
Towards a Better Understanding of Static Code
Attributes for Defect Prediction

Muhammed Maruf Öztürk and Ahmet Zengin

Department of
Computer Engineering
Faculty of Computer

and Information Sciences
Sakarya, Turkey 54187

Email: muhammedozturk@sakarya.edu.tr, azengin@sakarya.edu.tr

Abstract—Defect prediction requires intensive effort and includes
operations which are focused on reducing the cost of software
development. These operations involving the use of machine
learning algorithms could produce wrong results originated from
skewed or missing data. In order to increase the success rate of
predictors, defect data sets are either pruned or duplicated. To
address this problem, we observe the effects of the derivation
of low level metrics using statistical methods in prediction
performance. The performance of predictions are evaluated using
10-fold cross-validation on each data set. Experimental results
obtained by using 15 data sets show that naive Bayes classifier
improved values of Area Under the Curve (AUC) with the rate
of 0,1 in average.

Keywords–Defect prediction; Low level metrics; Metric deriva-
tion

I. INTRODUCTION

Properties of software codes vary depending on develop-
ment processes, functional goals, and development constraints
[1][2]. In order to comprehend this variety in depth, we should
examine software behaviours and tendencies, in which ver-
sions of software changes, along with specific software metric
models [3][4][5]. Developers need metric tables to advance
their understanding of how software changes across it’s newer
versions [6]. The standards, which were developed by McCabe
and Halstead, are widely used ones while generating software
metric tables [7][8]. These standards do not require an in-
depth analysis in the structure of codes; however, the model
presented by McCabe is more suitable than the others in the
design level [9].

Metric tables of software components have a property that
indicates the defect-proneness of software. Thanks to this
property, a defect prediction can be conducted on the basis
of binary classification. However, each data set has potential
problems caused by noise or repeated data points that this
issue reduces the success of prediction [10]. One of the mostly
known problems in defect prediction is class-imbalanced data
sets. In such cases, defects are generally intensified on specific
parts of software so that the reliability of the prediction is not
as desired. In this respect, it is rather difficult to determine
a general bias about the software modules [11]. We have
two ways to cope with class-imbalance: undersampling, and

oversampling. Although undersampling is an efficient method,
it causes the hiding of useful data. Likewise, oversampling
may cause an unrealistic increase in the success of learning
[12], [13][14].

In this study, we investigate metric derivation methods and
its effects on defect prediction. Defect data sets consist of
15 data sets including NASA metrics data program (NASA
MDP) and Softlab. The common feature of these data sets is
that they were generated using McCabe & Halstead metrics.
After adding some metrics to the data sets such as character
count (cCount) and class size (cS), the variation recorded
on the performance parameters such as accuracy and AUC
was observed. Moreover, the relationship between low level
and other metrics was strived for the exploration. The results
obtained from the experiment show that the proposed method
increased the success of prediction on 15 data sets in general.

The rest of the paper is organized as follows. Section
2 provides a background describing the relevant terms and
approaches. Related works are mentioned in Section 3 and this
section also discusses the distinctive aspect of our work when
it is compared to similar works. The proposed approach is in
Section 4. The results, we have obtained so far, are explained
in Section 5. The novelty and the contribution of the paper are
presented in Section 6.

II. BACKGROUND

Two types of learning are used in defect prediction: super-
vised and unsupervised learning. Supervised learning is the
most commonly used technique [15][16]. It includes SMV,
ANN, decision trees etc.. Although unsupervised learning does
not requie a labelling on training data, supervised learning
analyzes the data only labeled. Researchers generally want
to see which supervised learning techniques are suitable for
defect data sets to be predicted. Learning techniques also called
predictors are to predict defect-proneness of modules for the
next version of software.

Properties of code are prepared using a particular mea-
suring standard namely metrics [17]. Even though researches
published in last five years are focused on process metrics that
yielded promising results [18][19], code metrics have some
gaps that are worthy to explore [20][21]. One of them is

40Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



the reliability of defect data sets. As the defect data sets are
generally prepared by combining all related developer’s com-
ments, they may have missing or noisy data points. In order to
cope with this problem, the data are re-sampled or reduced by
using particular preprocessing techniques. SMOTE is one of
the widely used sampling strategy for defect prediction [22].
However it is sensible to combine a sample reduction method
with an over-sampling technique [23].

III. RELATED WORKS

One of the leading fields to explore static code properties
is machine learning. Menzies et al.’s work, published in 2007,
is a much cited work in this field [24]. This work stressed that
the type of the metric set is more important than the selected
predictor in the success of precision. The promising result of
this work is that Bayes classifier showed better performance
than J48 with the rate of 71%. Likewise, we have taken naive
Bayes among performance measurement algorithms.

The framework developed by Song et al. showed that every
data set may not be suitable for every prediction model [25].
This especially changes depending on the type of the data set.
Using this result we can say that every learning method is
not suitable for every defect data set. A two-phase prediction
model was developed in Kim and Kim’s work [26], the reports
considered as eligible were eliminated in the first phase and
the prediction accuracy was obtained as 70%. This work also
proved the importance of preprocessing in defect data sets.

One of the works which used NASA MDP data sets is
Gray et al.’s work [27]. This work, especially focused on data
cleansing, removed some properties of the metrics obtained
from 13 data sets to be suitable for binary classification.
Missing values were assigned to zero. The first of these results
is that used data sets should be extended. Thus, we can
determine whether the repeated data points are in general.
Second, low level metrics should be used to detect repeated
data. Third is the presence of the issues caused by the repeated
data.

The studies above all use static code metrics to build a
proper prediction model. However, the most relevant work to
ours is Gray et al’s work which is explained in the preceding
paragraph. This work and our work have similarities: they
use the same experimental data sets and have claimed the
importance of the use of low level metrics.

IV. PROPOSED APPROACH

NASA MDP and SOFTLAB data sets consisting of metric
values that range from 21 to 40. Tests including ANOVA, t-
test, and chi-square unveiled the relationship between character
count and LOC (number of lines of code) as below:

cCount ∼= lCode ∗ 30. (1)

Lorenz and Kidd presented object-oriented metric tables [28].
The main reason why object-oriented metrics are widely used
is that such metrics are the best indicator of system reliability at
design level [29]. cS is also a low level metric but it is not avail-
able in the data sets of NASA MDP and SOFTLAB (CS=total
number of operations+ number the attributes) [28]. In order
to explore the relationships of defects, Linear and Multiple
Regression analyses were used. If the binary-dependencies of
the metrics are desired to be extracted, Linear Regression is

a convenient method. This method assumes that relations be-
tween variables can explained through a linear model [30][31].
Also our approach is to unveil the linear relationships between
defect data set values. Given a dependent variable as y-f(x),
the assumption having independent variable(x) emerges as
y=ax+b. This is called as Curve Fitting [32]. The aim of this
process is to find the most suitable a and b variables for f(x).
As the value of R2 closes to the one, a rather suitable curve
is obtained. If ei is regarded as error term, the formula is
ei = yi,measured − yi,model. We aim at minimizing Sr in the
formula of Sr =

∑n
i (ei)

2. Linear and nonlinear distribution
samples are seen in Figure 1 and Figure 2. The more function
curve fits the real data, including large samples up to the count
of 17186, the more accurate model is obtained.

If f(x) linear function is to be expressed with more than
one independent variable, Multiple Linear Regression is used.
For two variables, we have:

f(x) = b+ a0x1 + a1x2 (2)

Our approach can be summarized as follows: 1. The extraction

Figure 1. Curve Fitting (Linear).

Figure 2. Nonlinear distribution.

of characteristic properties of software defect data sets and
exploring required models. 2. The derivation of new low level
metrics regarding defect data sets and adding to the data sets.
3. The comparison of data sets including low level metrics
with preceding situation.

V. RESULTS

cCount and cS are obtained by using the relationships of
data. To test the use of low level metric, we have used 15
data sets including NASA MDP and SOFTLAB. These data
sets belong to software projects developed using C, C++, and
Java programming languages. The data sets have some metrics
range from 21 to 40 including large samples up to the count

41Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



of 17186. Data sets, having skewed samples at a certain ratio,
comprise 25 missing values. The experimental study has been
tested by using the framework we have been developing. This
framework is able to generate over the given codes and drives
defect prediction with defect prediction algorithms.

The regression analysis results between class size and the
other three metrics are illustrated in Figure 3. According to
these results, a formula y = 0, 5244x− 14, 679, R2 = 0, 9453
has been found using cS-comment loc. R2 is close to one
that verifies the consistency of the equation. When it comes to
the relation of CS-Executable loc, an equation is obtained as
y = 9, 5518ln(x) − 34, 278, R2 = 0, 523. On the other hand,
the effects of Code and comment loc and unique operand are
close to the zero.

Figure 3. Relations between Class Size and other metrics.

Before the prediction, definitions including defect-prone
or not-defect-prone property of software modules should be
prepared. If a module does not include any defect and rightly
biased then it is labeled as TN. In such cases if the module is
wrongly biased then it is labeled as FP. If any module including
defects is wrongly biased, labeled as FN. Last, if the bias and
the prediction is the same for a defect-prone module, it is
labeled as TP. Using these parameters, a table confusion matrix
is organized as in Table 1. The success of the proposed method
is compared to the others by benefiting the formulas defined
in Listing 3.

TABLE I. CONFUSION MATRIX

PREDICTED
nfp fp

REAL nfp TN FP
fp FN TP

Precision = TP/(TP + FP ), Recall = TP/(TP + FN)
(3)

TPR = (TP/TP+FN)∗100%, FPR = (FP/FP+TN)∗100%
(4)

Accuracy = TP + TN/(TP + FP + FN + TN) (5)

Four classifiers including naive Bayes, Bayes, Random Forest
and J48 have been used for the experiment. 10 fold cross-
validation has been used along with 10 iteration. One of the
evaluation parameters is AUC that is the indicator of the
probability of false alarm versus the probability of detection.

Figure 4. Accuracy values of Bayes.

Figure 5. Accuracy values of naiveBayes.

Figure 6. Accuracy values of RandomForest.

Figure 7. Accuracy values of J48.

42Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



On 15 data sets naive Bayes increased the AUC values in
general with the rate of 0.1. Figure 4-Figure 7 show some
results that explain the successes of the predictors both before
the use of low level metrics and after. First, naive Bayes and
RandomForest have increased the success of the prediction in
all data sets except for the pc1. Second, Bayes has produced
worse results than the other algorithms. Last, while the success
of J48 on jm1 data set has been reduced, successes of the
other algorithms have been increased. Figure 8 and 9 show
the AUC values that measures testing reliability. Having low
level metrics, remarkable improvement has been achieved on
testing set as seen in Figure 9.

Figure 8. AUC values before preprocessing.

Figure 9. AUC values after preprocessing.

VI. CONCLUSION

Here, we want to discuss the use of low level metrics in
defect prediction and present our approach based on least-
square using metric relationships. Thus, extracting mathemat-
ical models of the metrics has raised some bias. The first
results showed that the use of low level metrics has achieved
an unprecedented success in NASA MDP and SOFTLAB data
sets.

Low level metrics help us to better understand the details of
software systems. However, the success of learning algorithms
may not be improved with increasing count of the metrics at
steady state. Furthermore, skewness of data sets should be fixed
by exposing all data to a preprocessing. To gain better insight,
we should develop a preprocessing algorithm which uses some

tests such as ANOVA, t-test, and chi-square. In addition, the
software, in which data sets are extracted, are coded by using
various languages including C, C++, and Java. Therefore, the
types of coding should be considered during the extension of
metric tables.

The contributions of this paper can be summarized as
follows: (i) proposed method for deriving low level metrics
could shed new light to researchers in terms of valuable data
sets that are not publicly available. (ii) metric relations change
depending on the type of coding as in the range of ar3-pc1
coded with C programming language. (iii) using few samples
does not produce consistent results such as ar3 data set having
64 samples.

Our current approach has been merely tried on NASA MDP
and SOFTLAB data sets. Therefore, one of the purposes which
will extend this study is the testing of the approach on other
publicly available data sets. An important issue that could arise
during the experiment is the ambiguous effects of repeated data
points. In this respect, our future work aims to investigate the
contribution of the low level metric in the detection of repeated
data.

ACKNOWLEDGMENT

The authors would like to thank Tim Menzies who is one
of the co-founders of tera-Promise.

REFERENCES

[1] I. Herraiz, D. Rodriguez, and R. Harrison, “On the statistical distribution
of object-oriented system properties,” in Emerging Trends in Software
Metrics (WETSoM), 2012 3rd International Workshop on. IEEE, 2012,
pp. 56–62.

[2] J. Highsmith, Adaptive software development: a collaborative approach
to managing complex systems. Addison-Wesley, 2013.

[3] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC Press, 2014.

[4] R. J. Leach, Software Reuse: Methods, Models, Costs. AfterMath,
2012.

[5] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing
software metrics for defect prediction: an investigation on feature
selection techniques,” Software: Practice and Experience, vol. 41, no. 5,
2011, pp. 579–606.

[6] L. Putnam and W. Myers, Five core metrics: the intelligence behind
successful software management. Addison-Wesley, 2013.

[7] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, 1976, pp. 308–320.

[8] M. Halstead, “Potential impacts of software science on software life
cycle management,” Purdue University Library, 1977.

[9] T. J. McCabe and C. W. Butler, “Design complexity measurement and
testing,” Communications of the ACM, vol. 32, no. 12, 1989, pp. 1415–
1425.

[10] L. Pelayo and S. Dick, “Applying novel resampling strategies to
software defect prediction,” in Fuzzy Information Processing Society,
2007. NAFIPS’07. Annual Meeting of the North American. IEEE,
2007, pp. 69–72.

[11] G. M. Weiss, “Mining with rarity: a unifying framework,” ACM
SIGKDD Explorations Newsletter, vol. 6, no. 1, 2004, pp. 7–19.

[12] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 39, no. 2, 2009, pp. 539–550.

[13] T. M. Khoshgoftaar and K. Gao, “Feature selection with imbalanced
data for software defect prediction,” in Machine Learning and Appli-
cations, 2009. ICMLA’09. International Conference on. IEEE, 2009,
pp. 235–240.

43Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



[14] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and
imbalanced data: Problems in software defect prediction.” in ICTAI
(1), 2010, pp. 137–144.

[15] H. Lu, B. Cukic, and M. Culp, “A semi-supervised approach to software
defect prediction,” in Computer Software and Applications Conference
(COMPSAC), 2014 IEEE 38th Annual. IEEE, 2014, pp. 416–425.

[16] H. Lu, E. Kocaguneli, and B. Cukic, “Defect prediction between
software versions with active learning and dimensionality reduction,”
in Software Reliability Engineering (ISSRE), 2014 IEEE 25th Interna-
tional Symposium on. IEEE, 2014, pp. 312–322.

[17] C. Kaner et al., “Software engineering metrics: What do they measure
and how do we know?” in In METRICS 2004. IEEE CS. Citeseer,
2004.

[18] F. Rahman and P. Devanbu, “How, and why, process metrics
are better,” in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 432–441. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486846

[19] I. S. Wiese, F. R. Côgo, R. Ré, I. Steinmacher, and M. A. Gerosa,
“Social metrics included in prediction models on software engineering:
A mapping study,” in Proceedings of the 10th International Conference
on Predictive Models in Software Engineering, ser. PROMISE ’14.
New York, NY, USA: ACM, 2014, pp. 72–81. [Online]. Available:
http://doi.acm.org/10.1145/2639490.2639505

[20] P. Oliveira, M. T. Valente, and F. Paim Lima, “Extracting relative thresh-
olds for source code metrics,” in Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution
Week-IEEE Conference on. IEEE, 2014, pp. 254–263.

[21] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a
universal defect prediction model,” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 2014, pp. 182–
191.

[22] R. Pears, J. Finlay, and A. M. Connor, “Synthetic minority over-
sampling technique (smote) for predicting software build outcomes,”
arXiv preprint arXiv:1407.2330, 2014.

[23] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction
in cross-company software defects prediction,” Information and Soft-
ware Technology, vol. 62, 2015, pp. 67–77.

[24] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 1, 2007, pp. 2–13.

[25] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” Software Engineering, IEEE
Transactions on, vol. 37, no. 3, 2011, pp. 356–370.

[26] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this
bug? a two-phase recommendation model,” Software Engineering, IEEE
Transactions on, vol. 39, no. 11, 2013, pp. 1597–1610.

[27] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Reflections
on the nasa mdp data sets,” Software, IET, vol. 6, no. 6, 2012, pp. 549–
558.

[28] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc., 1994.

[29] Y. Suresh, J. Pati, and S. K. Rath, “Effectiveness of software metrics for
object-oriented system,” Procedia Technology, vol. 6, 2012, pp. 420–
427.

[30] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble
effort estimation,” Software Engineering, IEEE Transactions on, vol. 38,
no. 6, 2012, pp. 1403–1416.

[31] B. Kitchenham and E. Mendes, “Why comparative effort prediction
studies may be invalid,” in Proceedings of the 5th international Con-
ference on Predictor Models in Software Engineering. ACM, 2009,
p. 4.

[32] R. A. Johnson, I. Miller, and J. E. Freund, Probability and statistics for
engineers. Prentice-Hall, 2011.

44Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances


