
Best Practices for the Design
of RESTful Web Services

Pascal Giessler
and Michael Gebhart

iteratec GmbH
Stuttgart, Germany

Email: pascal.giessler@iteratec.de,
Email: michael.gebhart@iteratec.de

Dmitrij Sarancin, Roland Steinegger,
and Sebastian Abeck

Cooperation & Management
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
Email: dmitrij.sarancin@student.kit.edu,

Email: roland.steinegger@kit.edu,
Email: sebastian.abeck@kit.edu

Abstract—The trend towards creating web services based on the
REpresentational State Transfer (REST) is unbroken. Because of
this, several best practices for designing RESTful web services
have been created in research and practice to ensure a certain
level of quality. But, these best practices are often described
differently with the same meaning due to the nature of natural
language. In addition, they are not collected and presented in
a central place but rather distributed across several pages in
the World Wide Web, which impedes their application even
further. In this article, we identify, collect, and categorize several
best practices for designing RESTful web services and illustrate
their application on a real system to show their application.
For illustration purpose, we apply the best practices on the
CompetenceService, an assistance service of the SmartCampus
system developed at the Karlsruhe Institute of Technology (KIT).

Keywords–REST; RESTful; best practices; collection; catalog;
design; quality; research and practice

I. INTRODUCTION

Over the years, more and more web services based on the
architectural style REST were developed, which uses existing
functionality from the application layer protocol Hypertext
Transfer Protocol (HTTP) [1] [2]. This results in an increasing
interest compared to traditional web services with Simple
Object Access Protocol (SOAP), which can be shown in a
Google Trend Analysis with the keywords REST and SOAP
or in the increasing usage of REST- instead of SOAP-based
web services [1]. Also big companies, such as Twitter or
Amazon, are using REST-like interfaces for their services,
which are shown in their Application Programming Interface
(API) documentations.

Despite this trend, there are still no standards or guidelines
about how to develop a RESTful web service. Instead of
this, several best practices in research and practice have been
developed and were published in a range of articles, magazines
and pages in the World Wide Web (WWW). But, these
best practices were often described differently with the same
semantics due to the nature of natural language [3]. This results
in several obscurities and misconceptions by applying these
best practices.

To overcome these issues, we have collected, categorized
and formalized several best practices in a way that they can

be easily applied during the development of RESTful web ser-
vices , as well as for analyzing existing RESTful web services.
More precisely, we have defined eight different categories and
found an amount of 23 best practices that will be described
in this paper. These best practices provide guidelines for the
design of RESTful web services to support certain quality
goals such as the usability of the Web API. Furthermore, their
usage also results in an increasing consistency of web services.

For illustration, we have used this set of best practices
for the development of the CompetenceService as part of
the SmartCampus system at the KIT. The SmartCampus is
a system which provides functionality for students, guests and
members of an university to support their daily life. Today,
the SmartCampus already offers some services, such as the
ParticipationService to support the decision-making process
between students, professors and members of the KIT with
a new approach called system-consenting [4]. The developed
services at the SmartCampus are based on REST, so that
they can be used for several different devices as a lightweight
alternative to SOAP.

The current paper is structured as follows: In Section II,
the architectural style REST will be described in detail to lay
the foundation for this paper. Afterwards, existing papers and
articles will be discussed in Section III to show the necessity
of identification, collection, and categorization of existing best
practices for RESTful web services. The CompetenceService
is used to illustrate the best practices will be presented in
Section IV. In Section V, the best practices for RESTful web
services will be presented in detail so that they can be easily
applied during the design phase of such web services. Finally,
a summary of this paper and an outlook on further work will
be given in Section VI.

II. FOUNDATION

REST is an architectural style, which was developed and
first introduced by Fielding [5] in his dissertation. According
to Garlan and Shaw [6], an architectural style can be described
as follows: “an architectural style determines the vocabulary
of components and connectors that can be used in instances of
that style, together with a set of constraints on how they can
be combined.” [6, p. 6].

392Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

For the design of REST, Fielding [5] has identified four
key characteristics, which were important for the success
of the current WWW [7]. To ensure these characteristics,
the following constraints were derived from existing network
architectural styles together with another constraint for the
uniform interface [5]: 1) Client and Server, 2) Statelessness,
3) Layered Architecture, 4) Caching, 5) Code on Demand and
6) Uniform Interface. The latter one represents the Web API
of RESTful web services and can be seen as an umbrella
term, since it can be decomposed into four sub-constraints [7]:
6.1) Identification of resources, 6.2) Manipulation of resources
through representations, 6.3) Self-descriptive messages and
6.4) Hypermedia.

If all of these constraints are fulfilled by a web service,
it can be called RESTful. The only exception is “Code on
Demand”, since it is an optional constraint and has not to be
implemented by a web service.

III. STATE OF THE ART

This section discusses different articles, magazines and
approaches in the context of RESTful best practices, which
respect the architectural style REST and its underlying con-
cepts.

In Fielding [5], Fielding presents the structured approach
for designing the architectural style REST, while it remains
unclear how a REST-based web service can be developed in a
systematic and comprehensible manner. Furthermore, there is
also a lack of concrete examples of how hypermedia can be
used as the engine of the application state, which can be one
reason why REST is understood and implemented differently.

Mulloy [8] presents different design principles and best
practices for Web APIs, while he puts the focus on “pragmatic
REST”. By “pragmatic REST” the author means that the
usability of the resulting Web API is more important than
any design principle or guideline. But, this decision can
lead to neglecting the basic concepts behind REST such as
hypermedia.

Jauker [9] summarizes ten best practices for a RESTful
API, which represent, in essence, a subset of the described
best practices by Mulloy [8] and a complement of new best
practices. Comparable with [8], the main emphasis is placed
on the usability of the web interface and not so much on the
architectural style REST, which can lead to the previously
mentioned issue.

Papapetrou [10] classifies best practices for RESTful APIs
in three different categories. However, there is a lack of
concrete examples of how to apply these best practices on
a real system compared to the two previous articles.

In Vinoski [11], a checklist of best practices for developing
RESTful web services is presented, while the author explicitly
clarifies that REST is not the only answer in the area of
distributed computing. He structures the best practices in four
sections, which addressing different areas of a RESTful web
service such as the representation of resources. Despite all
of his explanations, the article lacks in concrete examples to
reduce the ambiguousness.

Richardson et. al [7] cover in their book as a successor
of [12], among other topics, the concepts behind REST and
a procedure to develop a RESTful web service. Furthermore,
they place a great value on hypermedia , as well as Hypermedia

As The Engine Of Application State (HATEOAS), which is not
taken into account by all of the prior articles. But, the focus of
this work is the comprehensive understanding of REST rather
than providing best practices for a concrete implementation to
reduce the complexity of development decisions.

In Burke [13], Burke presents a technical guide of how to
develop web services based on the Java API for RESTful Web
Services (JAX-RS) specification. But, this work focuses on the
implementation phase rather than the design phase of a web
service, where the necessary development decisions have to be
made.

IV. SCENARIO

The SmartCampus is a modern web application, which
simplifies the daily life of students, guests, and members at the
university. Today, it offers several services, such as the Partic-
ipationService for decision-making [4], the SmartMeetings for
discussions or the CampusGuide for navigation and orientation
on the campus. By using non-client specific technologies, the
services can be offered to a wide range of different client
platforms, such as Android or iOS.

The CompetenceService is a new service as part of the
SmartCampus to capture and semantically search competences
in the area of information technology. For easier acquisition
of knowledge information, the CompetenceService offers the
import of competence and profile information from various
social networks such as LinkedIn or Facebook. The resulting
knowledge will be represented by an ontology, while the profile
information will be saved in a relational database. SPARQL
Protocol And RDF Query Language (SPARQL) is used as
the query language for capturing and searching knowledge
information in the ontology.

In Figure 1, the previously described CompetenceService
is illustrated in the form of a component diagram. For im-
plementation of the CompetenceService, the Java framework
Spring was used.

Relational
database

Ontology
database

Competence
Server

use

SQ
L

useSPARQL

Competence
Client

REST-based
API

REST-based
API

REST-based
API

Facebook

LinkedIn

Google+

XING

Figure 1. Component model of the CompetenceService.

To demonstrate the benefits of this service, a simple use
case will be described in the following. A young startup
company is looking for a new employee, who has competences
in “AngularJS” and “Bootstrap”. For that purpose, the startup
company uses the semantics search engine of the Compe-
tenceService to search for people with the desired skills. The
resulting list of people will be ordered by relevance so that the
startup company can easily contact the best match.

393Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

V. BEST PRACTICES FOR
RESTFUL WEB SERVICES

This section presents eight different categories of best prac-
tices for designing RESTful web services, whereby each one is
represented by a subsection. The contained best practices have
to be seen as recommendations to design and improve such
services rather than as strict guidelines. So, it is fine, if not
all of the given best practices are fulfilled by a RESTful web
service so long as an understandable reason for not considering
one can be given. Furthermore, it is important to point out
here that the fulfillment of the following best practices does
not guarantee the compliance of the mentioned constraints in
Section II. For this, the Richardson Maturity Modell (RMM)
can be used to analyze the preconditions of a RESTful web
service [14].

A. No Versioning
Versioning of a Web API is one of the most important

considerations during the design of web services since the API
represents the central access point of a web service and hides
the service implementation. This is why a web interface should
never be deployed without any versioning identifier according
to Mulloy [8]. For versioning, many different approaches exist
such as embedding it into the base Uniform Resource Identifier
(URI) of the web service or using the HTTP-Header for
selecting the appropriate version [8]. But, web services based
on REST do not need to be versioned due to hypermedia.

That is why, RESTful web services can be compared with
traditional websites that are still accessible on all web browsers
when modifying the content of the websites. So, no additional
adjustment is necessary on the client side. Furthermore, ver-
sioning also has a negative impact on deployed web services,
which Fielding states as follows: “Versioning an interface is
just a polite way to kill deployed applications” [15] since it
increases the effort for maintaining the web service.

B. Description of resources
The description of resources correlates with the usability

of the web service since the resources represent or abstract the
underlying domain model. For this category, five best practices
could be identified:

1) According to Vinoski [11], Papapetrou [10] and Mul-
loy [8], nouns should be used for resource names.

2) The name of a resource should be concrete and
domain specific, so that the semantics can be inferred
by a user without any additional knowledge [8] [10].

3) The amount of resources should be bounded to limit
the complexity of the system, whereby this recom-
mendation depends on the degree of abstraction of
the underlying domain model [8].

4) The mixture of plural and singular by naming re-
sources should be prevented to ensure consistency [8]
[9].

5) The naming convention of JavaScript should be con-
sidered since the media type JavaScript Object No-
tation (JSON) is the most used data format for the
client and server communication by this time [2] [8]
[16].

Figure 2 illustrates the first, second and third best practice of
this category.

1 /* ProfileController */
2 @RestController
3 @RequestMapping(value = "/profiles")
4 public class ProfilesController {
5 ...
6 @RequestMapping(method = RequestMethod.GET)
7 public List<Profile> getProfiles() {...}
8 ...
9 }

10
11 /* CompetenceController */
12 @RestController
13 @RequestMapping(value = "/competences")
14 public class CompetenceController {
15 ...
16 @RequestMapping(method = RequestMethod.GET)
17 public List<Competence> getCompetences() {...}
18 ...
19 }

Figure 2. Example for description of resources.

C. Identification of Resources
According to Fielding [5], URIs should be used for unique

identification of resources. For this constraint, we have found
four best practices:

1) An URI should be self-explanatory according to the
affordance [8]. The term affordance refers to a design
characteristic by which an object can be used without
any guidance.

2) A resource should only be addressed by two URIs.
The first URI address represents a set of states of the
specific resource and the other one a specific state of
the previously mentioned set of states [8].

3) The identifier of a specific state should be difficult
to predict [10] and not references objects directly
according to the Open Web Application Security
Project (OWASP) [17], if there is no security layer
available.

4) There should be no verbs within the URI since this
implies a method-oriented approach such as SOAP
[8] [9].

Figure 3 illustrates the second best practice of this category.
Note that there are no verbs within the URIs, hence the fourth
best practice is also fulfilled.

1 /* Set of profiles */
2 competence-service/profiles
3
4 /* Specific profile with identifier {id} */
5 competence-service/profiles/{id}

Figure 3. Example for identification of resources.

D. Error Handling
As already mentioned, the Web API represents the central

access point of a RESTful web service, which is comparable
with a provided interface of a software component [18]. Each
information about the implementation of the service is hidden
by the interface. Therefore, only the outer behavior can be

394Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

observed through responses by the web service, which is why
well-known software debugging techniques such as setting
exception breakpoints can not be applied.

For this reason, the corresponding error message has to be
clear and understandable so that the cause of the error can be
easily identified. With this in mind, we could identify three
best practices:

1) The amount of used HTTP status codes should be
limited to reduce the feasible effort for looking up in
the specification [8] [9].

2) Specific HTTP status codes should be used accord-
ing to the official HTTP specification [19] and the
extension [20] [9] [11] [10].

3) A detailed error message should be given as a hint for
the error cause on client side [8] [9]. That is why, an
error message should consist of four ingredients: 3.1)
a message for developers, which describes the cause
of the error and possibly some hints how to solve
the problem, 3.2) a message that can be shown to the
user, 3.3) an application specific error code and 3.4) a
hyperlink for further information about the problem.

Figure 4 illustrates the mentioned ingredients of an error
message according to the third best practice of error handling.

1 HTTP/1.1 404 NOT FOUND
2 /* More header information */
3 {
4 "error" : {
5 "responseCode" : 404,
6 "errorCode" : 107,
7 "messages" : {
8 "developer" : "The resource ’profile’

could not be found.",
9 "user" : "An error occurred while

requesting the information. Please
contact our technical support."

10 },
11 "additionalInfo": ".../competence-

service/errors/107"}
12 }

Figure 4. Example for detailed error message.

E. Documentation of the Web API

A documentation for Web APIs is a debatable topic in the
context of RESTful web services since it represents an out-
of-band information, which should be prevented according to
Fielding: “Any effort spent describing what method to use on
what URIs of interest should be entirely defined within the
scope of the processing rules for a media type” [21]. This
statement can be explained with the fact that documentation
is often used as a reference book in traditional development
scenarios. As a result of this, it can lead to hardcoded hyper-
links in the source code instead of interpreting hyperlinks of
the current representation following the HATEOAS principle.
Also business workflows will be often implemented according
to the documentation. In this case, we call it Documentation
As The Engine Of Application State (DATEOAS). As a result
of this, we have developed a new kind of documentation in

consideration of HATEOAS to give developers a guidance for
developing a client component.

The new documentation consists of three ingredients: 1)
Some examples which show how to interact with different
systems according to the principle of HATEOAS due to the
fact that some developers are not familiar with this concept
[21], 2) an abstract resource model in form of a state diagram,
which defines the relationship and the state transitions between
resources. Also a semantics description of the resource and
its attributes should be given in form of a profile such as
Application-Level Profile Semantics (ALPS) [22], which can
be interpreted by machines and humans and 3) a reference
book of all error codes should be provided so that developers
can get more information about an error that has occurred.

Figure 5 illustrates an abstract resource model of the
CompetenceService. Based on this model, it can be derived
which request must be executed to get the desired information.
For example to get all competences of a specific profile, we
have to first request the resource profiles. This results in a set of
available profiles, whereby each profile contains one hyperlink
for further information. After following the hyperlink by
selecting the desired profile, the whole information about the
profile will be provided , as well as further hyperlinks to related
resources such as competences.

profiles
competencies

competencies

self self

profiles

Figure 5. Example for documentation of the Web API.

F. Usage of Parameters
Each URI of a resource can be extended with parameters to

forward optional information to the service. In the following,
we are focusing on four different use cases since they will
be supported by several web services offered by Facebook or
Twitter.

1) Filtering: For information filtering of a resource either
its attributes or a special query language can be used. The
election for one of these two variants depends on the neces-
sary expression power of the information filtering. Figure 6
illustrates how a special user group can be fetched by using a
query language [9].

1 GET /profiles?filter=(competencies=java%20and%20
certificates=MCSE_Solutions_Expert)

Figure 6. Filtering information by a using query language.

2) Sorting: For information sorting, Jauker [9] recom-
mends a comma separated list of attributes with “sort” as
the URI parameter followed by a plus sign as a prefix for
an ascending order or a minus sign for a descending order.
Finally, the order of the attributes represents the sort sequence.
Figure 7 illustrates how information can be sorted by using the
attributes education and experience.

395Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

1 GET /profiles?sort=-education,+experience

Figure 7. Sorting a resource by using attributes.

3) Selection: The selection of information in form of
attributes reduces the transmission size over the network by
responding only with the requested information. For this
purpose, Mulloy [8] and Jauker [9] recommend a comma sepa-
rated list of attributes and the term fields as the URI parameter.
Figure 8 represents an example how the desired information
can be selected before transmitting over the network.

1 GET /profiles?fields=id,name,experience

Figure 8. A selection of resource information.

4) Pagination: Pagination enables the splitting of
information on several virtual pages, while references for the
next (next) and previous page (prev) exist , as well as for
the first and last page (first and last). As URI parameter,
offset and limit were recommended, whereby the first one
identifies the virtual page and the last one defines the amount
of information on the virtual page [8] [9]. A default value
for offset and limit can not be given since it depends on the
information to be transmitted to the client, which Mulloy
stated [8] as follows: “If your resources are large, probably
want to limit it to fewer than 10; if resources are small, it
can make sense to choose a larger limit” [8, p. 12]. Figure 1
illustrates a request using pagination on the resource profiles.

1 GET /profiles?offset=0&limit=10

Listing 1. Requesting 10 profiles by using pagination.

G. Interaction with Resources
By using REST as the underlying architectural style of a

system, a client interacts with the representations of a resource
instead of using it directly. The interaction between client and
server is built on the application layer protocol HTTP, which
already provides some functionality for the communication.
For the interaction with a resource, we could identify three
different best practices:

1) According to Jauker [9] and Mulloy [8], the used
HTTP methods should be conform to the method’s
semantics defined in the official HTTP specification.
So, the HTTP-GET method should only be used by
idempotent operations without any side effects. For a
better overview, Table I sums up the most frequently
used HTTP methods and their characteristics. These
characteristics can be used to associate the HTTP
methods with the correct Create Read Update Delete
(CRUD)-operation [11].

2) The support of HTTP-OPTIONS is recommended if
a large amount of data has to be transmitted since it
allows a client to request the supported methods of

the current representation before transmitting infor-
mation over the shared medium. But, this additional
HTTP-OPTIONS request is only necessary, if the
supported operations were not written explicitly in
the representation.

3) The support of conditional GET should be consid-
ered during the development of a service based on
HTTP since it prevents the server from transmitting
previously sent information. Only if there are mod-
ifications of the requested information since the last
request, the server responds with the latest represen-
tation. For the implementation of conditional GET,
there are two different approaches that are already
described by Vinoski [11].

TABLE I. CHARACTERISTICS OF THE MOST USED HTTP METHODS.

HTTP method safe idempotent

POST No No

GET Yes Yes

PUT No Yes

DELETE No Yes

H. Support of MIME Types
Multipurpose Internet Mail Extensions (MIME) types are

used for the identification of data formats, which will be
registered and published by the Internet Assigned Numbers
Authority (IANA). These types can be seen as representation
formats of a resource. For this category, we could identify the
following four best practices:

1) At least two representation formats should be sup-
ported by the web service, such as JSON or Extensi-
ble Markup Language (XML) [8].

2) JSON should be the default representation format
since its increasing distribution [8].

3) Existing MIME types should be used, which already
support hypermedia such as JSON-LD (JSON for
Linking Data), Collection+JSON and Siren [11].

4) Content negotiation should be offered by the web
service, which allows the client to choose the rep-
resentation format by using the HTTP header field
“ACCEPT” in his request. Furthermore, there is the
opportunity to weight the preference of the client with
a quality parameter [11].

VI. SUMMARY AND OUTLOOK

In this article, we identified, collected, and categorized
best practices for a quality-oriented design of RESTful web
services. More precisely, based on existing work 23 best
practices could be identified and classified into eight different
categories. The intention of this article was not to reinvent
the wheel. For this reason, the best practices of this article
were reused from existing work. Focus of the work presented
in this article was their collection, categorization, and thus
unification. We illustrated the best practices by means of
the CompetenceService developed at the KIT. By applying
the best practices, the CompetenceService could be designed
in a quality-oriented manner. Any time during the design
or afterwards, the quality of the design could be systemat-
ically evaluated. The clear set of best practices enabled to

396Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

perform the evaluation by different developers. Furthermore,
the repeatability of the analysis and the comparability of the
results were guaranteed. As result, design weaknesses of the
CompetenceService could be identified and rapidly corrected
and the time spent making design decisions could be reduced.

The best practices and their categorization and unification
help software architects and developers to design RESTful
web services in a quality-oriented manner. As best practices
are distributed across several existing work, until now, a
systematic analysis of RESTful web services regarding their
design quality has been a complex task. In most cases, software
architects and developers have a basic understanding about
how to create well-designed web services. However, a common
understanding about how to evaluate web services is missing.
The unification of best practices introduced in this article
reduces the necessity to lookup best practices in literature.

In the future, we plan to investigate the impact of such
best practices on the development speed. To evaluate the
usefulness of the best practices for RESTful web services,
we consider setting up two teams of students, Team A and
Team B, with the requirement to develop two services as part
of the SmartCampus at the KIT of similar complexity. Both
teams are expected to have similar experiences in developing
software systems and both teams should not have knowledge
about the quality-oriented design of RESTful web services.
However, Team A will be equipped with our catalog of best
practices for RESTful web services. We expect that Team A
will spend much less time searching appropriate design rules
and design agreements. The best practices will provide Team A
with guidelines about how to design the services. Furthermore,
the design of the resulting service supports certain quality
goals. However, we expect that the more sophisticated design
will result in a more complex implementation phase. Figure 9
shows the expected results.

2 4 6 8

Team B

Team A

Week

Requirements
Design

Implementation
V erification

Figure 9. Duration of the development phases in weeks.

In addition, we plan to describe the best practices by means
of technology-independent metrics. In a next step, we plan
to map these technology-independent metrics onto concrete
technologies, such as Java and JAX-RS. This mapping consti-
tutes the basis for an automated application of the metrics on
concrete design or implementation artifacts. We are currently
working on a software tool, the QA82 Analyzer [23] [24].
This tool enables the automatic evaluation of software artifacts
regarding best practices. This tool is available as open source
to support the quality-oriented design of RESTful web services
in practice, teaching, and research.

REFERENCES
[1] R. Mason, “How rest replaced soap on the web: What it means to you,”

October 2011, URL: http://www.infoq.com/articles/rest-soap [accessed:
2015-02-20].

[2] A. Newton, “Using json in ietf protocols,” the IETF Journal, vol. 8,
no. 2, October 2012, pp. 18 – 20.

[3] IEEE, “Std 830-1998: Recommended Practice for Software Require-
ments Specifications,” 1998.

[4] M. Gebhart, P. Giessler, P. Burkhardt, and S. Abeck, “Quality-oriented
requirements engineering for agile development of restful participation
service,” Ninth International Conference on Software Engineering Ad-
vances (ICSEA 2014), October 2014, pp. 69 – 74.

[5] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[6] D. Garlan and M. Shaw, “An introduction to software architecture,”
Pittsburgh, PA, USA, Tech. Rep., 1994.

[7] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs.
O’Reilly Media, 2013.

[8] B. Mulloy, “Web API Design - Crafting Interfaces that Developers
Love,” March 2012, URL: http://pages.apigee.com/rs/apigee/images/
api-design-ebook-2012-03.pdf [accessed: 2015-04-09].

[9] S. Jauker, “10 Best Practices for better RESTful API,” Mai 2014,
URL: http://blog.mwaysolutions.com/2014/06/05/10-best-practices-
for-better-restful-api/ [accessed: 2015-02-19].

[10] P. Papapetrou, “Rest API Best(?) Practices Reloaded,” URL: http://
java.dzone.com/articles/rest-api-best-practices [accessed: 2015-02-26].

[11] S. Vinoski, “RESTful Web Services Development Checklist,” Internet
Computing, IEEE, vol. 12, no. 6, 2008, pp. 94–96. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=4670126

[12] L. Richardson and S. Ruby, Restful Web Services. O’Reilly Media,
2007.

[13] B. Burke, RESTful Java with JAX-RS 2.0. O’Reilly Media, 2013.
[14] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice: Hyper-

media and Systems Architecture. O’Reilly Media, 2010.
[15] R. T. Fielding, “Evolve’13 - The Adobe CQ Community Technical

Conference - Scrambled Eggs,” 2013, URL: http://de.slideshare.net/
royfielding/evolve13-keynote-scrambled-eggs [accessed: 2015-09-23].

[16] A. DuVander, “1 in 5 APIs Say “Bye XML”,” 2011, URL: http:
//www.programmableweb.com/news/1-5-apis-say-bye-xml/2011/05/25
[accessed: 2015-02-20].

[17] OWASP, “Testing for insecure direct object references (otg-authz-004),”
2014, URL: https://www.owasp.org/index.php/Testing for Insecure
Direct Object References (OTG-AUTHZ-004) [accessed: 2015-05-
12].

[18] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach, ser. ACM Press Series. Addison-
Wesley, 2000.

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Rfc 2616, hypertext transfer protocol – http/1.1,”
http://tools.ietf.org/html/rfc2616, 1999.

[20] M. Nottingham and R. Fielding, “Rfc 6585, additional http status
codes,” 2012, URL: http://tools.ietf.org/html/rfc6585 [accessed: 2015-
02-18].

[21] R. T. Fielding, “REST APIs must be hypertext-driven,” October 2008,
URL: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven [accessed: 2015-02-20].

[22] M. Amundsen, L. Richardson, and M. W. Foster, “Application-Level
Profile Semantics (ALPS) ,” Tech. Rep., August 2014, URL: http://
alps.io/spec/ [accessed: 2015-04-09].

[23] M. Gebhart, “Query-based static analysis of web services in service-
oriented architectures,” International Journal on Advances in Software,
2014, pp. 136 – 147.

[24] QA82, “QA82 Analyzer,” 2015, URL: http://www.qa82.org [accessed:
2015-02-27].

397Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

