
An Approach for Cross-Site Scripting Detection and Removal Based on Genetic

Algorithms

Isatou Hydara, Abu Bakar Md Sultan, Hazura Zulzalil, Novia Admodisastro

Dept. of Software Engineering and Information System

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia

ishahydara@gmail.com, abakar@upm.edu.my, hazura@upm.edu.my, novia@upm.edu.my

Abstract – Software security vulnerabilities have led to many

successful attacks on applications, especially web applications,

on a daily basis. These attacks, including cross-site scripting,

have caused damages for both web site owners and users.

Cross-site scripting vulnerabilities are easy to exploit but

difficult to eliminate. Many solutions have been proposed for

their detection. However, the problem of cross-site scripting

vulnerabilities present in web applications still persists. In this

paper, we propose to explore an approach based on genetic

algorithms that will be able to detect and remove cross-site

scripting vulnerabilities from the source code before an

application is deployed. The proposed approach is, so far, only

implemented and validated on Java-based Web applications,

although it can be implemented in other programming

languages with slight modifications. Initial evaluations have

indicated promising results.

Keywords-cross-site scripting; genetic algorithm; software

security; vulnerability detection; vulnerability removal.

I. INTRODUCTION

Security testing is becoming an important part of
software development due to the numerous attacks that
software applications encounter on a daily basis. Due to their
dynamic nature, i.e., the changing of their content in real-
time as a result of user input or of being reloaded, web
applications are the most exposed to security attacks, such as
cross-site scripting (XSS). Many research activities have
been conducted to address problems related to XSS
vulnerabilities since their discovery. Most of the approaches
focused on preventing XSS attacks [1][2][3][4] or detecting
XSS vulnerabilities [5][6][7][8] in web applications during
software security testing. Few research activities have
addressed their removal [9][10].

Software systems are usually deployed to the public with
unexpected security holes. This is mainly due to the short
time frame in which software are developed. Software
project managers do not cater for security issues in their
budgeting, scheduling and staffing their software
development projects. Despite the fact that attention on
software security is increasing, the progress on research for
great solutions is slow. Notwithstanding that research on
software security is very recent, effective solutions are in

high demand due to the importance of creating software that
is more secure and is less vulnerable to attacks.

In this paper, we propose a genetic algorithm-based
approach for the detection and removal of XSS
vulnerabilities in web applications. The rest of the paper is
organized as follows: Section II gives a background of XSS
and Genetic Algorithms. Section III reviews related research
conducted on the problems of XSS. In Section IV, we
describe our proposed approach and expected experimental
results. Section V concludes the paper.

II. BACKGROUND

A. Cross-Site Scripting

Cross-site scripting vulnerabilities are a security problem
that occurs in web applications. They are among the most
common and most serious security problems affecting web
applications [11][12]. They are a type of injection problems
[12] that enable malicious scripts to be injected into trusted
web sites. This is a result of a failure to validate input from
the web site users. What happens is either the web site fails
to neutralize the user input or it does it incorrectly [11], thus,
opening an avenue for a host of attacks.

Successful XSS can result in serious security violations
for both the web site and the user. An attacker can inject a
malicious code into where a web application accepts user
input, and if the input is not validated, the code can steal
cookies, transfer private information, hijack a user’s account,
manipulate the web content, cause denial of service, and
many other malicious activities [11][12].

Cross-site scripting attacks are of three types namely
reflected, stored and DOM (Document Object Model)-based
[11][12]. Reflected XSS is executed by the victim’s browser
and occurs when the victim provides input to the web site.
Stored XSS attacks store the malicious script in databases,
message forums, comments fields, etc. of the attacked server.
The malicious script is executed by visiting users thereby
passing their privileges to the attacker. Both reflected and
stored XSS vulnerabilities can be found on either client side
or server side codes. On the other hand, DOM-based XSS
vulnerabilities are found on the client side. Attackers are able
to collect sensitive or important information from the user’s
computer.

227Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

mailto:ishahydara@gmail.com
mailto:abakar@upm.edu.my
mailto:hazura@upm.edu.my
mailto:novia@upm.edu.my

B. Genetic Algorithms

Genetic Algorithms (GAs) are a subset of Evolutionary
Algorithms (EAs), which are metaheuristic optimization
algorithms based on population and inspired by biology [13].
They employ natural evolution mechanisms, such as
mutation, crossover, natural selection, and survival of the
fittest [14] to find optimal solutions in a search space. GAs
are different from other EAs in that they have a crossover
(recombination) operation and use binary coding in bits or
bit-strings to represent a population [14].

Genetic algorithms have many capabilities; they have
been used in many areas of computer science, such as
software testing [15] and intrusion detection in network
security [16][17] and in many other fields as well. In our
proposed research, we believe similar techniques used in
intrusion detection can be employed in the detection of
cross-site scripting vulnerabilities in web applications.
Experimentation need to be carried out to investigate this
possibility.

Similarly, GAs can be used to generate source code with
proper encoding that will replace parts of a source that is
found to contain XSS vulnerabilities. For this part, similar
methods used in test case generation with genetic algorithms
in software testing can be employed.

Genetic algorithms have proven to be good solutions to
many software engineering problems, since their discovery.
Their successful use in software security testing [8][18][19]
and intrusion detection systems [16][17] gives us the hope
that they will be useful in detecting and removing XSS
security vulnerabilities in Java-based Web applications.

III. RELATED WORK

Avancini and Ceccato [19] investigated the integration of
taint analysis with genetic algorithms as an approach in
software security testing of web applications. Their method
showed some improvement in capturing XSS vulnerabilities
and using them as a test case in security testing. They also
implemented the integration of static taint analysis, genetic
algorithm and constraint solving to automatically generate
test cases that detect cross-site scripting vulnerabilities [18].
Their implementation focused only on reflected XSS in PHP
code. The results seem promising. However, the fitness
function of the genetic algorithm needs to be strengthened
and the model tested in a wider range of software systems.

Duchene et al. [8] proposed an approach that combined
model inference and evolutionary fuzzing to detect XSS
vulnerabilities. Their approach used model inference to
obtain a state model of the system under test and then used
genetic algorithm to generate test input sequences, which
enabled the detection of vulnerabilities. An explanation of
their technique indicated it would prove successful when
implemented on real world applications.

Lwin and Hee [10] proposed a solution that is able to
remove XSS vulnerability from web applications before they
can be exploited by hackers. The approach works in two
phases. First, it uses static analysis to identify potential XSS
vulnerabilities in application source codes. Secondly, it uses
pattern matching techniques to come up with appropriate

escaping mechanisms to prevent input values from causing
script execution.

Researchers have also proposed tools that address the
problem of XSS. BIXSAN [20] and L-WMxD [21] are two
examples of such tools developed to tackle the XSS problem.
BIXSAN filters out harmful HTML content and removes the
non-static tags in the HTML page. It has been tested on
many web browsers and shown to successfully prevent XSS
attacks. L-WMxD, on the other hand, works on Webmail
services to detect the presence of XSS vulnerabilities. The
tool has been tested on real-world Webmail applications with
some limitations and the results seem promising.

IV. PROPOSED APPROACH

The solution being proposed uses a genetic algorithm-
based approach in the detection and removal of XSS
vulnerabilities in Web applications. The proposed solution is
in three components. The first component involves
converting the source codes of the applications to be tested to
Control Flow Graphs (CFGs) using the White Box Testing
techniques, where each node will represent a statement and
each edge will represent the flow of data from node to node.
A static analysis tool, PMD [22], is used in this task. The
second component focuses on detecting the vulnerabilities in
the source codes whiles the third component concentrates on
their removal.

The main idea behind our approach is to formulate the
security testing for XSS vulnerabilities as a search
optimization problem. GAs have proved successful in the
generation of minimal number test cases to uncover as many
flows as possible in source codes [23]. In the same way, we
can use GAs to detect as many XSS vulnerabilities as
possible with a minimal number of test cases.

The main contributions of this work are:

 The detection of XSS vulnerabilities in the source
code of web applications using a GA approach

 The removal of detected XSS vulnerabilities from
the source code of web applications

 The automation of the XSS vulnerabilities detection
and removal approach

A. Taint Analysis

Taint analysis is a White Box testing technique that
tracks tainted or untainted status of variables throughout the
control flow of an application and determines if a sensitive
statement is used without validation [10][19][24]. For XSS
vulnerabilities, a tainted variable refers to inputs from user or
database, and print statements that append a string into a web
page.

To perform a complete analysis of an application source
code, we need to follow the White Box testing coverage
criteria, such as statement coverage, branch coverage, or path
coverage. We choose path coverage criterion because it
encompasses the previous two. However, it is generally
impossible to cover all paths of the source code in testing.
Therefore, we select a subset of the paths that interest us; the
vulnerable paths whose execution will reveal XSS
vulnerabilities. These are the paths where an input is
executed without validation.

228Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

B. The Genetic Algorithm

Basically, a genetic algorithm consists of the following
steps:

 Step 1: Create an initial population of candidate
solutions

 Step 2: Compute the fitness value of each candidate

 Step 3: Select all the candidates that have their
fitness values above or on a threshold

 Step 4: Make changes to each of the selected
candidates using genetic operators, e.g., crossover
and mutation

 Step 5: Repeat from step 2 until solution is reached
or exit criteria is met.

The above steps are converted into a pseudocode, as
shown in Figure 1 below.

Figure 1. Genetic Algorithm Pseudocode.

1) Representation
The most common form of representing or encoding

chromosomes in GA is using binary format. However, using
binary format in XSS vulnerabilities detection would be very
complex since the chromosomes represent patterns of real
strings that serve as inputs while testing. Therefore, we
decided to use natural numbers as the encoding scheme in
our GA.

2) Initial Population
The GA population refers to the set of possible solutions

for the problem to be solved. These possible solutions are
generally referred to as chromosomes. In this work, the
initial population is a set of test data that is generated
according to the path coverage criterion, as stated in Section
IV A. Since Gas deal with large search space, we will use a
large population size of at least 100. After the initial
population is selected, each individual chromosome is
evaluated for possible inclusion in the next generation based
on the fitness function.

3) Fitness Function
The fitness function is a measure of how good a

chromosome is at solving the problem under consideration.
So, a chromosome has a higher fitness value if it is closer to
solving the problem. For our work, the fitness function
evaluates the vulnerable paths that a test case needs to follow
in order to reveal the presence of XSS vulnerabilities. It
calculates the percentage of branches covered by an input
traversing a vulnerable path and assigns a value. For

example, if an input traverses all the branches of a vulnerable
path, it means it has covered 100% of the branches and is
assigned the value 1. If it traverses 70%, it is assigned the
value 0.7 and so on. Hence, our fitness function is

F(x) = ((Cpaths% + Diff) * XSSp%)/100.

F(x): the fitness for an individual chromosome
Cpath%: the percentage of branches covered
Diff: the difference between the traversed and the

targeted paths
XSSp%: the percentage of the XSS patterns file that the

GA uses to cover a test path

4) Selection
For each iteration of the GA, a sample of chromosomes is

selected for evaluation for possible inclusion in the next
generation. There are different selection techniques for GA
and in this work we choose the roulette wheel selection
technique. It is a popular technique whereby the probability
of selecting a chromosome for the next generation is
proportional to its fitness function value. Two chromosomes
(parents) are selected randomly based their fitness function
values and subjected to crossover and mutation methods in
order to produce new chromosomes (offspring) for the next
generation.

5) Crossover
In the crossover operation, as shown in Figure 2, two

chromosomes are combined to form other chromosomes in
the hope that the new ones will be better than the parent
chromosomes. We use uniform crossover whereby the parent
chromosomes contribute to the new offspring according to a
specific crossover probability. We use a probability of 0.5
for the crossover operation. This is to give a fifty percent
chance for half of the chromosomes to undergo changes
while the other half proceeds to the next generation without
undergoing any changes. This is because some chromosomes
may already contain good genes and need not be changed.

Figure 2. Crossover

Parent 2 Parent 1

Offspring

population = generate_random_population();

 for(T in vulnerable paths) {

 while(T not covered AND attempt < max_try) {

 selection = select(population);

 offspring = crossover(selection);

 population = mutate(offspring);

 attempt = atempt + 1;

 }

 }

229Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

6) Mutation
The mutation operator is performed on the offspring after

the crossover. It alters the chromosome values according to a
specific mutation probability. It helps to guarantee that the
entire search space is search, given enough time. It also helps
to restore lost information or add more information to the
population. A low mutation probability of 0.2 is used.

C. The cross-site scripting removal Stage

Once the XSS vulnerabilities are detected in the source
code, the removal stage begins. The OWASP's ESAPI
(Enterprise Security API) security mechanisms [25] are
followed to remove the detected XSS vulnerabilities. The
lines of code where the XSS vulnerabilities are located will
be identified. Then, we determine which of the ESAPI
escaping rules can be applied to replace those lines of code
without compromising their functionality. Finally, we
generate the secure codes of the escaping statements and put
them in place of the vulnerable statements, using these
ESAPI escaping rules:

 Rule#1: Use HTML entity escaping for the
untrusted data referenced in an HTML element, for
example,
<body><div>htmlEscape(untrusted_data)</div></bo
dy>, where ‘‘htmlEscape()’’ is the HTML entity
escaping method

 Rule#2: Use HTML attribute escaping for the
untrusted data referenced as a value of a typical
HTML attribute such as name and value, for
example, <input
value=‘htmlAttrEscape(untrusted_data)’>, where
‘‘htmlAttrEscape()’’ is the HTML attribute escaping
method

 Rule#3: Use JavaScript escaping for the untrusted
data referenced as a quoted data value in a
JavaScript block or an eventhandler, for example,
<bodyonload=‘‘x=‘javascriptEscape(untrusted_data)
’’’>, where ‘‘javascriptEscape()’’ is the JavaScript
escaping method

 Rule#4: Use CSS escaping for the untrusted data
referenced as a value of a property in a CSS style,
for example,<table style= ‘‘width:
cssEscape(untrusted_data)’’>, where ‘‘cssEscape()’’
is the CSS escaping method

 Rule#5: Use URL escaping for the untrusted data
referenced as a HTTP GET parameter value in a
URL, for example, <a
href=‘http://www.site.com?name=urlEscape(untrust
ed_data)’>, where ‘‘urlEscape()’’ is the URL
escaping method

 Figures 3 and 4 [10] present the encoding mechanism of
ESAPI.

Figure 3. A potentially vulnerable code.

Figure 4. Code secured with ESAPI security API.

230Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

D. Evaluation

The above approach is being implemented in a prototype
and will be evaluated for its effectiveness and performance.
The data needed for the experiments on this research will be
full source codes of Web applications. Source codes of
complete open-source Java-based large Web applications
will be used as experimentation data. These projects will be
collected mainly from the Source Forge site [26], as they are
freely available.

All development is being implemented with the Eclipse
IDE using the Java Programming Language. The JGAP (Java
Genetic Algorithm Package) engine [27] is integrated into
the Eclipse IDE as a library for the easy usage of its Genetic
Algorithm operators. Java-based static analysis tool, PMD, is
used to generate the CFG of the application files to be tested.

For this research, we used Java as the programming
language on which to test our approach. Although most of
the existing web sites are built with PHP, JavaScript and
other similar scripting languages, there are many web sites
built using Java Server Pages. These websites are also
exposed to the cross-site scripting problem. Besides, most of
the existing research works conducted on cross-site scripting
were implemented using languages other than Java; hence,
the focus on Java.

E. Expected Results

This research is expected to produce a new approach to
detecting and removing XSS vulnerabilities in Java-based
web applications. This approach will be an improvement
based on the combination of two previously proposed
approaches [10][19]. The first approach uses genetic
algorithms to detect reflected XSS vulnerabilities only but
does not remove them. The second approach is able to detect
and remove both reflected and stored XSS vulnerabilities
using pattern matching technique, but not DOM-based XSS.
By combining them, this research will be able to use an
enhanced genetic algorithm to detect and remove not only
the same vulnerabilities but also DOM-based XSS
vulnerabilities, which are not covered by both approaches. A
Java-based tool has been developed to automate this
approach. Furthermore, we expect this new approach to
benefit web application developers by enabling them to
easily test their source codes and get rid of many XSS
vulnerabilities before deployment of their systems. This in
turn will benefit any user who accesses such web systems by
protecting them from malicious attacks.

F. Limitations

The limitations of this work are listed below:
1. Since this work makes use of static analysis, it also

suffers its limitations. Therefore, the approach will
fail to detect XSS vulnerabilities whose paths cannot
be identified by static analysis in the source code.

2. The vulnerabilities removal module of the approach
uses the OWASP ESAPI's escaping API only.
Therefore, XSS vulnerabilities that are not defined in
the context of this API are out of the scope of this
work.

3. The approach is so far only implemented on Java
Server Pages Web applications. However, the
approach can be used with other programming
languages.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a genetic algorithm-based
approach for XSS detection and removal. Cross-site scripting
is a major security problem for web applications. It can lead
to account or web site hijacking, loss of private information,
and denial of service, all of which victimize the site users.
Our proposed approach is an improvement based on two
previously proposed approaches. It uses better and improved
GA operators to help in the detection and removal of XSS
vulnerabilities as well as including all the three types of
XSS. Our next step on this progressive work is to fully
evaluate and validate the proposed approach. A prototype
tool has been developed to automate this process.
Preliminary evaluation show promising results. We will
continue to test the approach on real world Web applications
and also improve the prototype tool. We expect our approach
to be able to detect and remove the majority of XSS
vulnerabilities, if not all, in real world Web applications.

ACKNOWLEDGMENT

This work was supported by the Malaysian Ministry of
Education under the Fundamental Research Grant Scheme
(FRGS 08-02-13-1368).

REFERENCES

[1] P. Sharma, R. Johari, and S. S. Sarma, “Integrated approach to
prevent SQL injection attack and reflected cross site scripting attack,”
Int. J. Syst. Assur. Eng. Manag., vol. 3, no. 4, Sep. 2012, pp. 343–
351.

[2] Y. Sun and D. He, “Model Checking for the Defense against Cross-
Site Scripting Attacks,” in 2012 International Conference on
Computer Science and Service System, 2012, pp. 2161–2164.

[3] M. Van Gundy and H. Chen, “Noncespaces: Using randomization to
defeat cross-site scripting attacks,” Comput. Secur., vol. 31, no. 4,
Jun. 2012, pp. 612–628.

[4] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, “Preventing
Input Validation Vulnerabilities in Web Applications through
Automated Type Analysis,” in 2012 IEEE 36th Annual Computer
Software and Applications Conference, 2012, pp. 233–243.

[5] G. Agosta, A. Barenghi, A. Parata, and G. Pelosi, “Automated
Security Analysis of Dynamic Web Applications through Symbolic
Code Execution,” in 2012 Ninth International COnference on
Information Technology - New Generations, 2012, pp. 189–194.

[6] H. Al-amro and E. El-qawasmeh, “Discovering Security
Vulnerabilities And Leaks In ASP . NET Websites,” in Cyber
Security, Cyber Warfare and Digital Forensic (CyberSec), 2012
International Conference on, 2012, pp. 329–333.

[7] S. Van-Acker, N. Nikiforakis, L. Desmet, W. Joosen, and F. Piessens,
“FlashOver : Automated Discovery of Cross-site Scripting
Vulnerabilities in Rich Internet Applications,” in ASIACCS ’12:
Proceedings of the 7th ACM Symposium on Information, Computer
and Communications Security, 2012, pp. 12–13.

[8] F. Duchene, R. Groz, S. Rawat, and J.-L. Richier, “XSS Vulnerability
Detection Using Model Inference Assisted Evolutionary Fuzzing,” in
2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, 2012, no. Itea 2, pp. 815–817.

231Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

[9] P. Bathia, B. R. Beerelli, and M. Laverdière, “Assisting Programmers
Resolving Vulnerabilities in Java Web Applications,” in CCIST
2011: Communications in Computer and Information Science, vol.
133, no. 1, 2011, pp. 268–279.

[10] L. K. Shar and H. B. K. Tan, “Automated removal of cross site
scripting vulnerabilities in web applications,” Inf. Softw. Technol.,
vol. 54, no. 5, May 2012, pp. 467–478.

[11] CWE, “CWE - CWE-79: Improper Neutralization of Input During
Web Page Generation (’Cross-site Scripting') (2.5),” The MITRE
Corporation. [Online]. Available:
http://cwe.mitre.org/data/definitions/79.html. [retrieved: April, 2014]

[12] OWASP, “Cross-site Scripting (XSS) - OWASP,” OWASP. [Online].
Available: https://www.owasp.org/index.php/Cross-
site_Scripting_(XSS). [retrieved: March, 2014]

[13] T. Weise, Global Optimization Algorithms – Theory and Application
–, 2nd Editio. 2009, p. 820.

[14] S. H. Aljahdali, A. S. Ghiduk, and M. El-Telbany, “The limitations of
genetic algorithms in software testing,” ACS/IEEE Int. Conf.
Comput. Syst. Appl. - AICCSA 2010, May 2010, pp. 1–7.

[15] P. R. Srivastava and T. Kim, “Application of Genetic Algorithm in
Software Testing,” Intenational J. Softw. Eng. Its Appl., vol. 3, no. 4,
Oct. 2009, pp. 87–96.

[16] Z. Banković, D. Stepanović, S. Bojanić, and O. Nieto-Taladriz,
“Improving network security using genetic algorithm approach,”
Comput. Electr. Eng., vol. 33, no. 5–6, Sep. 2007, pp. 438–451.

[17] A. B. . A. Al Islam, M. A. Azad, M. K. Alam, and M. S. Alam,
“Security Attack Detection using Genetic Algorithm (GA) in Policy
Based Network,” 2007 Int. Conf. Inf. Commun. Technol., Mar. 2007,
pp. 341–347.

[18] A. Avancini and M. Ceccato, “Security Testing of Web Applications:
A Search-Based Approach for Cross-Site Scripting Vulnerabilities,”
in 2011 IEEE 11th International Working Conference on Source Code
Analysis and Manipulation, 2011, pp. 85–94.

[19] A. Avancini, F. Bruno, and K. Irst, “Towards Security Testing with
Taint Analysis and Genetic Algorithms,” in ICSE Workshop on
Software Engineering for Secure Systems, 2010, no. Section 5, May
2010, pp. 65–71.

[20] S. V. Chandra and S. Selvakumar, “Bixsan: Browser Independent
XSS Sanitizer for prevention of XSS attacks,” ACM SIGSOFT
Softw. Eng. Notes, vol. 36, no. 5, Sep. 2011, pp. 1–7.

[21] Z. Tang, H. Zhu, Z. Cao, and S. Zhao, “L-WMxD: Lexical based
Webmail XSS Discoverer,” in 2011 IEEE Conference on Computer
Communications Workshops INFOCOM WKSHPS, 2011, pp. 976–
981.

[22] PMD, “PMD: Source Code Analyzer.” [Online]. Available:
http://pmd.sourceforge.net/. [retrieved: August, 2014]

[23] D. Berndt, J. Fisher, L. Johnson, J. Pinglikar, A. Watkins, and I. P.
Management, “Breeding Software Test Cases with Genetic
Algorithms,” in 36th Hawaii International Conference on System
Sciences, Jan. 2002, pp. 1-10.

[24] B. Shuai, M. Li, H. Li, Q. Zhang, and C. Tang, “Software
vulnerability detection using genetic algorithm and dynamic taint
analysis,” 2013 3rd Int. Conf. Consum. Electron. Commun.
Networks, Nov. 2013, pp. 589–593.

[25] OWASP, “XSS (Cross Site Scripting) Prevention Cheat Sheet,”
OWASP. [Online]. Available:
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prev
ention_Cheat_Sheet. [retrieved: April, 2014]

[26] Sourceforge Community. [Online]. Available: sourceforge.net.
[retrieved: September 2014]

[27] JGAP, “JGAP: Java Genetic Algorithms Package,” 2014. [Online].
Available: http://jgap.sourceforge.net/. [retrieved: August, 2014]

232Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

