
Towards Systematic Safety System Development with a Tool Supported Pattern

Language

Jari Rauhamäki, Timo Vepsäläinen and Seppo Kuikka

Department of Automation Science and Engineering

Tampere University of Technology
Finland

Email: {jari.rauhamaki, timo.vepsalainen, seppo.kuikka}@tut.fi

Abstract—Design patterns illustrate qualities and features that

would suit well in current understanding of safety system

development, design and documentation. However, though a

number of design patterns for safety system development have

been proposed, the focus has been on individual quality

attributes such as fault tolerance and reliability. The

systematic use of design patterns in the development process

has received less attention. In this paper, we discuss and

illustrate extended usage possibilities for design patterns as

part of safety system development. We discuss a design pattern

language that we are developing to cover, e.g., safety system

architecture, scope minimization and co-operation with basic

control systems. Use of patterns for documentation purposes,

tool support for using patterns, and rationale for the pattern
approach are discussed as well.

Keywords-safety system; software; design pattern; safety

standard; tool support

I. INTRODUCTION

Design patterns are a means to systematically promote
the re-use of design and proven solutions to recurring
problems and challenges in design. Each design pattern
represents a general, reusable solution to a recurring problem
in a given context. Triplets of problems, contexts and
solutions are also the essential pieces of information in
patterns. In addition, pattern representation conventions can
include, among others, relations to other patterns. With such
relations describing, for example, rational orders to use
patterns, patterns can be combined to collections and to
pattern languages. Depending on patterns, the natures of their
solution parts can vary too, for example, from source code
templates to text and Unified Modeling Language (UML)
illustrations.

Software safety functions are software parts of usually
multi-technical systems, the purpose of which is to ensure
the safety of controlled processes and plants. Unlike many
other software systems, safety systems are developed
according to standards. The standards govern the
development lifecycle activities, as well as techniques and
applicable solutions of such systems. However, although
design patterns have been specified also for safety system
development, their systematic use has not been researched in

the domain. This is surprising because the use of patterns
could facilitate both design and documentation activities,
which are equally important in safety system development.

In this paper, we address the aforementioned issues. The
contributions of the paper are as follows. We rationalize how
and why design patterns, which have already shown their
value in software development, in general [1], could be
especially useful in safety system development. We discuss a
design pattern language for safety systems, which has been
developed and published iteratively and is to be finalized
during DPSafe project in collaboration with Forum for
Intelligent Machines (FIMA) in the machinery domain.
Lastly, we discuss and rationalize the role of tool support in
facilitating the use of patterns and in benefitting from
patterns.

The rest of this article is organized as follows. Section 2
reviews work related to design patterns and the use of design
patterns in safety system development. Section 3 presents a
view on the development of software safety systems and
rationalizes why and how design patterns could be
beneficial. In Section 4, we discuss a design pattern language
for safety system development that has been developed at the
Tampere University of Technology. Before conclusions,
Section 5 discusses the role of tool support when trying to
benefit from patterns.

II. RELATED WORK

The design pattern concept was originally presented by
Alexander [2][3] in the building architecture domain to refer
to recurring design solutions. In software development,
design patterns begun to attract interest after the publication
of the Gang of Four (GoF) patterns [4]. Thereafter,
collections of design patterns have been gathered and used
for various purposes in various domains. Results from their
use have included, among others, improvements in quality of
code, as well as improved communication through shorthand
concepts [1].

Design patterns have also been developed for special
purposes and application domains, including critical [5] and
distributed [6] control systems. In the functional safety
domain, especially, patterns already cover many solutions
and techniques that are recommended by standards, such as
IEC 61508 [7] and ISO 13849 [8]. For example, related to

341Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

architecture design in [7], there are patterns to implement
redundancy [9] and recovery from faults [10].

Pattern languages, on the other hand, aim to provide
holistic support for developing software systems by using
and weaving patterns and sequences of patterns [11]. For
embedded safety system development, for example, a large
collection of (both software and hardware) patterns for
various problems is listed in [5]. However, the multi-
technical collection is not regarded as a pattern language, per
se.

Partially because of reasons to be discussed in the next
section, documentation is of special importance in safety
system development. A developer of a software safety
system needs to be able to prove the compliance of the
application to standards. Otherwise, the application cannot
be used in the safety system. However, certifiable safety
applications are not made by coincidences but by designing
the systems and applications systematically, with
certifiability in mind. As such, also the software parts need to
be specified (modeled) prior to their implementation. On the
other hand, the suitable solutions (patterns) that are used in
the applications should already be visible in the models.
Otherwise, the use of the patterns would not be documented
in the models and valuable information could be lost.

It is thus clear that the systematic use of design patterns
in safety application development requires tool support for
the patterns already in the modeling phase. This is regardless
of whether or not the models can be used in producing
(automatically) executable code as, e.g., in Model-Driven
Development (MDD). Using and applying patterns in UML,
which is currently the de-facto software modeling language,
has been addressed in several publications. For example,
work has been published to specify patterns in a precise
manner [12], to apply patterns to models [13, 14], to detect
pattern instances [15, 16] and to visualize pattern instances in
models and diagrams [17]. However, without extensions the
support for patterns is still weak in UML [18].

III. PATTERNS IN SAFETY SYSTEM DEVELOPMENT

The development of safety functions is governed by
standards, such as IEC 61508 [7], IEC 62061 [19], and EN
ISO 13849-1 [8]. These standards guide the development of
safety systems involving electric, electronic and
programmable electronic control systems in their operation.
Regardless of the variety of standards, we outline a generic
development process for safety systems common to the
aforementioned standards. The simplified process is
illustrated in Figure 1.

The development process begins by the definition of the
concepts and scope of the system to be developed. This
includes forming an overall picture of the system and
defining the boundaries of the system/machine to be
analyzed or made safe. The next step is to carry out a hazard
analysis and risk assessment. The role of this phase is centric
as only known risks can be consciously mitigated. Otherwise
risk mitigation measures have no justification. Typically, risk
assessment includes hazard identification, risk estimation
and evaluation. The former provides an indicator for the risk
and the latter assess the impact of the risk, that is, is the risk

tolerable or not. Intolerable risks need to be mitigated or
made tolerable otherwise.

As the risks are assessed, the requirements considering
the system safety can be justifiably made. In this phase,
suitable risk reduction methods are selected and their
requirements are documented. In the context of this paper it
is assumed that the risk reduction method is a protective
measure depending on a control system to implement the
required functionality. In addition, the allocation of the
measures is done. That is, to allocate the measures for
dedicated functions.

The next phase is the development (realization in IEC
61508 terminology) of the safety functions allocated in the
previous phase. The development process starts with
compiling a requirement specification for the safety
functions. The specification should include both functional

Concept and scope definition

Risk assessment

System safety requirements definition and
allocation

Development of safety function

Safety function requirement
specification

Hardware design Software design

Safety function system integration

Validation of safety function
performance

Overall installation, commissioning and safety
validation

All safety functions implemented? No

Yes

Modification or new
 hazard gererated?

Yes

Figure 1. Simplified safety system development process according to EN

ISO 13849-1 [8] and IEC 61508 [7]

342Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

descriptions, what the functions need to do, and non-
functional descriptions, how or within which restrictions the
functions need to operate.

Quite often, the non-functional descriptions include the
specification of performance or integrity levels for the
functions. When the requirement specification is completed,
the hardware and software design can begin. In this state the
hardware and software parts of the safety function are
designed, potentially with separation between the design
teams. Thus, hardware and software integration needs to take
place along the design process. At this point, a functional
entity can be constructed including both the hardware and
software to be used in the final system. Finally, the results of
the safety function development are verified to match the
safety function requirements and required
performance/integrity levels. If unimplemented safety
functions exist, the development process is reinitialized for
the next safety function.

A. Utilization of patterns in safety system development

In the context of safety system development and design,
design patterns can be used to capture and provide solution
models for techniques and applicable solutions that are
recommended and/or required by applicable standards. In
this case, a design pattern captures the solution that is used in
order to fulfill the requirements and recommendations of a
standard. Such design patterns can be linked to the parts of
the standards for which the design patterns provide a
complete or partial fulfillment or help to achieve to fulfill the
standard requirements. This kind of approach also supports
building the libraries of named solutions. That is, the patterns
support the awareness and usage of the solutions.

One can justifiably argue that standard solutions to
recurring problems have been applied in safety system
development and other domains of engineering for years –
without necessarily calling them patterns. However, their
unconscious use may not have eased the task of documenting
the systems. Since design patterns provide names for
solutions, they can be used in communication, too [1].
Though initially applicable to discussions and face-to-face
communication, design patterns can be used as a part of
written and diagrammatic documentation. This is achieved
by referring to the solution illustrated by a pattern with the
name of the pattern that should be both illustrative and
related to the application context.

The documentation aspect can be achieved by marking
the patterns in, e.g., diagrams that are used as a part of the
system documentation. This can enhance traceability
between the standard solutions and their practical
applications in systems. For a pattern-aware person, this may
increase the understandability and traceability of the design
decisions, too. To take further advantage of this setup,
statistics could be gathered to see which patterns are used the
most and in which kind of situations. It can also be noted that
the quality attributes understandability and traceability are
similarly components of systematic integrity acknowledged
by IEC 61508 [7].

Other viewpoints supporting the utilization of design
patterns in safety system development include for instance
[20]:

 Patterns document well-tried solutions and thus
condense experience on proven solutions, which is
of special importance in the domain. The approach
resembles, for instance, the proven in use concept
defined by IEC 61508.

 Patterns can alleviate bureaucracy by providing
practical solutions and approaches to fulfil
requirements given to safety system development in,
for example, standards. Bridging the gap between
the requirements and design and implementation
eases the burden of designers.

 Patterns create the vocabulary of solutions to
domains. Assuming that the patterns are known by
both the developer and maintainer of a system,
patterns can help to communicate the structural and
operational principles of the system. This aspect thus
improves the communicability and maintainability of
the system.

B. Safety system patterns

In the context of this paper, we are especially interested
in design patterns for safety system development, called
safety system patterns here. These patterns are, or at least
they are meant to be, most useful in the development of
(functional) safety systems. This does not indicate that the
patterns could not be used for other purposes as well.
However, the contexts of the patterns relate them to the
safety system development. It is up to the readers or appliers
of the patterns to judge whether the solutions are applicable
outside the indented contexts of the patterns, too.

It should be noted that a pattern does not necessarily
illustrate the cleverest or the most innovative solution or
approach to the defined problem. Instead, the preferable
approach is to provide proven solutions and approaches that
have been utilized successfully in practice, in real projects
and systems. This is, on one hand, targeted to provide
assurance on the applicability of the solution, for instance, in
the eyes of an inspector. On the other hand, the most
innovative solutions might promote other quality attributes
than simplicity, which is one of the most important driving
qualities behind a safety system development.

So, which parts does a safety system pattern consist of?
In our work, we have used a slightly modified canonical
pattern format [21]. That is, each pattern documents the
context, problem and solution. They are complemented with
forces, consequences, example, known usages and related
patterns, see Figure 2. The triplet of context, problem and
solution provides the main framework for the patterns. These
aspects should provide sufficient information to apply a
given pattern. However, the other aspects, for instance,
support the selection of the most suitable pattern and help to
identify other potentially applicable patterns. The former
aspect is achieved through the definition of forces and
consequences. Forces relate to the context, refine the
problem, and direct the solution to the one selected to be
illustrated on the pattern. On the other hand, consequences

343Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

provide hints to select a solution proposed by a certain
pattern. Presumably one wants to select a pattern or a
solution that has the most positive consequences and/or the
least negative consequences produced by the solution.

In addition to the mentioned pattern aspects, safety
system patterns could be complemented with an aspect
indicating the applicable performance level (PL), safety
integrity level (SIL), or similar quantity. This is to indicate
for which purposes or levels (as defined in standards) the
pattern can be used. [21]. For certain patterns or solutions
such indicators can be given directly and for others such
indicators are indirect or cannot be given at all. For instance,
a pattern implementing cyclic execution behavior could be
recommended or highly recommended on all safety integrity
levels (as defined on IEC 61508-3:2010 table A.2 [7]).

How and where can design patterns then be obtained?
Foundationally, design patterns document recurring
solutions. The basic assumption is that at least three known
usages for a solution need to be obtained to call a solution a
design pattern [22]. Keeping this in mind at least the
following pattern mining approaches can be considered.

As standards, such as the mentioned IEC 61508 and EN
ISO 13849-1, provide requirements considering safety
system design and development, they are potential
candidates as source information. One potential approach is
to take requirement clauses or required techniques or
methods and search and provide practical solutions to fulfil
the requirements. Depending on the standard and case, the
standard may or may not provide instructions on how to
actually apply and use required methods, techniques and
clauses. Thus treating such elements as problems yields a
way to found similar solutions and format them as patterns.
For instance, one could consider graceful degradation, which
is at least recommended on all SIL levels (as defined by IEC
61508-3:2010 table A.2), and mine patterns to design and
implement graceful degradation on software. Using this
approach, the integrity (or performance or similar quantity)
levels can be directly linked to the patterns.

Literature and similar sources provide a feasible source
for pattern mining. Solutions found from different literature
sources can be considered pattern input. However,

potentially the most credible sources for pattern mining are
existing systems and their documentation. In the context of
safety system patterns, such sources would be safety
systems, their documentation and developers. To provide
additional credibility for the mined safety system patterns (at
least from the standard point of view), the patterns should be
mined from inspected and approved systems. Such merit
supports the patterns as the solution has been used as a part
of an approved system. It should be noted, however, that a
pattern originating from an inspected system does not
directly implicate that the new system in which the pattern is
applied, would be automatically approved. Nevertheless,
such a pattern provides support and trust to believe that the
solution is approvable in similar context.

Thus, ideally safety system patterns are mined from
existing, inspected, and approved safety systems. As such,
the solutions should be applicable on similar integrity level
systems and also on lower levels although this is not always
the case. Actually, by looking for instance IEC 61508-3
Annex A, this is not always the case. There are methods and
techniques highly recommended, e.g., on SIL 3-4 and only
recommended on SIL 1-2. Apparently the method or
technique is still applicable, but it may be considered too
heavy-weight or expensive for the lower integrity levels. To
complement this approach, the inspection process and results
could be systematically used to document the approved
solutions in the form of patterns. During the process, the
inspector approves and declines some of the solutions,
approaches, and design decisions, which should be
considered valuable input for future work. In the end, the
inspections cost money and other resources to the customer
so it is rational to try to minimize the process and to learn
from mistakes and successful designs. Such work would
support one of the purposes of patterns in the first place, that
is, the systematic reuse of solutions.

IV. A PATTERN LANGUAGE FOR SAFETY SYSTEMS?

First of all, what do we mean by a pattern language? A
pattern language is in our case a set of patterns that consider
the same domain and are interconnected through relations.
According to Eloranta et al., a pattern language is a concept
“guiding the designer in building a coherent whole using
patterns as building blocks” [6]. In this context, building
block mindset, pattern relations and shared domain context
between the patterns is seen centric to form the grammar to
use the patterns. In practice, the pattern language defines
restrictions, rules and suggestions on how to compose the
designs of the provided building blocks. [6]. A collection of
patterns, in contrast to a pattern language, does not have to
have grammar or relations between the patterns.

The relations promote co-usage of the patterns as they
guide a designer through the language by providing her with
links indicating patterns that can be considered next,
alternative, specialized and incompatible solutions related to
the pattern that has been recently applied. Although the
described approach may ease decision making, it may also
narrow the designer viewpoint. A pattern language cannot
include all possible solutions and the ones that are included,

Problem

Solution Context

Forces

ExampleKnown uses

Consequences

illustrate
validate

has

direct

refine

relate

Related
patterns

point alternative,
next to consider,

specialisation, etc.

may
indicate

new

Figure 2. The pattern structure used in our safety system patterns.

344Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

do not necessarily introduce the best alternative for a
problem or situation under consideration.

One way to utilize the pattern language in design work
was described above. The mentioned pattern relation based
language walkthrough approach is a rather optimistic view at
least if a large context is considered. Safety system
development as well as other system development is a
process consisting of multiple phases. Covering all of these
with a single language of patterns is a large scale problem
itself not to mention how to parse a meaningful language by
establishing the pattern relations and interconnections. Still,
patterns can provide pinpointed solutions to encountered
problems and the related patterns may offer ideas during the
design process. From our perspective, this is a more feasible
use case for a safety system pattern language. To support the
usage of the language, the patterns should be, however,
grouped so that they resemble the corresponding design
phases. That is, architectural patterns would benefit
architecture design phase issues and implementation patterns
(or idioms) the implementation phase issues.

The safety system design pattern language developed at
the Tampere University of Technology has currently some
50 patterns and/or pattern candidates and some of them have
been discussed in the workshops of patterns conferences
[23]-[27]. (Pattern candidates are initial pattern ideas that do
not yet have three known uses, that is, they are under
construction. We have found writing pattern candidates an
excellent way to communicate the ideas and find new known
usages for the pattern candidates.)

In its current state, relations have not been specified for
all the patterns of the language, but there are relations
between the individual patterns. For example, patterns can
specialize more general solutions in stricter contexts. Thus
one could say the language lies somewhere between a pattern
language and a collection of patterns at the moment.
However, our purpose is to develop a full pattern language
for safety system development.

We started the work in 2010 and the patterns have been
collected, developed and published under various projects
such as SULAVA, ReUse, and currently under DPSafe
project. In the DPSafe project, we are working with several
companies involved one way or another in safety systems
design and development in the context of machinery
applications. The target of the project is to mine and
document design patterns considering software based safety
functions and systems as well as gain new known uses for
the existing patterns and identified pattern candidates. The
participating companies include machinery producers,
engineering offices, as well as software houses so there is
potential to have different relevant views on the subject.

The patterns are targeted to safety system development.
Currently, the language includes patterns and pattern
candidates considering, for instance:

 development process

 risk mitigation strategies

 architecture and principles in terms of
o software
o hardware
o system

 co-existence with control system

 scope reduction
In contrast to, for example, redundancy, diversity and

other fault tolerance related matters, the sub domains
mentioned above seemed to have less attention by pattern
community. Thus our purpose is to extend the pattern
approach to cover larger part of the safety system
development outside the fault tolerance aspect. According to
our work carried out in the DPSafe project, there seems to be
a clear need for such an approach.

V. ON TOOL SUPPORT FOR DESIGN PATTERNS

Whereas some of the benefits of patterns described in
Section 3 could be achievable in any case, it is clear that tool
support for patterns could increase their benefits
significantly. For example, even without tool support, pattern
names can become a part of the developer vocabulary [1].
Without a doubt, recurring solutions have also been used in
the domain. However, using patterns to improve the
traceability of standards solutions, for instance, would
certainly benefit from automated functions already during
the specification and modeling of the applications.
Unfortunately, the support for patterns is in current software
modeling tools restricted, at best. The purpose of this section
is to discuss opportunities and challenges related to pattern
tool support in safety system development. When
appropriate, lessons learned from the previous work of the
authors [18] will also be provided.

A. On Pattern Modeling

As mentioned, tool support for patterns is currently weak.
For example, the pattern concepts of UML, structured
collaborations [28], restrict patterns to describe the contents
of the UML classifiers only. Thus, elements such as
components and packages that would be useful in describing
architectural patterns (for instance) cannot be used in
patterns in UML [18]. The variety of published patterns in
literature, however, covers problems on different levels of
design and for various purposes. It cannot be said that all the
patterns would be related to classifiers (classes) when all
patterns are not even related to software systems. The origin
of the (pattern) concept is in building architectures [2, 3] and
there are also, for example, multi-technical pattern
collections (such as [5]) with both software and hardware
aspects. It is thus clear that the UML pattern concepts are
currently too restricting, by nature.

With respect to the modeling of multi-technical patterns
mentioned above, they could be used in SysML models,
which are not restricted to software. However, the use of
patterns would not have to be limited to modeling languages
at all. For example, patterns could be equally useful in, for
example, Computer Aided Design (CAD) tools and software
Integrated Development Environments (IDE), in aiding
practical design and programming work. Similarly to
software engineering, also other engineering disciplines most
certainly have recurring problems with known solutions.

While acknowledging this, in our work [18] the focus in
developing tool support has been on safety systems and their
UML and Systems Modeling Language (SysML) based

345Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

modeling in a Model-Driven Development (MDD) context.
With new pattern modeling concepts and by integrating them
into both UML and SysML, the aim has been to support
hardware aspects in addition to software and UML modeling.
Safety systems are also systems that are developed and
approved as a whole. Good practices and documentation are
needed not only for software parts but for all parts of the
systems, regardless of their implementation technologies.
However, while the developed approach [18] currently
allows pattern definitions and instances to consist of
practically any modeling elements, the approach suffers from
the drawback of not being easily portable to standard tools.

B. On Pattern Instances

In addition to (more or less) formal approaches, e.g., that
of UML, modeling tools could support patterns also in an
informal manner. Informal support has been developed into,
e.g., MagicDraw that enables instantiating patterns from
libraries by copying modeling elements. This functionality is
not restricted to classifiers as is the case with standard UML.
However, copying patterns (informally) can support mainly
the aspect of using the solutions and not necessarily using the
information about the use of the solutions. Copying model
elements may not enable storing information about the
elements being part of a pattern instance so that the
information could be used for, e.g., documentation purposes.

There is existing research, e.g., [15] and [16], on
detecting pattern instances in design models by searching for
model structures that are similar to pattern definitions.
However, it is questionable whether the use of such work
would be an appropriate solution in safety system
development. A developer does not use a design pattern by a
coincidence. Instead, developers decide to apply patterns
because they are facing challenges that they aim to solve
with the solutions of the patterns. As such, it is natural that
the decisions, which are architectural decisions, should be
documented. Why should one try to guess whether a pattern
has been applied when the decision could have been
explicitly marked in the model when applying the pattern?

Identifying pattern instances based on markings could
also be more reliable by nature than trying to detect instances
with, for example, the mentioned comparison techniques.
When patterns are used in design, they are applied to
contexts in which it is feasible to use context specific names
and to include additional properties. For example, a non-
trivial subject (in an Observer [4] instance) should probably
have properties (etc.) that the observer would be interested
in. With context specific names, properties and surroundings
(in the model), the results of comparisons could be less
reliable. However, by marking pattern instances explicitly,
the information should be as reliable as documentation is in
general. In the end, it would be about the reliability of the
developer that marks the pattern instances.

It is thus clear that the information on pattern occurrences
should be stored (i.e., the pattern occurrences marked) when
they are created. This is also the case in the approach of the
authors [18]. Patterns, however, could be in general
instantiated both manually and in a tool-assisted manner and

the initiatives (to instantiate patterns) could come from either
a developer or a tool.

C. On Instantiating Patterns

In a simple, conventional case, pattern instances can be
assumed to be always created manually. In this case, it is
natural to assume the markings (about the pattern instances)
to be created manually, too. Otherwise, a tool would need to
– somehow - know about a pattern being applied although
the task would be performed by a developer. A tool could
also include support for marking the pattern instances -
without assisting in the pattern application task itself.
However, also in this case the responsibility over the
(possibly easily forgotten) marking task should be taken by
the developer who knows about the pattern being applied.

Assuming that the pattern application process would be
assisted by the tool, also the markings could be on the
responsibility of the tool because the tool would know about
the application. This thinking has also been used in our work
[18]. When patterns are created with an interactive wizard, a
developer can justifiably expect the tool to handle the
markings. However, markings can be edited (and created)
also manually. For example, functions to manually edit
markings are needed when deleting or editing a pattern
instance.

D. On Initiatives to Instantiate Patterns

In order to actively suggest a design pattern to be applied,
the tool should have the ability to identify both the context
and the problem at hand (in the design task) and to notice
that they correspond to the context and problem of the
pattern. If the active party was the developer, the tool would
not necessarily need to have all the abilities. A set of
suggested patterns, to be shown as a response to a user
activity for example, could be narrowed down from all
possible patterns based on the identification of context or
problem. Naturally, with less information, not all the
suggestions could be appropriate. However, it would still be
up to the developer to make the decision.

Detecting a context of a pattern to match that at hand
could be done based on a graph or semantic techniques, for
example. However, there could still be challenges in
formalizing contexts of many existing patterns that have
been defined mainly with text. Identifying a problem, what
the developer would like the system to be like, could be even
more difficult to automate, and prone to errors.

If the active party to initiate an activity to apply a pattern
would be the developer, also key words and search functions
could be used to filter suggested patterns. This would not be
possible if the active party would be the tool, so that the
initiative would come prior to any user activity, i.e., prior to
typing the key words. In addition, with the key words would
come the problem of using different words to describe
similar aspects. Nevertheless, key words could provide a
sufficiently practical solution for suggesting patterns.

When suggesting patterns to use, a tool could also take
advantage on information included - not in the patterns
themselves - but in the pattern languages and collections that
the patterns appear in. For example, when noticing a pattern

346Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

to follow a recently used pattern in a pattern language and
the problem of the pattern to match the context at hand, the
pattern could be (at least) raised in a list of suggested
patterns. Similarly, relations in pattern languages that
indicate patterns solving the resulting problems of other
patterns could be used in an automated manner to facilitate
the work of developers.

In our work [18], pattern suggestions currently based on
comparing the patterns that are used in models to collections
of patterns that have been formed to correspond to the
recommendations of standards. In the domain, this is
meaningful since the standards govern and restrict the
practical solutions that can (or should) be used by
developers. However, the patterns are not yet suggested in
any specific phase and the initiative to use patterns comes
always from the developer. On the other hand, suggestions
do not rely on the identification of either context or problem
at hand. This could, however, be a possible future research
direction.

In the domain, there can be also competence
requirements for developers. As such, it can be assumed that
appropriate solutions (patterns) are known by developers and
that tool support for suggesting patterns would not even be a
necessity. Nonetheless, automated functions can be useful in
gathering information on the use of the patterns when there is
reliable information about their presence available.

E. On Using Pattern Instances

When pattern instances are reliably detected (marked),
the information can be collected from models for analysis
purposes or to present it in a tabular, compact form.
Especially this can be used to support traceability between
solutions and their use, as demonstrated in [18]. Traceability
is also a good example property in the (safety) domain
because it is a property of systematic integrity and required
from safety system development. As discussed in Section 3,
the development process of software safety systems and
applications consists of phases during which developers
should apply appropriate techniques and measures that are to
ensure the quality of the applications. Documentation is,
though, needed to indicate how and where the techniques
and measures have been used.

With pattern marks, it is also possible to automate
different kinds of consistency checks, in addition to
supporting traceability. For example, it can be made sure that
patterns are appropriate for the safety levels required from
the safety function or application. Naturally, this requires
information on the applicability of the solutions to different
levels of safety.

VI. DISCUSSION AND CONCLUSIONS

This paper has discussed the role of design patterns in
facilitating the development of software safety systems and
applications. Design patterns, which are essentially triplets of
contexts, problems and solutions, are a means to
systematically re-use design and proven solutions to
recurring problems and needs. Their systematic use in the
safety system development, however, has not been

researched extensively although the re-use of recommended
solutions is a general virtue in the domain.

Reasons why design patterns could, in general, benefit
safety system development are various. Patterns document
proven solutions, which provide designer support on
selecting the solution to be used in the safety system under
design. Known usages and ideally known usages from
inspected and approved systems build this support. Patterns
can illustrate practical approaches and solutions to alleviate
the requirements considering safety system development
given in standards, etc. This eases the burden of the designer
by bridging the gap between standards and safety system
design and implementation. In relation to this, patterns can
be used as a part of documentation.

To provide designers with the patterns to be used in
safety system design and development, we have mined and
documented a set design patterns and pattern prototypes. The
patterns consider various aspects of the safety system design
including the development process, architecture, co-
existence with basic control systems and scope minimization
aspects. The work considering the pattern collection is in
progress and current effort is to extend the collection to
software based safety functions. New known usages for the
existing patterns and pattern candidates are also being
collected.

The development of safety systems is a systematic
process that is governed by standards. Phases of the process
build on information produced in the previous phases so that,
for example, safety function requirements are specified to
treat previously identified hazards and their associated risks.
In the implementation phases of the process, developers are
required to apply solutions, techniques and measures that are
recommended by the standards and can be assumed to result
in sufficient quality. However, in safety system development,
it is not enough to apply the required techniques and
solutions. Developers need to be able to prove the
compliance of the applications to standards. This is where
appropriate documentation - including information on the
usage of the solutions - is needed.

Clearly, certifiable software parts of safety systems are
not built by coincidences but by designing them
systematically, with the use of appropriate solutions and
techniques. As such, the applications need to be specified
prior to their implementation, which usually includes at least
their partial modeling. Unfortunately, the support for patterns
is in UML, the de-facto software modeling language,
restricted at best.

When developing pattern modeling approaches, however,
patterns should be specified with dedicated modeling
concepts and pattern instances marked in the models. In this
way, reliable information on patterns could be used for
documentation purposes and to automate consistency checks.
In the future, tool support could be developed also for
assisting developers in selecting patterns to use. However,
this task should perhaps consider not only information
included in the patterns themselves but also the information
included in pattern languages and collections of patterns.
Such collections could then be developed with the
requirements of safety standards in mind.

347Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

REFERENCES

[1] K. Beck, et al., "Industrial experience with design patterns,"
in Proceedings of the 18th International Conference on
Software Engineering, 1996, pp. 103-114.

[2] C. Alexander, S. Ishikawa, and M. Silverstein, Pattern
languages. Center for Environmental Structure, vol. 2, 1977.

[3] C. Alexander, The timeless way of building. Oxford
University Press, 1979.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[5] A. Armoush, Design Patterns for Safety-Critical Embedded
Systems. Ph.D. thesis, Aachen University, 2010. Available
http://darwin.bth.rwth-
aachen.de/opus3/volltexte/2010/3273/pdf/3273.pdf
[referenced 25.6.2015].

[6] V. Eloranta, J. Koskinen, M. Leppänen, and V. Reijonen,
Designing Distributed Control Systems: A Pattern Language
Approach. Wiley Publishing, 2014.

[7] IEC, 61508: functional safety of
electrical/electronic/programmable electronic safety-related
systems. International Electrotechnical Commission, 2010.

[8] ISO, 13849-1:2006 Safety of machinery - Safety-related parts
of control systems - Part 1: General principles for design.
International Organization for Standardization, 2006.

[9] B. P. Douglass, Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems. Addison-Wesley, 2003.

[10] R. Hanmer, Patterns for Fault Tolerant Software. John Wiley
& Sons, 2013.

[11] F. Buschmann, K. Henney, and D. Schimdt, Pattern-Oriented
Software Architecture: On Patterns and Pattern Language.
John Wiley & Sons, 2007.

[12] R. B. France, D. Kim, S. Ghosh, and E. Song, "A UML-based
pattern specification technique", Software Engineering, IEEE
Transactions On, vol. 30, 2004, pp. 193-206.

[13] P. Kajsa and L. Majtás, "Design patterns instantiation based
on semantics and model transformations", in SOFSEM 2010:
Theory and Practice of Computer Science, Springer, 2010, pp.
540-551.

[14] R. France, S. Chosh, E. Song and, D. Kim, "A metamodeling
approach to pattern-based model refactoring," IEEE Software,
vol. 20, 2003, pp. 52-58.

[15] A. Pande, M. Gupta, and A. K. Tripathi, "A new approach for
detecting design patterns by graph decomposition and graph
isomorphism," in Contemporary Computing, Springer, 2010,
pp. 108-119.

[16] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis, "Design pattern detection using similarity scoring,"
Software Engineering, IEEE Transactions on, vol. 32, 2006,
pp. 896-909.

[17] D. Jing, Y. Sheng, and Z. Kang, "Visualizing design patterns
in their applications and compositions", Software

Engineering, IEEE Transactions on, vol. 33, 2007, pp. 433-
453.

[18] T. Vepsäläinen and S. Kuikka, "Safety patterns in model-
driven development," The 9th International Conference on
Software Engineering Advances (ICSEA 2014), Nice, France,
2014, pp. 233-239. ISBN: 978-1-61208-367-4.

[19] IEC, 62061: Safety of machinery - Functional safety of
safety-related electrical, electronic and programmable
electronic control systems. International Electrotechnical
Commission, 2005.

[20] J. Rauhamäki, T. Vepsäläinen, and S. Kuikka, "Patterns in
safety system development", The Third International
Conference on Performance, Safety and Robustness in
Complex Systems and Applications (PESARO 2013), 2013,
pp. 9-15.

[21] B. Appleton, “Patterns and software: Essential concepts and
terminology”, Object Magazine Online, vol. 3, no. 5, 1997,
pp. 20-25.

[22] C. Kohls and S. Panke, “Is that true...?: thoughts on the
epistemology of patterns”. In Proceedings of the 16th
Conference on Pattern Languages of Programs (PLoP '09).
ACM, New York, NY, USA, Article 9, 2009, 14 pages.
http://doi.acm.org/10.1145/1943226.1943237.

[23] J. Rauhamäki and S. Kuikka, Strategies for hazard
management process. The 19th European Conference on
Pattern Languages of Programs (EuroPLoP 2014), 9.-
13.7.2014, Irsee, Germany, ACM New York, NY, USA 2014.
Article 31. DOI: 10.1145/2721956.2721966. ISBN: 978-1-
4503-3416-7.

[24] J. Rauhamäki and S. Kuikka, Patterns for Sharing Safety
System Operation Responsibilities between Humans and
Machines. The VikingPLoP 2014 Conference, 10.-13.4.2014,
Vihula, Estonia, 2014. ACM New York, NY, USA, 2014, pp.
68-74.

[25] J. Rauhamäki and S. Kuikka, Patterns for control system
safety. The 18th European Conference on Pattern Languages
of Program, EuroPLoP 2013, Irsee, Germany, July 10-14,
2013. ACM, 2013, Article 23. DOI:
10.1145/2739011.2739034, ISBN 978-1-4503-3465-5.

[26] J. Rauhamäki, T. Vepsäläinen, and S. Kuikka, Patterns for
safety and control system cooperation. In: Eloranta, V.-P.,
Koskinen, J. & Leppänen, M. (eds.). Proceedings of
VikingPLoP 2013 Conference, Ikaalinen, Finland 21.3. -
24.3.2013.Tampere University of Technology. Department of
Pervasive Computing. Report 2, 2013, pp. 96-108.

[27] J. Rauhamäki, T. Vepsäläinen, and S. Kuikka, Functional
safety system patterns. In: Eloranta V.-P., Koskinen, J.,
Leppänen M. (eds.). Proceedings of VikingPloP 2012
Conference, 17.-20.3.2012. Tampere University of
Technology. Department of Software Systems. Report.
Nordic Conference of Pattern Languages of Programs vol. 22,
Tampere, Tampere University of Technology. 2012, pp. 48-
68. Available: http://URN.fi/URN:ISBN:978-952-15-2944-3.

[28] OMG, Unified Modeling Language Specification 2.4.1:
SuperStructure. Object Management Group, 2011.

348Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

