically relevant but with a very low goodness
of fits. (MMRE=147%, MdMRE=111%).

The correlation between the actual effort and the number
of GUI components added or modified shows a similar
pattern to the previous one in Table V and Figure 3. Only the
analysis of stories with a medium GUI impact provides
statistically significant results but, together with the analysis
of the other types of stories, there is a very low correlation
with a very low goodness of fit. (MMRE=71.3%,
MdMRE=140.1%). Results are also confirmed by grouping
user stories by story type and impact.

Finally, the multivariate correlations among GUI
components added, modified and database tables provides
statistically significant results paired with a low correlation.
Moreover, also the multivariate correlation does not increase
the goodness of fit (Table VI and Figure 4).

TABLE IV. CORRELATIONS AMONG EFFORT AND SIMPLIFIED FUNCTION POINTS

All

Projects

GUI Impact

Null Low Medium High

Story Type All Feat. Maint. All Feat. Maint. All Feat. Maint. All Feat. Maint.

#User Stories 55 7 2 5 19 18 1 22 20 2 7 7 0

pearson 0.065 0.391 / 0.383 0.660 0.669 0 -0.068 -0.073 / -0.370 -0.370 0

p-value 0.320 0.193 / 0.262 0.001 0.001 0 0.382 0.380 / 0.207 0.207 0

R2 0.004 0.153 / 0.147 0.436 0.448 0 0.005 0.005 / 0.137 0.137 0

TABLE V. CORRELATIONS AMONG EFFORT AND GUI COMPONENTS ADDED OR MODIFIED

All

Projects

GUI Impact

Null Low Medium High

Story Type All Feat. Maint. All Feat. Maint. All Feat. Maint. All Feat. Maint.

#User Stories 136 11 6 5 30 25 5 40 30 10 55 36 19

pearson 0.071
-

0.138
0.146 -0.211 0.191 0.190 0 0.436 0.396 0.588 -0.196 -0.217 0.040

p-value 0.207 0.343 0.391 0.366 0.156 0.181 0 0.002 0.015 0.037 0.076 0.102 0.437

R2 0.005 0.019 0.021 0.045 0.037 0.036 0 0.190 0.156 0.346 0.038 0.047 0.002

176Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

 Figure 2: Actual Effort vs Estimated Effort with SiFP

Figure 3: Actual Effort vs Estimated Effort with

GUI components added + modified

Figure 4: Actual Effort vs Estimated Effort with GUI components added,

modified and database tables involved

Figure 5: Actual Effort vs Developers‟ estimated effort

TABLE VI. MULTIVARIATE CORRELATION AMONG ACTUAL EFFORT

AND GUI COMPOMENTS ADDED, MODIFIED AND DATABASE TABLES.

GUI Comp

Added

GUI Comp

Modified

Database

Tables

#Projects 138 138 138

P
e
a
r
so

n

Actual Effort 0.212 -0.033 0.130

GUI Comp

Added
1.000 0.272 0.391

GUI Comp

Modified
0.272 1.000 0.377

Database

Tables
0.391 0.377 1.000

p
-v

a
lu

e

Actual Effort 0.006 0.351 0.0064

GUI Comp

Added
 0.001 0.000

GUI Comp

Modified
0.001 0.000

Database

Tables
0.000 0.000

R2 0.061

In order to understand if the results are due to errors in
the effort estimation made by our developers, we finally
analyze the accuracy of the effort estimation carried out by
our developers. We compared the actual effort with the effort
estimated before implementing the user story (see Figure 5).
Results shows a very accurate estimation, with a very low
average error (MMRE=13.5% MdMRE=9.35%). The low
error is probably due to the nature of the user stories in
Moonlight Scrum, usually smaller than common user stories
in SCRUM. However, as expected, the accuracy decreases
when the effort planned per user story is higher.
This confirms that in our project context, expert estimation is
still much better than data driven estimation, based on
functional measurement.

177Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

VI. DISCUSSION

The immediate result of this study is the low prediction

power of functional size measures in SCRUM.

Unexpectedly, the prediction accuracy of SiFP compared

to the accuracy of experience-based predictions is

dramatically low.

Since SiFP can easily replace the more common IFPUG

function points with a very low error [17], it appears that

functional size measures are not suitable for predicting the

effort in Moonlight Scrum.

Moreover, no correlations are found between the effort

and the information commonly used by our developers to

estimate user stories (GUI components and database tables).

Again, the lack of correlation is probably due to the low

complexity and the small effort needed to implement a story.

Results are based only on the analysis of one development

process, based on a relatively small codebase (12500

effectives lines of code).

Concerning internal validity of the study, developers are

master students, with a limited experience (2-3 years) in

software development with at least one year of experience in

SCRUM.

As for external validity, this study focuses on Moonlight

SCRUM, a slightly modified version of SCRUM. We expect

some variations in applying the same approach to a full time

development team, working on a plain SCRUM process.

Regarding the reliability of this study, results are not

dependent by subjects or by the application developed. We

expect similar results for the replication of this study with a

Moonlight SCRUM process.

VII. CONCLUSIONS

In this work, we analyzed the development of a

Moonlight SCRUM process so as to understand if it is

possible to introduce agile metrics to the SCRUM planning

game.

With this study, we contribute to the body of knowledge

by providing an empirical study on the identification of

measures for Agile, and in particular SCRUM, effort

estimation.

Therefore, we first gave an overview of the few existing

empirical studies in the field agile and SCRUM effort

estimation, then we introduced the context of this study and

the case study we ran.

Results of our study show that SiFP do not help to

improve the estimation accuracy in Moonlight SCRUM.

Moreover, the accuracy does not increase considering other

measures usually considered by our developers when they

evaluate the effort required to develop a user story.

Since SiFP can easily replace the more common IFPUG

function points with a very low error [17], we can conclude

that, based on our case study, it appears that functional size

measures are not suitable for predicting the effort in

Moonlight Scrum.

Future work includes the replication of this study in an

industrial context with a plain SCRUM process.

REFERENCES

[1] D. Jamieson, K. Vinsen, and G. Callender, “Agile
Procurement to Support Agile Software Development”,
Proceedings of the 35th IEEE International Conference on
Industrial Informatics, pp. 419-424, 2005.

[2] T. Sulaiman, B. Barton, and T. Blackburn, “AgileEVM -
Earned Value Management in SCRUM Projects”,
Proceedings of AGILE Conference , pp. 10-16, 2006.

[3] N. C. Haugen, “An empirical study of using planning poker
for user story estimation”, Proceedings of AGILE
Conference , pp. 9-34, 2006.

[4] L. Cao. “Estimating Agile Software Project Effort: An
Empirical Study” Americas Conference on Information
Systems (AMCIS), paper 401, 2008

[5] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal
question metric approach.” Encyclopedia of software
engineering, pp. 528–532, 1994.

[6] L. Buglione and A. Abran. “Improving Estimations in Agile
Projects: Issues and avenues” Proceedings of the 4th Software
Measurement European Forum (SMEF) Rome (Italy), 2007

[7] D. Taibi, P. Diebold, and C. Lampasona. “Moonlighting
SCRUM: An Agile Method for Distributed Teams with Part-
Time Developers Working during Non-Overlapping Hours”
Proceedings of the Eighth International Conference on
Software Engineering (ICSEA), pp. 318-323, 2013

[8] L. Lavazza. “Managing Performance Impact Factors for
Effort Estimation in Agile Projects”. PIFPRO'12 workshop.
Collocated with IWSM/Mensura, 2012

[9] R. Meli, “Simple Function Point: a new Functional Size
Measurement Method fully compliant with IFPUG 4.x”,
Software Measurement European Forum, 2011

[10] B. Ramesh, L. Cao, and R.Baskerville. "Agile Requirements
Engineering Practices and Challenges: An Empirical Study,"
Information Systems Journal. Vol. 20, Issue 5, pp 449–480,
2007.

[11] V. Mahnic. „A Case Study on Agile Estimating and Planning
using SCRUM” Americas Conference on Information
Systems (AMCIS), pp 123-128, 2008

[12] R. Popli and N. Chauhan. ”A Sprint-Point Based Estimation
Technique In SCRUM” Information Systems and Computer
Networks, pp.98-103, 2013

[13] K. Schwaber. “Agile Project Management with SCRUM”
Microsoft Press, ISBN 9780735619937, 2004

[14] K. Z. Ziauddin, K. T. Shahid, and Z. Shahrukh. “An Effort
Estimation Model for Agile Software Development”
Advances in Computer Science and its Applications Journal.
Vol. 2, No 1, pp 314-324, 2012

[15] P. Diebold, L. Dieudonné, and D. Taibi, “Process
Configuration Framework Tool”, Euromicro Conference on
Software Engineering and Advanced Applications , 2014.

[16] A. M. Fuqua. “Using function points in XP – considerations”
International conference on Extreme programming and agile
processes in software engineering, pp. 340-342, 2003

[17] L. Lavazza and R. Meli, “An Evaluation of Simple Function
Point as a Replacement of IFPUG Function Point”, IWSM -
Mensura 2014, Rotterdam, October 2014.

[18] International Function Point Users Group. “Function Point
Counting Practices Manual”, 2004

[19] COSMIC - Common Software Measurement International
Consortium. “The COSMIC Functional Size Measurement
Method - version 3.0 Measurement Manual” September 2007

178Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

