
An Exploratory Study on the Influence of Developers in Code Smell Introduction

Leandro Alves, Ricardo Choren, Eduardo Alves
Military Institute of Engineering - IME

Computer Science’s Departament
RJ, Brazil

Email: leansousa@gmail.com, choren@ime.eb.br, eduaopec@yahoo.com.br

Abstract—A code smell is any symptom in the source code
that possibly indicates a deeper maintainability problem. Code
smell introduction is a creative task - developers unintentionally
introduce code smells in their programs. In this study, we try
to obtain a deeper understanding on the relationship between
developers and code smell introduction on a software. We ana-
lyzed instances of code smells previously reported in the literature
and our study involved over 6000 commits of 5 open source
object-oriented systems. First, we analyzed the distributions of
developers using specific characteristics to classify the developers
into groups. Then, we investigated the relationships between types
of developers and code smells. The outcome of our evaluation
suggests that the way a developer participates in the project may
be associated with code smell introduction.

Keywords–Code smells; exploratory study; software development
and maintenance; development teams

I. INTRODUCTION

Software development is a complex activity that does
not end even when the software is delivered. Usually, a
software needs to be modified to correct faults, to improve
performance or other attributes, or to adapt the product to a
modified environment [1]. However, continuous change can
degrade the system maintainability. The degree of maintain-
ability of a software system can be defined as the degree of
ease that the software can be understood, adjusted, adapted,
and evolved, and comprises aspects that influence the effort
required to implement changes, perform modifications and
removal of defects [2]. There are several issues that decrease
the maintainability of a software system, such as problems
with design principles, lack of traceability between analysis
and design documentation, source code without comments and
code smells.

Code smells are characteristics of the software that may
indicate a code or design problem that can make software hard
to evolve and maintain [3]. For instance, the more parameters
a method has, the more complex it is. It would be desirable to
limit the number of parameters you need in a given method,
or use an object to combine the parameters. The presence of
code smells indicates that there are issues with code quality,
such as understandability and changeability, which can lead to
maintainability problems [4].

The code quality depends on how good the developers
are. However, there is little knowledge about the influence of
developers on the introduction of code smells in a software
system. Previous work focus on code smell detection and
removal [5][6] and other studies focus on the awareness about
code smells on the developer’s side [4][6]. The challenge is
to further understand the relationship between developers and

code smell introduction. As a result, software managers have
little knowledge on how the development team affects the
software maintainability.

There are still some questions regarding the interplay
between developers and the existence of code smells in a
source code. Can the way how a developer Works in a Project,
be used to understand the frequency of some code smell
introduction in a source code? What types of code smells a
developer is more likely to introduce? Understanding these
issues may help developers to improve their skills and to build
team culture with the purpose of avoiding code smells.

This paper presents a study to assess the influence of
developers in code smell introduction in software code. Our
investigation focused on the study of five software maintenance
projects. The projects were selected because of the following
characteristics: they were open source projects; information
about them were available in a Git repository [7]; they had a
substantial number of commits (over a seven hundred each);
and they were developed using an object oriented programming
language (Java).

This paper is structured as follows: Section 2 presents the
concepts related to Code Smells and the classification of the
developers. Section 3 describes a proposed method to sort
the developers in groups and assess the contribution on the
variation of Code Smells in the source code of the software.
Section 4 demonstrates a case study for the application of the
method of classification of developers, evaluating the influence
of each developer group in variation of Code Smells. Section
5 describes related work and finally, Section 6 presents the
conclusion of this article.

II. STUDY PRELIMINARIES

This Section presents the definitions of code smells and of
developer characteristics used in our study.

A. Code Smells

Webster [8] defined antipatterns in object-oriented devel-
opment. An antipattern is similar to a pattern except it is an
obvious but wrong solution to a problem. Nevertheless, these
antipatterns will be tried again by someone simply because
they appear to be the right solution [9]. Code smells refer to
structural characteristics of a source code that indicate this
code has problems, affecting directly on the maintainability
of the software and resulting in a greater effort to carry out
developments in this source code [10].

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

B. Developer Characteristics
Software development is a human activity [11]. Under-

standing the human factors of the developers allows soft-
ware managers to organize them in groups, so that they can
compose more efficient teams [12]. Whereas distinguishing
and verifying the impacts of each developer individually is
a very difficult task, developers can be categorized according
to their involvement in a software project. The involvement of
a developer can be measured in terms of level of participation
and degree of authorship on the source code [13].

The level of participation is related to the developer’s
involvement in the project and can be used, for example, to
determine the degree of decision-making the developer has in
the project team, allowing discover developers who exercise
leadership in project [13][14]. The degree of authorship indi-
cates the usual tasks the developer performs when acting on the
software source code. It involves line code change, insertion
or removal and file (e.g., class in an object-oriented system)
insertion and removal.

III. STUDY SETTINGS

The goal of our study is to investigate the influence of
developers on the introduction of code smells in a software
code. To do so, we analyzed the sequence of commits done
in the repository of five different software projects. Merge
(branches) were considered in the selection of the project
commits.

First, we categorized the developers in different groups
according to their characteristics in the project (participation
and authorship). Then, for each commit, we searched for code
smells in the source code. The quality focus was the analysis
on the variation of the number of code smells along the time.

To categorize the developers, we used the k-means clus-
tering algorithm [15]. The information used in the k-means
algorithm was taken from the software repository and they
were related to the participation level and degree of authorship
of the developers in each selected project.

To find code smells in the source code, we used PMD [16],
a static rule-set based Java source code analyser that seeks to
evaluate aspects related to good programming practices.

A. System Characteristics
The first decision we made in our study was the selection

of the target systems. We chose five medium-size systems. The
first one, called Behave, is an automation tool for functional
testing. It was first versioned in 2013 and we found 724
commits in its project. We selected 373 commits of Behave
in our study. The second was JUnit, a unit-testing framework
for the Java programming language. It was first versioned in
2000 and we found 1885 commits in its project. We selected
1203 commits of Junit in our study. The third one was Mockito,
an open source-testing framework for Java, which allows the
creation of test double objects (mock objects) in automated
unit tests for the purpose of Test-driven Development or
Behavior Driven Development. It was first versioned in 2007
and we found 1993 commits in its project. We selected 1561
commits of Mockito in our study. The fourth one, called
RxJava, is a library for composing asynchronous and event-
based programs using observable sequences for the Java VM.
It was first versioned in 2012 and we found 2939 commits

in its project. We selected 906 commits of RxJava in our
study. The last system was VRaptor, a Java MVC Framework
focused in delivering high productivity to web developers. It
was first versioned in 2009 and we found 3385 commits in its
project. We selected 2243 commits of VRaptor in our study.
The projects selected for this study were taken from the Git
repository on June 2014.

These systems were chosen because they met a number of
relevant criteria for our study. First, these systems encompass
a rich set of code smells (e.g., Dead Code, Long Method,
Unhandled Exception). Second, they are non-trivial systems
and their sizes are manageable for an analysis of code smells.
Third, each one of them were implemented by more than
50 programmers with different levels of participation (the
selected systems were all open source projects). Last, they
have a significant lifetime, comprising of several commits.
The availability of multiple commits allowed us to observe
the introduction of code smell throughout their long-term
development and evolution.

It should be noted that for this study, commits were
discarded that altered documentation of source code, HTML
pages and templates (css, imagens, javascript) changes because
they have no relation with change of code smells.

B. Study Phases
Our study was based on the analysis of the developers’

information and the systems’ code smells. The main phases of
our study are described next.

Recovering the Developers’ Information. In this phase,
we focused in gathering information about the level of partic-
ipation and degree of authorship of a developers. The reason
was that we needed to group the developers so that we
could rely on general coding behaviour instead of trying to
focus in each developer separately. We selected information
from the data available in the Git repository. As a result, we
concentrated on the analysis of information for each developer
commit. For level of participation, we collect date and time
of commit initial, date and time of last commit and interval
(days) between commits. For degree of authorship, we collect
amount of modified files (classes) in the commit (insertion,
modification and deletion) and the amount of lines of code
modified during the commit (insertion and deletion).

Classifying the Developers. The recovered information
was used in the k-means clustering algorithm to identify groups
of developers with similar characteristics, according to their
participation and degree of authorship in the project. In this
study, we used the k-means algorithm varying the value of
k from four up to nine in order to verify the distribution of
developers in the clusters.

The overall results provided six sets of developer clusters.
Analysing these sets, we decided to use the results from k=5
(five clusters) because we wanted to avoid the presence of
very scarce clusters. Then we used the apriori association
algorithm to find correlations between different attributes in
each cluster. The results identified the general association rules
for the population of each cluster, as shown in Table I.

(a) Group 01: less frequent participation and line code
deletion as general authorship behaviour;

(b) Group 02: less frequent participation and line code
insertion and deletion as general authorship behaviour;

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(c) Group 03: less frequent participation and file inser-
tion, modification and deletion as general authorship
behaviour;

(d) Group 04: more frequent participation and no partic-
ular general authorship behaviour (i.e., it performs all
behaviours almost evenly);

(e) Group 05: more frequent participation and file inser-
tion as general authorship behaviour.

TABLE I. POPULATION OF EACH CLUSTER

Gr. Behave JUnit Mokito RxJava VRaptor

01 2 15 5 2 24
02 7 27 25 31 10
03 10 33 58 13 31
04 2 14 17 17 15
05 15 6 5 10 13

Selection of Code Smells. In this phase, we focused on
selecting code smells that were previouly described in the
literature. Moreover, we have not considered creating specific
PMD rulesets to identify code smells. The reason was that we
needed to rely on code smells that could be precisely identified
in a systematic fashion, without any specialist assistance. As
a result, we concentrated on the analysis of five existing code
smells [17], which covered various anomalies related to object
oriented programming. Those were: Dead Code (DC); Large
Class (LC); Long Method (LM); Long Parameter List (LPL);
and, Unhandled Exception (UE).

Identifying Occurrences of Code Smells. Code smells
were identified using the PMD tool. Thus, code smells were
detected using five ready-to-run PMD rulesets. We decided not
to define specific rules for this study because we understand
that code smells should be identified as simply as possible.

Analysis of Code Smell Introduction. The goal of the fifth
phase was to analyse the behaviour of code smell introduction
for the selected projects. The analysis aimed at triggering some
insights for helping maintainers to understand the relationships
between code smell introduction and the developers in the
project team. To support the data analysis, the assessment
phase was decomposed in three main stages. The first stage
aimed at examining the occurrence frequency of each code
smell in the analyzed commits. The second stage was con-
cerned with observing the participation of the developers in
the analyzed commits. The last stage focused on assessing
the relationship of developers on a code smell manifestation.
In this last stage, we calculated the average percentage of
introduction and of removal of the selected code smell by each
group of developers. The idea is to verify the general influence
of each group in the project.

IV. STUDY FINDINGS

The first subsection below shows the total number of
each investigated code smell in the target systems. The fol-
lowing five subsections report the findings associated with
the characterization of code smells and the involvement of
the developers. Finally, the last subsection presents some
discussion about the results and the impact of developers in
code smell introduction.

A. Occurrence of Code Smells
There was a significant difference on how often each

investigated code smell occurred in the target systems. The
results are summarized in Table II. The ”I” column indicates
the total number of times each code smell was inserted in
each target system and the ”R” column indicates the total
number of times each code smell was removed. The ”Tot” line
presents the total number of smell instances detected (inserted
and removed respectively). For ”I” equal to 0 means that there
was no inclusion of this code smell. For ”R” equal to 0, means
that no removal of said code smell. It is important to mention
that not all code smells inserted in the analyzed commits were
removed.

TABLE II. CODE SMELL OCCURRENCES

Behave JUnit Mokito RxJava VRaptor

CS I R I R I R I R I R

DC 91 81 208 262 230 335 168 224 311 517
LC 39 92 204 242 181 340 215 224 220 403
LM 46 61 98 161 112 353 149 225 150 409
LPL 0 0 3 9 0 0 63 112 0 1
UE 69 95 240 269 337 288 205 236 377 419

Tot 245 329 753 943 860 1316 800 1021 1058 1749

B. Dead Code
The Dead Code code smell refers to code that is not been

used. These code smells were identified using the Empty Code,
Unnecessary and Unused Code rulesets in PMD. These rulesets
are composed of the following rules:

(a) Empty Code: this ruleset aims to check if there are
empty statements of any kind (empty method, empty
block statement, empty try or catch block, etc.);

(b) Unnecessary: this ruleset aims to determine whether
there are unnecessary code (unnecessary returns, final
modifiers, null checks, etc.);

(c) Unused Code: this ruleset aims to find unused or
ineffective code (unused fields, variables, parameters,
etc.).

The results are summarized in Table III, which shows the
percentage of insertion and removal of the Dead Code smell
for each target system by developer group.

TABLE III. RESULTS FOR DEAD CODE

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 74 78 40 39 0 0
02 76 67 25 31 10 12 9 9 15 17
03 24 33 58 53 3 3 29 32 34 26
04 0 0 17 17 0 0 0 0 51 56
05 0 0 0 0 13 7 22 20 0 0

C. Large Class
The Large Class code smell refers to classes that are

trying to do too much, often showing up as too many instance
variables. These code smells were identified using a subset of
the Code Size ruleset in PMD. The rules used to identify this
code smell were:

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(a) Excessive Class File Length: usually indicates that the
class may be burdened with excessive responsibilities
that could be provided by external classes or functions;

(b) Excessive Public Count: seeks for large numbers of
public methods and attributes.

(c) NCSS Type Count: uses the NCSS (Non-Commenting
Source Statements) algorithm to determine the number
of lines of code for a given type;

(d) Too Many Fields: determines if a class has too many
fields in its code;

(e) Too Many Methods: determines if a class has too many
methods in its code.

The results are summarized in Table IV, which shows the
percentage of insertion and removal of the Large Class smell
for each target system by developer group.

TABLE IV. RESULTS FOR LARGE CLASS

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 70 79 35 37 0 0
02 69 72 28 29 15 10 10 8 19 15
03 31 28 58 53 2 4 34 30 39 34
04 0 0 14 18 0 0 0 0 42 51
05 0 0 0 0 12 7 20 25 0 0

D. Long Method
The Long Method code smell refers to methods that are

trying to do too much, often presenting too much code. These
code smells were identified using a subset of the Code Size
ruleset in PMD. The rules used to identify this code smell
were:

(a) Excessive Method Length: seeks for methods that are
excessively long;

(b) NCSS Method Count: uses the NCSS algorithm to
determine the number of lines of code for a given
method;

(c) NCSS Constructor Count: uses the NCSS algorithm
to determine the number of lines of code for a given
constructor;

(d) NPath Complexity: determines the NPath complexity
of a method (the number of acyclic execution paths
through that method).

The results are summarized in Table V, which shows the
percentage of insertion and removal of the Long Method smell
for each target system by developer group.

TABLE V. RESULTS FOR LONG METHOD

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 71 77 42 36 0 0
02 72 64 24 29 13 12 8 10 16 16
03 28 36 58 43 4 3 28 30 39 25
04 0 0 17 28 0 0 0 0 45 60
05 0 0 0 0 13 8 23 24 0 0

E. Long Parameter List
The Long Parameter List code smell refers to methods that

present a long parameter list usually involving global data.
These code smells were identified using a single rule of the
Code Size ruleset in PMD:

(a) Excessive Parameter List: seeks for methods with
numerous parameters.

The results are summarized in Table VI, which shows the
percentage of insertion and removal of the Long Parameter
List smell for each target system by developer group.

TABLE VI. RESULTS FOR LONG PARAMETER LIST

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 0 0 40 35 0 0
02 0 0 33 67 0 0 14 19 0 0
03 0 0 67 22 0 0 22 26 0 0
04 0 0 0 11 0 0 0 0 0 0
05 0 0 0 0 0 0 24 21 0 0

F. Unhandled Exceptions
The Unhandled Exceptions code smell refers to pieces of

code containing malformed throw/try/catch statements. These
code smells were identified using a single ruleset in PMD:

(a) Strict Exceptions: provides some strict guidelines
about throwing and catching exceptions.

The results are summarized in Table VII, which shows
the percentage of insertion and removal of the Unhandled
Exceptions smell for each target system by developer group.

TABLE VII. RESULTS FOR UNHANDLED EXCEPTIONS

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 71 82 38 39 0 0
02 71 73 27 33 15 8 13 7 16 14
03 29 27 58 49 3 2 25 33 31 33
04 0 0 15 18 0 0 0 0 53 53
05 0 0 0 0 11 8 24 21 0 0

G. Discussion
Tables 2 to 6 presented the percentage of participation

of each group of developers in the insertion and removal
of code smells for the five studied systems, represented by
the %I column and the %R, respectively. In the analyzed
set of commits of the Behave system, in general, groups 2
and 3 were responsible for inserting and removing such code
smells. Group 2 inserted more smells but also removed in
an even proportion. For JUnit and VRaptor, groups 2, 3 and
4 were responsible for inserting and removing code smells.
Four groups inserted and removed code smells in the Mokito
system, but the results point out to group 1 as been the one
group with more impact on the insertion and removal of code
smells. Finally, for the RxJava, the results indicate that groups
1, 3 and 5 were more responsible for inserting and removing
code smells.

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In the selected set of commits analyzed in this study,
all code smells were decreased (had more removals than
insertions). This is an indication that the occurrence of code
smells depends on the software evolution. It seems that the
code smells in the study tend to appear in preliminary releases
with more frequency. We did not use the initial commits in
our study to avoid the ”cold start” problem as we believed
these data would not have a proper indication of code smell
removal.

Code Smells with Highest Frequencies. The code smells
associated with the problem of dead code and unhandled
exceptions fell in the group of highest insertion frequency
for the analyzed target systems. A closer look made us to
suspect that this probably occurred because groups 1 and 2
were more involved in these code smells. Such groups do not
present a high level of participation and have a common au-
thorship behavior, which is line code removal. We understand
that, in some cases, lines may have been removed without
the appropriate care, resulting in dead code and unhandled
exceptions. The code smells associated with the problem of
long method fell in the group of highest removal frequency
for the analyzed target systems. This finding suggests that the
development team for the target systems may have done proper
refactoring as to decrease the size of the methods.

No Influence on Code Smells. The classification process
found members for all groups in the development teams of
every target system. However, there were groups that were not
involved with code smells in some systems. For instance, group
4 did not insert nor remove code smells in the Mokito system.
Groups 1, 4 and 5 did not insert nor remove code smells in
the Behave system. We suspect that this occurred because there
were few members in these groups for such systems. We used
the whole dataset to classify the developers and when we took
a deeper look in a system by system basis, some groups were
scarce.

Developers vs. Code Smells. In general, groups 1 to
3 (groups whose members have fewer participation in the
code development) tended to have a higher engagement in the
introduction and removal of code smells. Initially, we thought
that the developers in the groups with higher participation
frequency would have more impact in code smell removal.
This was not observed. We believe that, in the context of our
study, this may have happened due to the fact that groups 4 and
5 were more more responsible for in adding functionality to the
target systems whereas the other groups were more involved
in fault correction.

Recommendations. Considering the results, it is necessary
to evaluate the quality of the source code, taking into account
the inclusion and removal of problematic code snippets. Thus,
the developers assessment process (Group) must be reevaluated
constantly, based on data related to the project’s commit
history. In addition, it is recommended that there is a mixture
of different groups, considering the features that contribute to
remove code smells.

H. Limitations
Some limitations or imperfections of our study can be

identified and are discussed in the following.
Construct Validity. Threats to construct validity are

mainly related to possible errors introduced during specific

data processing from the repository. The repository did not
provide an unique identification data for a developer, thus, it
was not possible to determine whether a developer performed
commits with different identifications. In this sense, each
developer (responsible) identified in the repository was treated
as a different developer. However, the study was not intended
to focus on the contribution of a specific developer.

Conclusion Validity. We have three issues that threaten
the conclusion validity of our study: the number of evaluated
systems; the evaluated code smells (and their relation to the
PMD rules), and; discarding the data from the commits that
did not increase nor decrease the number of code smells. Five
open source projects from Git were analyzed. A higher number
of systems is always desired. However, the analysis of a
bigger sample in this kind of study could be non-practical. The
number of systems with all the required information available
to perform this kind of study is bare. We understand that
our sample can be seen as appropriate for a first exploratory
investigation [18]. Related to the second issue, our analysis
used the PMD tool. Regarding the set of code smells used in
the study, code smells reported in the literature were considered
in our study. Finally, we discarded data from commits that
maintained the amount of code smells. Although the study fo-
cused on associating developer profiles to improving or lessen
the quality of the code, we understand that this limitation does
not allow us to make a conclusion for a specific code smell.

V. RELATED WORK

There are several approaches available in the literature
for detecting Code Smells. Mantyla investigated as developers
identify and treat Code Smells in the source code to compare
with automated detection methods [19]. There are also several
approaches available in the literature for investigation of the
effects of Code Smells in aspects related to software main-
tainability [20], such as defects [21], effort [22] and requests
for changes [23]. In addition, few studies have focused on the
detection of Code Smell through mining activities in software
repositoryc [24].

Regarding the classification of developers in groups, there
are several existing approaches in the literature. In this context,
one of the proposals is based on data extracted from the
repository in relation to the time of performing the commit.
Thus, the model proposes to assess in which the range of hours
developers insert more bugs in your commits [25]. Another
approach is to sort the developers on the basis of the records
related to quantity, time, and type of actions and activities that
these developers come true, working on the project, and the
data extracted from the version control system and other tools,
such as mailing list and bug tracker tools [26][27].

VI. CONCLUDING REMARKS

This work presented a study to assess the influence of
developers on the introduction of code smells in a software
system. We classified the developers into five categories and
verified their contributions (increasing or decreasing) in the
number of code smells in a set of consecutive software
versions. This exploratory study revealed, within the limits
of the threats to its validity, the conjecture that the team
member behaviour (participation frequency, authorship and
development activity - feature development or fault correction)
impacts in the insertion and removal of code smells.

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Finally, it is important to highlight that we have analyzed
commits of five systems. Then, the relationships of code smells
and developers should be tested in broader contexts in the
future. It would also be desirable to use the development
activity of the developers in the classification and association
of developers.

ACKNOWLEDGMENT

The authors thank everyone who provided knowledge and
skills that really helped the search. The result is a compilation
of ideas and concepts throughout the development of this work.

REFERENCES
[1] IEEE, IEEE Standard for Software Maintenance, IEEE Std 1219-1998.

IEEE Press, 1999, vol. 2.
[2] “Software engineering - product quality, ISO/IEC 9126-1,” International

Organization for Standardization, Tech. Rep., 2001.
[3] F. A. Fontana and M. Zanoni, “On investigating code smells correla-

tions,” in ICST Workshops’11, 2011, pp. 474–475.
[4] A. F. Yamashita and L. Moonen, “Do developers care about

code smells? an exploratory survey.” in WCRE, R. Lammel,
R. Oliveto, and R. Robbes, Eds. IEEE, pp. 242–251. [Online].
Available: http://dblp.uni-trier.de/db/conf/wcre/wcre2013.html (access
date: September 2015)

[5] I. M. Bertran, “Detecting architecturally-relevant code smells in
evolving software systems,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York,
NY, USA: ACM, 2011, pp. 1090–1093. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1986003 (access date: September
2015)

[6] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi,
“Balancing agility and formalism in software engineering,” B. Meyer,
J. R. Nawrocki, and B. Walter, Eds., 2008, ch. A Case Study on the
Impact of Refactoring on Quality and Productivity in an Agile Team,
pp. 252–266.

[7] GitHub, “Git repository,” https://github.com, 2014.
[8] B. F. Webster, Pitfalls of object-oriented development. M And T, 1995.
[9] J. Long, “Software reuse antipatterns,” SIGSOFT Softw. Eng.

Notes, vol. 26, no. 4, Jul. 2001, pp. 68–76. [Online]. Available:
http://doi.acm.org/10.1145/505482.505492 (access date: September
2015)

[10] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detection,” in
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’10.
New York, NY, USA: ACM, 2010, pp. 8:1–8:10. [Online]. Available:
http://doi.acm.org/10.1145/1852786.1852797 (access date: September
2015)

[11] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
5th ed. McGraw-Hill Higher Education, 2001.

[12] E. Di Bella, A. Sillitti, and G. Succi, “A multivariate classification of
open source developers,” Inf. Sci., vol. 221, Feb. 2013, pp. 72–83.
[Online]. Available: http://dx.doi.org/10.1016/j.ins.2012.09.031 (access
date: September 2015)

[13] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and
M. Nakamura, “An analysis of developer metrics for fault
prediction,” in Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, ser. PROMISE ’10.
New York, NY, USA: ACM, 2010, pp. 18:1–18:9. [Online]. Available:
http://doi.acm.org/10.1145/1868328.1868356 (access date: September
2015)

[14] M. Zhou and A. Mockus, “Developer fluency: achieving true mastery
in software projects,” in Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,

2010, Santa Fe, NM, USA, November 7-11, 2010, 2010, pp. 137–
146. [Online]. Available: http://doi.acm.org/10.1145/1882291.1882313
(access date: September 2015)

[15] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, L. M. L. Cam and J. Neyman,
Eds., vol. 1. University of California Press, 1967, pp. 281–297.

[16] InfoEther, “Pmd is a source code analyzer,” http://pmd.sourceforge.net/,
2014.

[17] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[18] B. Kitchenham, H. Al-Khilidar, M. A. Babar, M. Berry, K. Cox,
J. Keung, F. Kurniawati, M. Staples, H. Zhang, and L. Zhu,
“Evaluating guidelines for empirical software engineering studies,”
in Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering, ser. ISESE ’06. New
York, NY, USA: ACM, 2006, pp. 38–47. [Online]. Available:
http://doi.acm.org/10.1145/1159733.1159742 (access date: September
2015)

[19] M. Mantyla and C. Lassenius, “What types of defects are
really discovered in code reviews?” IEEE Trans. Software
Eng., vol. 35, no. 3, 2009, pp. 430–448. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TSE.2008.71 (access date:
September 2015)

[20] D. I. Sjoberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dyba,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, 2013, pp. 1144–
1156.

[21] F. Rahman, C. Bird, and P. T. Devanbu, “Clones: What is that smell?” in
MSR, J. Whitehead and T. Zimmermann, Eds. IEEE, 2010, pp. 72–81.
[Online]. Available: http://dblp.uni-trier.de/db/conf/msr/msr2010.html
(access date: September 2015)

[22] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension.” in CSMR, T. Mens, Y. Kanellopoulos,
and A. Winter, Eds. IEEE Computer Society, 2011, pp. 181–190.
[Online]. Available: http://dblp.uni-trier.de/db/conf/csmr/csmr2011.html
(access date: September 2015)

[23] S. M. Olbrich, D. Cruzes, and D. I. K. Sjberg, “Are all code
smells harmful? a study of god classes and brain classes in
the evolution of three open source systems.” in ICSM. IEEE
Computer Society, 2010, pp. 1–10. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icsm/icsm2010.html (access date: September 2015)

[24] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Software Maintenance and Reengineer-
ing (CSMR), 2012 16th European Conference on. IEEE, 2012, pp.
411–416.

[25] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” in Proceedings of the 8th
Working Conference on Mining Software Repositories, ser. MSR ’11.
New York, NY, USA: ACM, 2011, pp. 153–162. [Online]. Available:
http://doi.acm.org/10.1145/1985441.1985464 (access date: September
2015)

[26] W. Poncin, A. Serebrenik, and M. van den Brand, “Process mining
software repositories,” in Software Maintenance and Reengineering
(CSMR), 2011 15th European Conference on, March 2011, pp. 5–14.

[27] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution patterns of open-source software systems and communities,”
in Proceedings of the International Workshop on Principles of Software
Evolution, ser. IWPSE ’02. New York, NY, USA: ACM, 2002, pp.
76–85. [Online]. Available: http://doi.acm.org/10.1145/512035.512055

(access date: September 2015)

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

