

Safety Patterns in Model-Driven Development

Timo Vepsäläinen, Seppo Kuikka
Tampere University of Technology

Dept. of Automation Science and Engineering
Tampere, Finland

{timo.vepsalainen, seppo.kuikka}@tut.fi

Abstract— Design patterns capture named solutions to
recurring challenges in development work. With an
appropriate, non-restrictive tool support, design patterns could
also improve the documentation value of models in model-
driven development. This paper extends the design pattern
modeling approach of UML Automation Profile with safety-
related information and suggests the use of patterns in models
to document safety aspects. The modeling concepts are tool
supported. In the paper, the concepts are used for exporting
safety-related documentation. The documentation can be used
to guide the selection of development techniques as well as to
perform consistency checks with respect to safety integrity
levels that are required from modeled applications.

Keywords-Model-Driven Development; Design Pattern;
Safety.

I. INTRODUCTION
Design patterns document solutions to recurring

challenges in design and development work. As a concept,
design pattern was introduced in the work of Alexander
[1][2] related to building architectures. In software
development, design patterns began to gain popularity after
the publication of the Gang of Four (GoF) patterns [3] that
were targeted to object oriented software engineering.
Support for the use of patterns was also developed to Unified
Modeling Language (UML). Today, UML is the de-facto
software modeling language. With domain specific profiles,
UML is also the modeling basis of many Model-Driven
Development (MDD) approaches. However, the support for
design patterns in UML is still focused on describing
contents of UML Classes.

The idea of MDD is to use models as the primary
engineering artefacts during the development of software
systems. Models describe the systems and applications from
different points of view and on different abstraction levels. In
MDD, the development often starts from high abstraction
level models, e.g., Computation Independent Models (CIM)
as in Model Driven Architecture (MDA) [4]. Model
transformations are used between the models to ensure their
consistency and to produce refined models based on the
earlier ones. Models also document the developed systems.
However, in specific application domains the required
information content of documentation is governed by
regulations and standards, in addition to development needs.

Safety-related systems and applications constitute such a
domain. The development process of safety applications as
well as solutions and techniques to be used during the
process is governed by standards, e.g., IEC 61508 [5]. In
addition to using standard-compliant techniques, a developer
of such a system must be able to prove the compliance of it.
This is where the relevant documentation is needed.

The use of MDD to safety system development has been
suggested by few researchers and even less MDD has been
taken to industrial practice. The reason is not that safety
standards would not allow the use of MDD techniques.
Instead, for example “automatic software generation” is
recommended as an architecture design technique by IEC
61508 [5]. Possible explanations for the scarce use of MDD
techniques in the application area are, however, the strict
documentation requirements. It is possible that given the
strict requirements, MDD has not been seen to offer
possibilities to improve the efficiency of the development.

The purpose of this paper is to extend a design pattern
modeling approach of UML Automation Profile (UML AP)
[6] to safety patterns. Safety patterns are design patterns that
are applicable for safety-related systems and include
additional information related to safety. They can be used by
exporting documentation from models of the developed
systems in which the patterns are used. The documentation
generation is intended to facilitate development work by: 1)
supporting traceability between applicable safety solutions
and their use in systems, 2) enabling verification of safety
levels of patterns in comparison to required safety levels and
3) guiding the selections of techniques and solutions.

The rest of this paper is organized as follows. Section 2
reviews work related to design patterns and use of design
patterns in models and model-driven development. Section 3
recapitulates the recent pattern-related work that is extended
in the paper. Sections 4 and 5 present the safety-related
extensions to the pattern concepts and the developed tool
support, respectively. Before conclusions, Section 6
discusses the work and the relevance of safety aspects in
control system development in general.

II. RELATED WORK
Support for using design patterns in UML models is in

the language based on Collaboration and CollaborationUse
[7] concepts that are suitable for presenting patterns inside

233Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

UML Classes. The concepts have been developed along the
language itself from parameterized collaborations that were
utilized in, e.g., [8]. In addition to the standard approach,
however, many tool vendors have developed additional
pattern support in a more ad hoc manner. For example,
MagicDraw [9] enables the specification of model element
templates and copying the templates to models to instantiate
patterns. Without pointing out pattern instances, however,
the information on the occurrences is endangered to vanish.

To enable precise but practical use of patterns in UML,
France et al. [10] have developed a pattern modelling
approach using UML. Precise specification of pattern
solutions is seen to enable tool support for building solutions
from pattern specifications and for verification of the
presence of patterns in design. In the approach, an overall
pattern specification consists of a structural pattern
specification specifying the class diagram view of the
solution, and a set of interaction pattern specifications that
specify the interactions in the pattern solutions.

Approaches to apply and evolve design patterns to UML
models have also been developed with use of model
transformations [11][12][13][14] using
Query/View/Transformation (QVT) and Extensible
Stylesheet Language Transformations (XSLT) techniques.
Detection of design patterns in models, on the other hand,
has been studied for example with use difference calculation
[15], graph matching [16], graph similarity scoring [17], as
well as graph decomposition and graph isomorphism [18].

In the approach of the authors, the novelty is neither in
the approach to transform patterns into design nor in
detecting pattern instances. Instead, a starting point in the
work is that uses of patterns are design decisions that should
be deliberately documented by marking the patterns. On the
other hand, attention is paid to the questions how the pattern
markings could be used to produce documentation in general
and in safety-related application development in particular.

For safety-related systems, design patterns have been
specified, for example, related to redundancy. In [19],
Douglass presents 4 patterns to implement redundancy or
redundancy-like behavior so that a task is performed in
different channels or that another computing channel is used
to observe the behavior of the main channel. Also IEC 61508
[5] in the 6th part of it presents several M out of N solutions
in which the idea is to perform a calculation redundantly and
to use voting to acquire a reliable result for it.

In the tables of recommended techniques and measures
for software architecture design (annex A), IEC 61508 [5]
also refers to a wide range of solutions that already have
corresponding patterns in pattern literature. For example, the
standards suggest the use of (different kinds of) redundancy
[19], backward recovery (from faults) [20][21] and cyclic
program execution [19]. Another example on use of patterns
in the domain is related to documenting recurring arguments
of safety cases in order to systematically collect and gain
benefit from arguments of previous projects [22].

MDD of safety systems has been studied in the DECOS
project [23] that is targeted to development of both critical
and non-critical functions of embedded control systems. In
the approach, the preferred means for specifying application

functionality is Safety-Critical Application Development
Environment (SCADE) which is based on formally defined
data flow notation and enables simulation at model level and
code generation.

UML based modelling and development of safety
applications has also been facilitated with UML profiling
techniques. In [24] the approach is based on extracting key
concepts of a safety standard, RTCA DO-178B, to
stereotypes with which it is possible for software developers
to include safety-related concepts and properties in models.
It can be assumed that such models suit well also for the
purpose of producing documentation. However, we regard
the work presented in this paper as an important complement
to the approach. Whereas UML stereotypes are applied to
single modelling elements, with patterns it is possible to link
several elements in designs to patterns and roles of them.
This is needed in order to characterize how a number of
elements are used together to perform a task.

III. NEED FOR PATTERNS IN MDD
The key concept of MDD is to shift the development

efforts from written documents to models that are used
throughout the development process. For special purposes,
e.g., safety system development, it could be possible to
maintain separate documents. However, that would require
additional work and could significantly reduce the potential
to benefit from MDD. In a sense, it would also be against the
central idea in MDD. A more appropriate approach would be
to include the documentation in the models, in the first place.

A possible challenge in this objective is that models, in
general, tend to be more applicable for representing solutions
than rationale behind them. For example, many of the basic
concepts of UML are similar to concepts of object oriented
programming languages. UML models can be well used to
answer the question how to implement, e.g., a class or a
program. In the MDD context, it is even possible to generate
code from models to avoid the manual programming work.
However, information on why something has been designed
in the way it has, is often missing. This information could be
crucially important for, e.g., quality assurance and
maintenance purposes.

Design patterns are a possible solution to improve the
situation. Patterns document named, proven solutions that
are well-known among developers and suited for solving
recurring challenges and tasks. They are structured so that
they consist of named parts that have responsibilities in the
solutions. The solutions that patterns include may have
crucial advantages. The use of design patterns and pattern
instances in MDD and models could thus increase the value
of models significantly. Patterns could 1) indicate the use of
standard solutions in systems and specifications, 2) mark
potential challenges (that are treated with the patterns), 3)
make design more understandable (because of the use of the
known solutions) and 4) clarify the roles of model elements
in design, just to name a few benefits. In specific application
areas, e.g., safety system development, the use of patters
could even automate tasks and checks that are currently
performed manually.

234Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

A. Design Patterns in UML
In UML, pattern definitions and pattern instances are

defined with the Collaboration and CollaborationUse
concepts of the language, respectively. Similarly to the Class
concept, Collaboration extends the StructuredClassifier and
BehavioredClassifier concepts. A pattern definition is in the
language a set of cooperating participants that are Properties
of a Collaboration. In a similar manner Properties can be
owned by Classes. The features that are required from the
participants are defined by the Classifiers that are used as
types of the Properties. Graphically Collaborations can be
presented in composite structure diagrams in which
participants of a pattern are connected with Connectors.

A CollaborationUse represents an application of a pattern
to another Classifier (Class). The CollaborationUse must be
owned by the Class to the contents of which it (the pattern) is
applied. Properties of the applying Class can be bound to the
roles of the Collaboration with Dependencies. The entities
playing the roles must be owned by the same Class instance
that owns the CollaborationUse. In short, with the UML
pattern concepts, patterns are seen to describe contents of
Classifiers.

Pattern literature of today, however, is not restricted to
contents of UML Classifiers only. For example, many well-
known patterns such as the Layers pattern [25] (and many
other architectural patterns) are intended to clarify the
division of systems to, e.g., Components or Packages.
However, marking the occurrence of such patterns may not
be possible with the UML concepts. This is because
Packages are not Properties or necessarily owned by Classes.
With application domain specific extensions, the support for
patterns in UML becomes even more constraining. In order
to benefit from the use of patterns in MDD, a new approach
to define and mark patterns in models is required. The
approach should restrict neither the types of elements that
play roles in patterns nor the types of elements to contents of
which patterns can be applied.

B. The New Pattern Approach
The developed pattern modelling approach [6] uses a set

of concepts that have been developed for defining patterns
and marking pattern instances in models. In the approach,
pattern instances are not owned by Classes but Packages that
are used in models in any case. The elements playing pattern
specific roles in pattern instances can be any direct or
indirect contents of the Packages and instances of any
metaclass, instead of Properties only. Pattern definitions
include textual properties that are essential information
content in patterns. Lastly, the element roles in pattern
definitions are separated from the template elements that are
used in automating the application of patterns.

The approach is tool-supported including functions for
instantiating patterns, exporting statistics and traceability
information related to the use of patterns as well as for
visualizing patterns in diagrams [6]. Patterns are instantiated
to models with the use of a wizard that performs pattern
specific modifications to the models, according to user
selections. Markings of pattern instances are also created
automatically by the wizard.

Statistics and traceability information on patterns can be
exported to MS Excel files. Statistics include lists of design
patterns that are used in a model including the number of
instances for each pattern. Patterns are traced to Packages
with traceability matrices to indicate the patterns that are
used in each Package and vice versa. Visualizing patterns in
diagrams utilizes the Collaboration notation of UML and
presents pattern instances with dotted ellipses. Model
elements that play pattern specific roles in the instances are
connected to the ellipses with dotted lines. The tool support
for the use of patterns can be used in any UML, Systems
Modeling Language (SysML) or UML Automation Profile
(AP) models and diagrams in UML AP research tool [26].

IV. SAFETY PATTERN METAMODEL
With extensions to safety aspects, the purpose has been

to experiment how design patterns could specifically support
documentation of safety applications. Most importantly, the
extensions to the pattern modeling concepts, see Figure 1,
include a specific SafetyPattern. SafetyPatterns are design
patterns that have been identified to be related to safety. To
distinguish the concepts that are used for defining patterns
from those used to mark pattern instances, the Figure has
been divided to two parts. The new (in comparison to [6])
concepts are in the Figure high-lighted with grey color.

A SafetyPattern is, thus, a design pattern that has been
identified to be related to safety and that may have
recommendations for applications of different safety levels.
With safety systems, we refer to systems that perform safety
functions the correct operation of which is required to ensure
the safety of a controlled process. The safety levels in the
metamodel correspond to the 4 Safety Integrity Levels
(SILs) in IEC 61508 [5]. In general, a SIL determines the
probability of correct functioning of a safety function, SIL1
being the lowest and SIL4 being the highest level. For
traditional, e.g., electrical safety systems it is possible to
determine SILs statistically. However, due to the systematic
(vs. random) nature of software faults, the statistics approach
cannot be applied to software. For new software components
there would not even be statistics available. In IEC 61508,
this problem is solved by focusing on development
techniques and solutions the use of which are documented.
For each SIL and for each development phase, the standard
specifies a set of techniques that can be highly recommended
(HR), recommended (R) or non-recommended (NR) or with
non-specified recommendation (NS). The alternatives in the
Recommendation (enumeration) in the metamodel
correspond to these alternatives.

The purpose of the SafetyCatalogue concept is to collect
together (from various pattern sources) related
SafetyPatterns. Catalogues contain patterns that should be
used together and to which sets of patterns that are used in
models can be compared. Patterns in a catalogue can be
related to, e.g., a phase in development or a specific purpose.
For example, IEC 61508 [5] includes lists of techniques to be
used during specific software development phases. For
software architecture design, for instance, the standard
mentions 27 techniques and/or measures, some of which are
non-recommended or alternatives to each other.

235Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

Relations between Patterns can be modeled with the
PatternRelation concept that has been extended with a
Specialization relation. The background of the new
(specialization) relation is an observation that many solutions
(such as redundancy) that are recommended by safety
standards actually have families of related, specialized
pattern versions in pattern literature. With the Specialization
relation, the purpose is to enable the use of general
SafetyPatterns in SafetyCatalogues but in such a way that
patterns specializing the general patterns can be considered
as their alternatives.

Figure 1. The new concepts for defining and using safety patterns.

The modeling concepts have been implemented to UML
AP Tool [26]. With the implementation, the purpose has
been to demonstrate how the concepts can be used to
generate safety-related documentation. The implementation
of the concepts uses Eclipse Modeling Framework (EMF) as
a meta-modeling framework, with which the new concepts
have been defined by extending the existing UML AP
modeling concepts. The developed documentation
generation extends the work presented in [6] and [27] that
already addresses, e.g., traceability of requirements.

V. FOR GUIDANCE AND DOCUMENTATION
In this Section, we present three example documentation

sheets. The generation of the sheets has been automated with
use of the concepts. In addition to discussing how the sheets

can be used, the following sub-Sections will briefly describe
how the sheets are compiled from models.

The first of the sheets to be presented was created based
on a SafetyCatalogue that had been defined to correspond to
recommendations of IEC 61508 to software architecture
design. The latter two example sheets compare a set of
SafetyPatterns that is used in an example model to another
SafetyCatalogue. The generation of the sheets relies on
patterns that have been identified to be related to safety and
that include recommendations for the different levels of
safety.

A. Safety Catalogue Sheet
The purpose of the Safety Catalogue sheet is to enable

illustrating SafetyCatalogues in a tabular form that is similar
to the form of recommendation tables of IEC 61508 [5]
(annex A of part 3 of the standard). On one hand, the sheet
has been developed to facilitate the development of
SafetyCatalogues, including checks of their conformance to
standards. The tabular presentation can be used also during
development to look for possible patterns or solutions that
should be applied during specific design phases.

In addition to recommendations of safety standards, the
sheet enables illustrating custom catalogues of SafetyPatterns
for which there may not be standard recommendations.
Nevertheless, such patterns may provide solutions to similar
problems and be alternatives to each other. On the other
hand, it may be meaningful to represent in which order such
patterns should be applied so that composing pattern
catalogues with next and alternative relations can be useful.

The Safety Catalogue sheet is compiled as follows.
PatternApplications of an exported model are iterated
through to find all SafetyPatterns that are used in the model.
The SafetyPatterns are iterated through to find the
SafetyCatalogues in which they appear. The list of the
catalogues is provided to the user of the tool. The selected
catalogues are printed to separate tables starting from their
first patterns that are assigned number 1 in the tables. Next
and alternative SafetyPatterns can be found with use of the
PatternRelations. Alternatives are in the tables assigned same
numbers but different letters, to indicate them being
alternatives to each other. Recommendations of the
SafetyPatterns to SILs are printed to the tables.

Figure 2. An example generated Safety Catalogue sheet.

236Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

An example Safety Catalogue sheet can be seen in Figure
2 that presents a part of a printout of a catalogue of
techniques or measures that IEC 61508 recommends for
software architecture design. In the table, patterns can be
highly recommended (HR), recommended (R) or non-
recommended (NR) or with non-specified recommendation
(NS). To avoid repeating a table of the standard, the table
includes only 15 techniques that have been modeled as
patterns. By looking at the table, however, it also becomes
clear that pattern literature already includes specialized
versions of many of the techniques, for example to
implement redundancy [19].

B. Safety Catalogue Conformability Sheet
Whereas the purpose of the Safety Catalogue sheet is to

enable presenting catalogues of SafetyPatterns, the purpose
of Safety Catalogue Conformability sheets is to present how
a set of SafetyPatterns (that are used in a model) conforms to
a SafetyCatalogue. Similarly to the previous sheet, the
conformability sheet serves both the guidance and
documentation purposes. In addition, the table presents to
which SILs the set of SafetyPatterns would be applicable.

The sheet is compiled as follows. In a similar manner
than in the case of the previous sheet, the SafetyCatalogues
related to the model are collected to a list from which the
user may select the desired ones. General structure of the
sheet is similar to the previous sheet. However, the
SafetyPatterns of the catalogue that are used in the model are
indicated with light grey color. In addition, the table presents
whether the set of (used) patterns is compatible with each
SIL. Compatibility of the used patterns is illustrated with
green color and incompatibility with red color.
Incompatibility can result from both using a non-
recommended pattern or not-using a recommended (or
highly recommended) technique or any of its alternatives.

The last two rows of the table also present the numbers of
patterns (excluding alternatives) that would be recommended
for each SIL and how many of them have been actually
applied. As such, the table also answers the question how
many techniques (more) should be applied in order to
conform to the catalogue for each SIL.

Figure 3. An example generated Safety Catalogue Conformability sheet.

An example Safety Catalogue Conformability sheet can
be found in Figure 3. It presents the conformability of
SafetyPatterns used in an example model to the software
safety requirement specification techniques of IEC 61508 [5]
that have been modeled as a SafetyCatalogue. According to
the table (grey highlighting), it can be seen that a semi-
formal modeling technique has been used, the software

safety requirements specification supports both backward
and forward traceability and that computer-aided
specification tools have been used. The table also illustrates
(with green color) that these choices are applicable to all
SILs. In addition to the techniques used, it is not necessary to
use any other technique (for requirements specification).

C. Safety Pattern Traceability Sheet
While patterns can have recommendations for different

levels of safety, it is also possible to check their conformance
to safety levels required from the safety functions. The
purpose of the safety pattern traceability sheet is to trace
safety requirements (of UML AP) to Packages that contain
implementing design elements for the requirements and to
SafetyPatterns that are used in the Packages. In addition to
traceability, the table presents the safety levels (SIL) related
to the requirements, Packages as well as recommendations of
the Patterns for each level. Similarly to the previous sheet,
the use of recommended or highly recommended patterns is
indicated with green color whereas the use of non-
recommended patterns is warned with red color.

The sheet is compiled as follows. Safety-related (UML
AP) requirements and their respective safety integrity levels
are collected to a list. The Packages that contain
implementing design elements for the requirements are
identified based on TraceRelations (of UML AP). The
SafetyPatterns, instances of which can be found from the
Packages, are identified based on PatternApplications. The
traceability table is printed. In the table, traceability between
a requirement and a Package is presented with an arrow ().
SILs for the Packages are determined by finding the highest
SILs from the requirements that are traced to the Packages.
Traceability between a Package and a SafetyPattern used in
the Package is, again, presented with the arrow symbol.

Figure 4. An example generated Safety Pattern Traceability sheet.

An example Safety Pattern Traceability sheet can be
found in Figure 4. According to the table, it can be seen that
the example model contains 2 requirements of safety level
SIL1: P100 protection and P100IR. The former one (a
general safety function requirement) is traced to “Software
Safety Requirements” Package and the latter one to
“ControlStructures” Package. SILs required from the
Packages (their contents) come from the requirements, both

237Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

being SIL1. Moreover, the sheet presents that the use of
“Automatic software generation” has been marked in
ControlStructures Package and Semi-formal methods,
backward traceability, forward traceability as well as
computer aided specification tool in the Software Safety
Requirements Package. According to the table (color
coding), the techniques are recommended for the safety
integrity level (SIL1) required from the Packages.

VI. DISCUSSION
This paper has presented an approach to extend the

information content of design pattern concepts of UML AP
with safety aspects. The new concepts enable specifying the
applicability of SafetyPatterns, i.e., design patterns of safety
systems, to applications of different safety integrity levels. In
addition, SafetyPatterns can be collected to SafetyCatalogues
with which it is possible to model both recommendations of
safety standards and custom catalogues of SafetyPatterns.

To illustrate the use of the concepts, the paper has
presented 3 example documentation sheets. The sheets were
generated automatically based on a library model containing
two SafetyCatalogues and a model utilizing the patterns of
the catalogues. The first of the sheets presented one of the
catalogues. The other two sheets presented compliance of a
model (of a developed systems) to the other catalogue. The
new information content of SafetyPatterns was in the sheets
used for automating identification of safety-related patterns
and consistency checks with respect to safety levels. The
sheets, thus, documented rather the developed systems than
SafetyPatterns themselves. In the developed metamodel,
SafetyPatterns share most of their information content with
the design pattern modeling concepts that are used in [6].

The authors believe that the possibility to export
documentation from models is a future research topic within
MDD research. Moreover, it could improve the applicability
of the MDD techniques to safety system development. This
is because safety applications cannot be used in practice
without appropriate documentation. Without automated
support for producing documentation, it would have to be
produced manually. On the other hand, by automating even
part of the work, it would be possible to obtain additional,
MDD specific benefits in the application area.

When developing safety applications with MDD
techniques, the development process should be supported. A
tool should assist developers by pointing out the issues that
need to be addressed, by presenting the alternatives (when
appropriate) and by documenting the decisions for later use.
For example, the supported process could start from modeled
requirements that determine the required integrity levels. A
developer could select a SafetyCatalogue to be used to guide,
e.g., architecture design. Based on the selection and required
integrity levels, the tool could suggest patterns to be used. In
practice, this scenario could be supported with only a small
modification to the Safety Catalogue sheet, by hiding
inappropriate patterns based on required integrity levels.

Work that aims for guiding development work in MDD
has been previously carried out by the authors also based on
use of an Architecture Knowledge Management (AKM)
platform [28]. Use of an external tool, however, may lead to

redundant information. On the other hand, it is believed that
documentation and guidance support should be available for
both architectural and detailed design levels. Thus, it is
feasible to integrate the required support in one tool, which is
used throughout the MDD process.

A challenge in developing guidance for MDD is that
development processes, techniques and solutions vary
between companies and between controlled processes. The
approach presented in this paper could improve the situation.
Documentation sheets can be developed to support various
purposes and processes, not only the ones presented in this
article. In addition, by using, e.g., the SafetyCatalogue
concept, the generated sheets and their contents are also
dependent of the catalogues to the contents of which the
models are compared. Thus, to support another kind of a
development process or other techniques, one could specify
other catalogues to which the models would be compared.

The authors regard safety aspects important for also basic
control systems that are not critical. Safety is an issue that
should be taken into account in development of any control
system. Safety standards state their recommendations on
techniques, measures and solutions based on evidence on
their usefulness. It is likely that adopting selected techniques
and measures from safety system development, e.g.,
traceability could also improve the quality of basic control
systems. This could in turn improve the productivity of the
controlled processes at least in application domains in which
the development processes are not strictly governed.

On the other hand, considering selected aspects of safety
standards in development of basic control systems could
shorten the gap between the systems. Safety systems and
basic control systems are currently not only separated from
each other but also developed with different development
processes and tools and often by different teams. It is
possible that professionals are not even aware of the
practices in the other teams. Because the development of
safety systems is regulated by authorities, the only possibility
to shorten the gap would be to adopt suitable practices of
safety system development to basic control system
development.

VII. CONCLUSIONS
Design patterns document solutions and capture expert

knowledge to recurring challenges in design and
development work. On one hand, design patterns support the
re-use of design by preserving named, proven solutions to
recurring challenges. However, they can also increase the
documentation value of models that usually tend to present
design solutions rather than rationale behind the solutions.
With use of patterns, designs become easier to understand
and the roles of design elements clear for possible third
parties that use the documentation. Especially the use of
patterns could benefit MDD in which the idea is to use
models for both development and documentation purposes.

In this paper, a set of pattern modeling concepts was
presented that enable increasing the information content of
design patterns with applicability to safety integrity levels.
The new concepts enable constructing catalogues of safety-
related patterns with which it is possible to model

238Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

recommendations of safety standards. Automated functions
for generating documentation sheets enable the use of the
concepts for producing documentation. In addition to
presenting which patterns are used in a model, the sheets
present whether the models comply with the catalogues, e.g.,
recommendations of safety standards. The sheets can be used
also during development as guidance to present the standard-
compliant selections that still have to be addressed.

Ability to use models as documentation or to produce
documentation from models to a suitable form is a possible
key for industrial acceptance of MDD techniques in safety
system development. Without automated support, the
documentation would have to be produced manually. This
could significantly reduce the potential to benefit from
MDD. However, with documentation support, MDD would
provide another means to benefit from the use of models.

When developing safety applications with MDD
techniques, the development process should be supported
and guided in a flexible manner. Instead of only predefined
forms and checks, the presented documentation tables are
compiled with use of modelled SafetyCatalogues to which
models are compared. As such, the suggestions that the tool
can be considered to provide are also dependent on the
modelled catalogues. Tailoring the approach for different
application domains or development practices could thus be
possible to achieve with changes to the catalogues. While
acknowledging that the development concepts still require
further development, the authors regard this kind of
flexibility as an important feature in MDD tool support.

REFERENCES
[1] C. Alexander, S. Ishikawa, and M. Silverstein, "A pattern

language: towns, buildings, construction", Oxford University
Press, 1977.

[2] C. Alexander, "The timeless way of building", Oxford
University Press, 1979.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design
patterns: Elements of reusable object-oriented software",
Addison-Wesley, 1994.

[4] OMG, "Model Driven Architecture (MDA) Guide", Object
Management Group, 2003.

[5] IEC, "61508 functional safety of
electrical/electronic/programmable electronic safety-related
systems – Part 3: Software requirements", International
Electrotechnical Commission, 2010.

[6] T. Vepsäläinen and S. Kuikka, "Design pattern support for
model-driven development", in 9th International Conference
on Software Engineering and Applications, 2014. (in press)

[7] OMG, "Unified Modeling Language Specification 2.4.1:
SuperStructure", Object Management Group, 2011.

[8] G. Sunyé, A. Le Guennec, and J. Jézéquel, "Design patterns
application in UML", in Proc. of 14th European Conference
on Object-Oriented Programming, 2000, pp. 44-62.

[9] No Magic, Inc. MagicDraw, 2014. Available:
http://www.nomagic.com/products/magicdraw.html
[retrieved: 07, 2014]

[10] R. B. France, D. Kim, S. Ghosh, and E. Song, "A UML-based
pattern specification technique", IEEE Transactions On
Software Engineering, vol. 30, pp. 193-206, 2004.

[11] J. Dong, Y. Sheng, and K. Zhang, "A model transformation
approach for design pattern evolutions", in Proc. of 13th

Annual IEEE International Symposium and Workshop On
Engineering of Computer Based Systems, March 2006, pp.
80-92.

[12] P. Kajsa and L. Majtás, "Design patterns instantiation based
on semantics and model transformations", in SOFSEM 2010:
Theory and Practice of Computer Science, Springer, 2010, pp.
540-551.

[13] W. Xue-Bin, W. Quan-Yuan, W. Huai-Min, and S. Dian-Xi,
"Research and implementation of design pattern-oriented
model transformation", in 2nd International Multi-Conference
on Computing in the Global Information Technology, 2007.

[14] J. Dong and S. Yang, "QVT based model transformation for
design pattern evolutions", in Proc. of 10th IASTED
International Conference on Internet and Multimedia Systems
and Applications, 2006, pp 16-22.

[15] S. Wenzel and U. Kelter, "Model-driven design pattern
detection using difference calculation", in Proc. of 1st
International Workshop on Pattern Detection for Reverse
Engineering, October 2006.

[16] M. L. Bernardi, M. Cimitile, and G. A. Di Lucca, "A model-
driven graph-matching approach for design pattern detection",
in Proc. of 20th IEEE Working Conference on Reverse
Engineering, 2013, pp. 172-181.

[17] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis, "Design pattern detection using similarity scoring",
IEEE Transactions On Software Engineering, vol. 32, pp.
896-909, 2006.

[18] A. Pande, M. Gupta, and A. K. Tripathi, "A new approach for
detecting design patterns by graph decomposition and graph
isomorphism", in Proc. of 3rd International Conference on
Contemporary Computing, Springer, 2010, pp. 108-119.

[19] B. P. Douglass, Real-Time UML: Developing Efficient
Objects for Embedded Systems. Addison-Wesley, 1998.

[20] R. Hanmer, Patterns for Fault Tolerant Software. John Wiley
& Sons, 2013.

[21] T. Saridakis, "Design patterns for checkpoint-based rollback
recovery," in Proc. of 10th Conference on Pattern Languages
of Programs (PLoP), Spetember 2003.

[22] T. P. Kelly and J. A. McDermid, "Safety case construction
and reuse using patterns. in Proc. of 16th International
Conference on Computer Safety and Reliability, Springer,
1997, pp. 55-69.

[23] W. Herzner et al., "Model-based development of distributed
embedded real-time systems with the decos tool-chain," in
Proc. of 2007 SAE AeroTech Congress & Exhibition, 2007.

[24] G. Zoughbi, L. Briand, and Y. Labiche, "Modeling safety and
airworthiness (RTCA DO-178B) information: conceptual
model and UML profile", Software & Systems Modeling,
vol. 10, pp. 337-367, 2011.

[25] F. Buschmann, R. Meunier, H. Rohnert, P Sommerlad, and
M. Stal, “Pattern Oriented Software Architecture: A System
of Patterns”. John Wiley & Sons, 1996.

[26] T. Vepsäläinen, D. Hästbacka, and S. Kuikka, "Tool support
for the UML automation profile - for domain-specific
software development in manufacturing", in Proc. of 3rd
International Conference on Software Engineering Advances,
October 2008, pp. 43-50.

[27] T. Vepsäläinen and S. Kuikka, "Towards model-based
development of safety-related control applications", in the
16th IEEE International Conceference on Emerging
Technologies & Factory Automation, September 2011.

[28] T. Vepsäläinen, S. Kuikka, and V. Eloranta, "Software
architecture knowledge management for safety systems", in
the 17th IEEE International Conceference on Emerging
Technologies & Factory Automation, September 2012.

239Copyright (c) IARIA, 2014. ISBN: 978-1-61208-367-4

ICSEA 2014 : The Ninth International Conference on Software Engineering Advances

