
Revisiting The Package-level Cohesion Approaches

Waleed Albattah
Information Technology Department

Qassim University
Qassim, Saudi Arabia

e-mail: w.albattah@qu.edu.sa

Suliman Alsuhibany
Computer Science Department

Qassim University
Qassim, Saudi Arabia

e-mail: salsuhibany@qu.edu.sa

Abstract—Software measurements play a critical role in
assessing software properties. Cohesion is one of the software
properties that are considered to have a relationship with
software quality. Many cohesion metrics have been proposed
by researchers to assess cohesion on different software
abstractions, i.e., class-level and package-level. The proposed
package-level cohesion metrics in the literature seem to differ
in their assessment of cohesion. In this paper, we try to
investigate this issue and establish whether cohesion has only
one concept. The conclusion of this paper encourages further
investigation and comparison between the existing package-
level cohesion metrics.

Keywords—Cohesion; package; metric; measurement;
software.

I. INTRODUCTION
With the increased importance of software

measurements in assessing software properties, research
works have produced and are continuing to produce new
software measures. One specific type of measure is
cohesion. Cohesion refers to the degree to which the
elements of a specific component belong together [3].

During software maintenance, developers spend at least
50% of their time analysing and understanding software [2].
In object-oriented programming languages, e.g., Java,
assembling only closely related classes into packages can
improve software maintenance. Package cohesion metrics
measure the coherence of a package amongst its elements
that should be closely related. Cohesion is an internal
attribute of software that affects its maintainability and
reusability. Following the design principles [21], a high
level of cohesion has as its goal to achieve software
maintainability and promote its reusability [22][26].

Package-level cohesion research has received very little
focus compared with research on other abstractions, e.g.,
class-level. When one examines the literature on package
cohesion metrics, it is clear that there are significant
differences in these metrics. Thus, the following natural
question arises: do these metrics measure the same thing?
This question will be addressed in this paper.

The paper is organised as follows. In Section II, we
present Package Cohesion Principles [21]. The existing
approaches to package cohesion are presented in Section III.
Section IV presents the general example for all the existing

approaches. The conclusion and future work are given in
Section V.

II. PACKAGE COHESION PRINCIPLES
R. C. Martin [21] has presented six principles for

package design, which have since become well-known and
well-accepted. The first three principles are for package
cohesion and they help to allocate system classes to
packages. This allocation can help to manage the software
during its development. In our previous work [23], the three
package cohesion principles of Martin [21] were discussed
and they are introduced here briefly from [23]:

1) The Reuse-Release Equivalence Principle (REP)
 “The granule of reuse is the granule of release”

This states that the reuse of the code should be the same
size as the release one. If a person decides to reuse someone
else’s code, he needs a guarantee that the support will
continue and the release of new versions will be on the same
original size. To ensure the reusability of the code, the author
must organise the classes into reusable packages and then
track them with the release.

2) The Common Reuse Principle (CRP)
“The classes in a package are reused together. If you reuse
one of the classes in a package, you reuse them all”

This principle tells us which classes should be grouped
together. As it states, the classes that tend to be reused
together should be in the same package. It is more likely for
reusable classes to depend on each other, so classes are
rarely reused in separation. CRP states that the classes of a
package should be inseparable, which means that if a
package depends on this package, it should depend on all of
its classes and not on a number of them. In short, classes
that are not tightly coupled to each other should not be kept
in the same package.

3) The Common Closure Principle (CCP)
“The classes in a package should be closed together against
the same kinds of changes. A change that affects a package
affects all the classes in that package and no other
packages”

From the maintenance point of view, while the change is
not avoidable, it should be controlled (minimised). If a
change has been made on one package, there is no need to

62Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

re-release or revalidate packages that do not depend on the
changed package. The CCP states that the classes in the
package should not have different reasons to change.

While the previous two principles, REP and CRP, focus
on reusability, the CCP focuses on the system
maintainability. If a change is made on the code, it would be
better to be on one package or on a few packages rather than
being on many packages. The classes that are tightly related
will change together. Hence, if they are kept in the same
package, only one package or a small number of packages
are going to be affected when a change happens. Also, the
effort regarding revalidating and re-releasing of software
will be minimised.

III. THE EXISTING PACKAGE COHESION APPROACHES
A number of cohesion approaches have been proposed on

class and method levels [1][3]-[6]-[18]. In this section, we
present some of the existing package-level cohesion
approaches. A brief description is given for each. In the
literature, Misic [19], Ponisio and Nierstrasz [22], Martin
[21], Xu et al. [20], Zhou et al. [24], Abdeen et al. [25], and
Albattah and Melton [23] have each proposed different
methods to measure package cohesion. Each proposes a
cohesion metric on the package level. A brief discussion for
each approach is given next.

A. Approach by Misic
Misic [19] proposes a way to measure a functional

cohesion. Since a number of approaches were focusing on
cohesion as an internal structure issue, Misic claimed that
cohesion could be also observed externally by focusing on its
functional property regardless of the package’s internal
structure.

The approach measures the similarity of package objects
(elements). The similarity between elements can be
measured by looking at the external clients’ usage patterns.

Method

Misic defined write and read range concepts. The write
range of an object O, W(O), refers to the set of objects
(servers) used by this object (client). The read range of an
object O, R(O), refers to the set of objects (clients) used by
this object (server).

Given a set of objects S, let R(S) be its client set (Read
range), Sw the subset that IS? used to write its clients, and let
Sw(x) be the part of that subset that IS? used to write the
client x. Then, the coherence is given by the following
formula:

!!
ψ (S)=

(#Sw(x)−1)
x∈R(S)
∑

(#S −1)
x∈R(S)
∑

 (1)

 where

#S stands for the number of elements in S.

The coherence measure proposed by Misic can be
calculated internally or externally. For internal coherence,
the summation in the numerator and denominator will be
restricted only for clients inside the questioned set. Similarly,
the summation will be restricted only for clients outside the
questioned set to measure the external cohesion.

B. Approach by Ponisio and Nierstrasz
Ponisio and Nierstrasz [22] proposed a similar approach

to measure package cohesion. The proposed contextual
metric measures the cohesion based on the common use by
clients. The approach idea is to propose the Common-Use
(CU) metric that measures the package cohesion by taking
into account the way that a package’s classes are accessed
by other packages.

Method

CU measures the cohesion of package P by considering
the use of its elements by the package clients. If all the
clients use the same set of P’s elements, these elements share
the same responsibilities of P, and then P is cohesive.
Instead, if the clients use a different set of P’s elements,
these elements have different responsibilities, and then P is
not cohesive.

There is a need for weight to differentiate between client
packages. Not all clients have the same degree in assessing
P’s cohesion. The weight reduces the influence of P’s
cohesion from the promiscuous clients.

Definition: “We define the weight of a (client) package
Pclient as the inverse of the number of connections that Pclient
has with other packages.”

The definition of CU is given as follows:

 “We define Common-Use (CU) as the sum of weighted
pairs of classes from the interface of a package having a
common client package (f), divided by the number of pairs
that can be formed with all classes in the interface.”

The value of CU is between 0, which represents that the

interface classes of the package have disjoint responsibilities,
and 1, which means that the interface classes of the package
are used together.

5 Common-Use (CU): Inferring Cohesion
from Reuse

Common-Use (CU) measures cohesion in P by taking
into account the way client packages use the responsibilities
of P .

The intuition behind CU is that if all the clients use the
same set of classes in P , these classes contribute to the pur-
pose of P , and therefore P is cohesive. But if some clients
use a subset of classes in P and other clients use a disjoint
subset, then P apparently fulfils different, possibly unre-
lated responsibilities, which makes it not cohesive.

Figure 1 depicts both situations: in (a) some client pack-
ages access only class A and others access only class B,
indicating that P1 could be split, but in (b) every client ac-
cesses class A and class B, indicating that P2 should not be
split.

5.1 Distinguishing Packages: the Need for a
Weight

Not every client contributes to P ’s cohesion to the same
degree. For example, a package P

client

(see Figure 2(a))
that accesses every class in the system, including the classes
of P , does not tell us very much about P ’s cohesion!

We find therefore the need to differentiate client pack-
ages that indicate P ’s cohesion from those that don’t. To
achieve this we introduce the notion of weight.

The weight contributes to lowering the cohesion of P
described by CU if the clients of P exhibit poor procedural
abstraction.

Definition 1 We define the weight of a (client) package
P

client

as the inverse of the number of connections that
P

client

has with other packages.

w(P
client

) =
1

fan in(P
client

) + fan out(P
client

)

The weight is intended to reduce the contribution to the
cohesion of P from clients that are very promiscuous in
their connections to packages of the system. In particular,
we do not want poorly-structured applications to “acciden-
tally” indicate that their packages are highly cohesive sim-
ply because everything accesses everything else!

If a client package P invokes common methods which
are implemented by classes everywhere in the system (e.g.
‘printOn:’), then the number of fan in and fan out dependen-
cies of this package will be high, which in turn diminishes
its weight and when P acts as client pointing out cohesion
of a provider Q, it reduces the CU value of Q.

P

P

Client Client

B

A

Client

Clients
using classes

A and B

client

clientB

A

Pclient

P2

P's interface

dependencies of kind inherits, state, class
references, and message sends

The ubiquitous

dependencies from

Pclient obscure the

dependencies form

clients that indicate

lack of cohesion

(a) Problem: Pclient indicating P cohesive when P is not

(b) Solution: measure the importance of the clients accessing

a pair of classes

P3

The weight of the

clients of the pair A-

B determines the

importance of the

pair in adding

towards cohesion

P's interface

Figure 2. Example of the effect of ubiquitous

clients in measuring cohesion (a) and the

weight of clients as a solution (b)

5.2 Defining CU

Definition 2 We define Common-Use (CU) as the sum of
weighted pairs of classes from the interface of a package
having a common client package (f), divided by the number
of pairs that can be formed with all classes in the interface.

CU =
X

a,b2I

f(a, b) ⇤ weight(a, b)
#Pairs

Where

I = interface(P)
#Pairs = |I|⇥(|I|�1)

2
C = clients(a) \ clients(b)

f(a, b) =
⇢

1, if C 6= ;
0, otherwise

weight(a, b) =
P

c2C

w(c)
|C|

Note that if #Pairs = 0 (i.e.,, if | I |= 0 or 1), then CU
is undefined, since a package without at least two interface
classes can neither be cohesive nor not cohesive from the
point of view of its clients.

CU results in a number between 0 and 1, where 0 means
that the classes of the interface have disassociated (disjoint)
responsibilities, and a number close to 1 indicates that all

5

5 Common-Use (CU): Inferring Cohesion
from Reuse

Common-Use (CU) measures cohesion in P by taking
into account the way client packages use the responsibilities
of P .

The intuition behind CU is that if all the clients use the
same set of classes in P , these classes contribute to the pur-
pose of P , and therefore P is cohesive. But if some clients
use a subset of classes in P and other clients use a disjoint
subset, then P apparently fulfils different, possibly unre-
lated responsibilities, which makes it not cohesive.

Figure 1 depicts both situations: in (a) some client pack-
ages access only class A and others access only class B,
indicating that P1 could be split, but in (b) every client ac-
cesses class A and class B, indicating that P2 should not be
split.

5.1 Distinguishing Packages: the Need for a
Weight

Not every client contributes to P ’s cohesion to the same
degree. For example, a package P

client

(see Figure 2(a))
that accesses every class in the system, including the classes
of P , does not tell us very much about P ’s cohesion!

We find therefore the need to differentiate client pack-
ages that indicate P ’s cohesion from those that don’t. To
achieve this we introduce the notion of weight.

The weight contributes to lowering the cohesion of P
described by CU if the clients of P exhibit poor procedural
abstraction.

Definition 1 We define the weight of a (client) package
P

client

as the inverse of the number of connections that
P

client

has with other packages.

w(P
client

) =
1

fan in(P
client

) + fan out(P
client

)

The weight is intended to reduce the contribution to the
cohesion of P from clients that are very promiscuous in
their connections to packages of the system. In particular,
we do not want poorly-structured applications to “acciden-
tally” indicate that their packages are highly cohesive sim-
ply because everything accesses everything else!

If a client package P invokes common methods which
are implemented by classes everywhere in the system (e.g.
‘printOn:’), then the number of fan in and fan out dependen-
cies of this package will be high, which in turn diminishes
its weight and when P acts as client pointing out cohesion
of a provider Q, it reduces the CU value of Q.

P

P

Client Client

B

A

Client

Clients
using classes

A and B

client

clientB

A

Pclient

P2

P's interface

dependencies of kind inherits, state, class
references, and message sends

The ubiquitous

dependencies from

Pclient obscure the

dependencies form

clients that indicate

lack of cohesion

(a) Problem: Pclient indicating P cohesive when P is not

(b) Solution: measure the importance of the clients accessing

a pair of classes

P3

The weight of the

clients of the pair A-

B determines the

importance of the

pair in adding

towards cohesion

P's interface

Figure 2. Example of the effect of ubiquitous

clients in measuring cohesion (a) and the

weight of clients as a solution (b)

5.2 Defining CU

Definition 2 We define Common-Use (CU) as the sum of
weighted pairs of classes from the interface of a package
having a common client package (f), divided by the number
of pairs that can be formed with all classes in the interface.

CU =
X

a,b2I

f(a, b) ⇤ weight(a, b)
#Pairs

Where

I = interface(P)
#Pairs = |I|⇥(|I|�1)

2
C = clients(a) \ clients(b)

f(a, b) =
⇢

1, if C 6= ;
0, otherwise

weight(a, b) =
P

c2C

w(c)
|C|

Note that if #Pairs = 0 (i.e.,, if | I |= 0 or 1), then CU
is undefined, since a package without at least two interface
classes can neither be cohesive nor not cohesive from the
point of view of its clients.

CU results in a number between 0 and 1, where 0 means
that the classes of the interface have disassociated (disjoint)
responsibilities, and a number close to 1 indicates that all

5

(2)

(3)

63Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

C. Approach by Martin
Martin [21] presents a set of principles of object-

oriented package design. Three of these principles, package
cohesion principles, try to help the software architect to
organise classes over packages. These principles are: REP,
CCP, and CRP, discussed earlier in Section II. The three
principles aim to provide a high quality of package
cohesion.

Method

Martin [21] proposed a number of simple package-level
metrics. One of them is a relational cohesion of a package.
The package cohesion metric is presented as an average
number of internal relations per class. Regardless of the
package external dependencies that are considered in other
cohesion metrics, the metric measures the connectivity
between package elements. This metric is quite simple to
apply, and is given by:

H=(R+1)/N

where
 H: package cohesion

 R: number of internal relations
 N: number of the package classes

The extra “1” in the numerator prevents cohesion H
from equalling zero when N=1. This metric gives all internal
relations the same weight and disregards the external ones.
It has been applied to a number of software projects and is
widely accepted.

D. Approach by Xu et al.
Xu et al. [20] propose an approach to measuring the

package cohesion in Ada95 object-oriented programming
language. The proposed metric is based on dependence
analysis between package entities. It is assumed that the
package may have objects and sub-programs.

Method

The package dependence graph (PGDG) describes all
types of dependencies: inter-object dependence graph
(OOG), inter-subprogram dependence graph (PPG), and
subprogram-object dependence graph (POG). The method
measures package cohesion according to PGDG. It assumes
that package PG has n objects and m subprograms, where n,
m > 0.

To present the measure in a unified model, a power for
each object PW(O) is given:

Xu et al. [20] claimed that, according to the definitions, it

is easy to prove that the measure satisfies the four properties
given by Briand et al. [3][27] to develop a good cohesion
measure.

However, an Ada package represents a logical grouping
of declarations. The role of an Ada package is similar to the
role of class in other languages, such as Java [24]. Thus, this
package cohesion metric cannot be applied to the general
example in the next section. An Ada package actually falls in
the category of class-level cohesion metric.

E. Approach by Zhou et al.
Zhou et al. [24] proposed an approach to measuring

package semantic cohesion called the Similar Context
Cohesiveness (SCC). In this approach, the common context
is used to assess the degree of relation between two
components. SCC measures the inter- and intra-package
dependencies that can reveal semantic cohesion between
components.

Method

The proposed package cohesion measure SCC is based
on the component context. The context of component c is
composed of two sets: the components that depend on c and
those that c depends on. The SCC metric is given by:

where

 m: number of components c in p

CCS(c1,c2): denotes the similarity between the contexts of

two components c1 and c2 , and is given by:
CCS(c1, c2) = kRSS(c1, c2) + (1-k)DSS(c1, c2)
k: represents the position’s importance
RSS(c1, c2): similarity between SR(c1) and SR(c2)
DSS(c1, c2): similarity between SD(c1) and SD(c2)

F. Approach by Abdeen et al.
The approach proposed by Abdeen et al. [25] is based on

the Simulated Annealing technique. The approach aims to
reduce package coupling and cycles by moving classes
between packages. Two metrics have been defined for this
purpose, coupling and cohesion metrics.

Method

The approach automatically reduces package coupling
and cycles by moving classes between packages considering
the existing class organisation and package structure. This
approach can help maintainers to define: the maximum
number of classes that can change their packages, the
maximum number of classes that a package can contain, and

function tg (x: real) return real is

begin

 temp1:=sin(x);temp2:=cos(x);

 temp:=temp1/temp2; return temp;

end tg;

…

 end Tri;

3.2 Extended Definitions
Since there is no object in the package of PG2, the definitions of
Section 3 can not be applied to these packages directly. Therefore,
this section will extend the definitions of Section 3.1 to a more
general model by the following steps:

y For PG1, if there is an embedded package, the package is
taken as an object.

y For PG2, take the components of the type as objects of the
package.

Let A, B be object of a type T, M, P primitive subprograms, and
Com1 and Com2 are components of T. Then

� A, B (A.Com1 Æ B.Com2) � Com1 Æ Com2.

� A, P (P Ö A.Com) � P Ö Com.

� A, B, M, P (M ����� o� 2.,1. ComBComA P)

� M ���� o� 2,1 ComCom P.

y For PG3, take the types as objects of the package.

y To present our measure in a unified model, we add powers
for different objects.

PW(O) =

°
¯

°
®

­

others
OOPGCohesioin

OOCohesion

1

object typea is))((

object package a is)(

where Cohesion (O) is the cohesion of O, PG (O) returns the
package containing O.

4. MEASURING PACKAGE COHESION
According to the PGDG, this section will propose our method to
measure the package cohesion. In the following discussions, we
assume package PG contains n objects and m subprograms, where
m, n t0.

4.1 Measuring Inter-Object Cohesion
Inter-object cohesion is about the tightness among objects in a
package. To measure this cohesion, for each object A, introduce a
set A_DEP to record the objects on which A depends, i.e.

O_DEP(A) = {B| AÆB, A z B}.
Let

¦
�

)(_

)()(_
ADEPOB

BPWADEPPW .

Then, we define the inter-object cohesion as:

),_(PGOOCohesion

°
°

¯

°
°

®

­

!
�

¦

1
1

)(_1

1)(

00

1

n
n

ADEPPW
n

nAPW
n

n

i

i

where
1

)(_

�n
ADEPPW

 represents the degree on which A

depends on other objects.

If n=0, there is no object in the package, we set it to 0. If n=1,
there is one and only one object in the package, the cohesion is its
power.

4.2 Measuring Subprogram-Object Cohesion
Subprogram-object cohesion is the most important field in
measuring cohesion. Until now, there have been several
approaches proposed in literature, such as Chae’s methods [6, 7].
But most approaches are based on the POG. As we have
mentioned above, all these methods describe the object reference
in a simple way and subprograms are connected by the objects
referred. Whether there are related among these subprograms are
not described exactly. Thus, these approaches should be improved
to describe these relations. For completeness, we use Co(Prev) to
represent a previous cohesion measure, which satisfies Briand’s
four properties.

For each subprogram P, we introduce another two sets: P_O and
P_O_OUT. Where

x P_O(P) records all the objects referred in P.

Figure. 1. PGDG of class Tri

temp

temp1

temp2

(a) OOG

sin

cos

tg

ctg

(c) PPG

sin cos tg ctg

temp temp1 temp2

(b) POG

64

Besides, the computation of CCS(c1, c2) involves

inter-package data dependence like CCS(SCCMetric,

RCMetric). This shows that both intra- and inter- package

data dependences contribute to the cohesion of a package.

3.2. Measure definition
According to the discussion in Section 3.1, the

components have two kinds of relations: context and

data. For two components c1 and c2, they have a context

relation, if CCS(c1, c2) does not equal 0. And they have a

data relation, if Dep(c1, c2) equals to 1. Herein, Dep(c1,

c2) is determined as follows:

1 2 2 1

1 2

1
(,)

0

d dif c c or c c
Dep c c

else
­ ⎯⎯→ ⎯⎯→= ®
¯

As in Figure 1, the component SCCMetric and
RCMetric have a context relation. And the component

DependenceGraph and Element have a data relation.

Definition 4 The weighted interaction graph WIG

of a package p is an undirected graph, WIG(p) = (V(p),

E(p)) where V(p) is a set of components in p, and E(p)

is a set of edges labeled with weights Wgt, i.e.

E(p) = {(c1, c2) ∈ V(p) × V(p) | Wgt(c1, c2) > 0}

where

Wgt(c1, c2) = CCS(c1, c2) + Dep(c1, c2)

Based on Definition 4, the higher the sum of the

weights of WIG(p) is, the closer the components of p

are tied. Thus, the measure, SCC (Similar Context
Cohesiveness) is defined as the ratio of the sum of

weights of WIG(p) to the number of all possible

context and data relations of p.

Definition 5 For a package p and V(p) = {c1, c2,…, cm},

we have

(,) ()

(,)

1()
(1)

1 1

i j

i j
c c E p

Wgt c c
if mSCC p m m
if m

∈
­
°° >= ® −
°

=°̄

¦

When m = 1, there is only one component in p. In

this case, p is cohesive obviously. We thus set SCC(p)

to 1. When m > 1, if each pair of components has no

relation, SCC(p) = 0. And if the Wgt for each pair of

components reaches the maximum value 2, SCC(p) =

1. Thus, SCC(p) ∈ [0, 1].

In the context of SCC, we regard that for a cohesive

package p, WIG(p) should be a connected graph and

the weight for each edge should be no less than 0.5.

According to graph theory, a connected graph with m

nodes has no less than m – 1 edges. Thus, the

theoretical threshold of SCC is 1 / 2m. For example,

the threshold for the package CohesionMetrics is 0.17.

Figure 2 shows WIG(CohesionMetrics). And based

on Definition 5, SCC(CohesionMetrics) = 0.44, much

greater than 0.17, which is consistent with the fact that

CohesionMetrics is cohesive.

SCC satisfies the monotony and combination rule

which is proposed by Briand et al
[11-12]

. It is widely

accepted that a good module cohesion measure should

conform to these two rules.

Theorem 1 For a package p, SCC(p) does not

decrease when adding a data dependence in p.

Proof Let c1, c2 ∈ p, when adding a data dependence

c2
d⎯⎯→ c1, we have:

(1) SR(c1) = SR(c1) ∪ SR(c2), thus ∀ci ∈ p and ci ≠ c1,

RSS(c1, ci) does not decrease.

(2) SD(c2) = SD(c1) ∪ SD(c2), thus, ∀ci ∈ p and ci ≠ c2,

DSS(c2, ci) does not decrease.

(3) Dep(c1, c2) = 1.

According to Definition 4 and 5, SCC(p) does not

decrease when adding a data dependence in p. ͣ�

Theorem 2 For the package p1, p2, and there is no

relation between p1 and p2, let p3 = p1 ∪ p2, then SCC(p3)

≤ Max(SCC(p1), SCC(p2)).

Proof Based on SCC, there are no relation between

p1 and p2 if they satisfy

∀c1 ∈ p1 ∧ ∀c2 ∈ p2: Wgt(c1, c2) = 0

When combining p1 and p2, the number of the

components of p3 is equal to the sum of the number of the

components of p1 and p2. Let m1 = |p1|, m2 = |p2|, we have:

If m1 = 1 and m2 = 1, then SCC(p3) is visibly 0. Thus,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 = 1 and m2 ≠ 1 (m1 ≠ 1 and m2 = 1), then,

2
3 2 2

2

1
() () ()

1

mSCC p SCC p SCC p
m

−= <
+

Therefore,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 ≠ 1 and m2 ≠ 1, then,

1 1 1 2 2 2
3

1 2 1 2

(1) () (1) ()
()

()(1)

m m SCC p m m SCC pSCC p
m m m m

− + −=
+ + −

Figure 2. WIG(CohesionMetrics)

130

Besides, the computation of CCS(c1, c2) involves

inter-package data dependence like CCS(SCCMetric,

RCMetric). This shows that both intra- and inter- package

data dependences contribute to the cohesion of a package.

3.2. Measure definition
According to the discussion in Section 3.1, the

components have two kinds of relations: context and

data. For two components c1 and c2, they have a context

relation, if CCS(c1, c2) does not equal 0. And they have a

data relation, if Dep(c1, c2) equals to 1. Herein, Dep(c1,

c2) is determined as follows:

1 2 2 1

1 2

1
(,)

0

d dif c c or c c
Dep c c

else
­ ⎯⎯→ ⎯⎯→= ®
¯

As in Figure 1, the component SCCMetric and
RCMetric have a context relation. And the component

DependenceGraph and Element have a data relation.

Definition 4 The weighted interaction graph WIG

of a package p is an undirected graph, WIG(p) = (V(p),

E(p)) where V(p) is a set of components in p, and E(p)

is a set of edges labeled with weights Wgt, i.e.

E(p) = {(c1, c2) ∈ V(p) × V(p) | Wgt(c1, c2) > 0}

where

Wgt(c1, c2) = CCS(c1, c2) + Dep(c1, c2)

Based on Definition 4, the higher the sum of the

weights of WIG(p) is, the closer the components of p

are tied. Thus, the measure, SCC (Similar Context
Cohesiveness) is defined as the ratio of the sum of

weights of WIG(p) to the number of all possible

context and data relations of p.

Definition 5 For a package p and V(p) = {c1, c2,…, cm},

we have

(,) ()

(,)

1()
(1)

1 1

i j

i j
c c E p

Wgt c c
if mSCC p m m
if m

∈
­
°° >= ® −
°

=°̄

¦

When m = 1, there is only one component in p. In

this case, p is cohesive obviously. We thus set SCC(p)

to 1. When m > 1, if each pair of components has no

relation, SCC(p) = 0. And if the Wgt for each pair of

components reaches the maximum value 2, SCC(p) =

1. Thus, SCC(p) ∈ [0, 1].

In the context of SCC, we regard that for a cohesive

package p, WIG(p) should be a connected graph and

the weight for each edge should be no less than 0.5.

According to graph theory, a connected graph with m

nodes has no less than m – 1 edges. Thus, the

theoretical threshold of SCC is 1 / 2m. For example,

the threshold for the package CohesionMetrics is 0.17.

Figure 2 shows WIG(CohesionMetrics). And based

on Definition 5, SCC(CohesionMetrics) = 0.44, much

greater than 0.17, which is consistent with the fact that

CohesionMetrics is cohesive.

SCC satisfies the monotony and combination rule

which is proposed by Briand et al
[11-12]

. It is widely

accepted that a good module cohesion measure should

conform to these two rules.

Theorem 1 For a package p, SCC(p) does not

decrease when adding a data dependence in p.

Proof Let c1, c2 ∈ p, when adding a data dependence

c2
d⎯⎯→ c1, we have:

(1) SR(c1) = SR(c1) ∪ SR(c2), thus ∀ci ∈ p and ci ≠ c1,

RSS(c1, ci) does not decrease.

(2) SD(c2) = SD(c1) ∪ SD(c2), thus, ∀ci ∈ p and ci ≠ c2,

DSS(c2, ci) does not decrease.

(3) Dep(c1, c2) = 1.

According to Definition 4 and 5, SCC(p) does not

decrease when adding a data dependence in p. ͣ�

Theorem 2 For the package p1, p2, and there is no

relation between p1 and p2, let p3 = p1 ∪ p2, then SCC(p3)

≤ Max(SCC(p1), SCC(p2)).

Proof Based on SCC, there are no relation between

p1 and p2 if they satisfy

∀c1 ∈ p1 ∧ ∀c2 ∈ p2: Wgt(c1, c2) = 0

When combining p1 and p2, the number of the

components of p3 is equal to the sum of the number of the

components of p1 and p2. Let m1 = |p1|, m2 = |p2|, we have:

If m1 = 1 and m2 = 1, then SCC(p3) is visibly 0. Thus,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 = 1 and m2 ≠ 1 (m1 ≠ 1 and m2 = 1), then,

2
3 2 2

2

1
() () ()

1

mSCC p SCC p SCC p
m

−= <
+

Therefore,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 ≠ 1 and m2 ≠ 1, then,

1 1 1 2 2 2
3

1 2 1 2

(1) () (1) ()
()

()(1)

m m SCC p m m SCC pSCC p
m m m m

− + −=
+ + −

Figure 2. WIG(CohesionMetrics)

130

Besides, the computation of CCS(c1, c2) involves

inter-package data dependence like CCS(SCCMetric,

RCMetric). This shows that both intra- and inter- package

data dependences contribute to the cohesion of a package.

3.2. Measure definition
According to the discussion in Section 3.1, the

components have two kinds of relations: context and

data. For two components c1 and c2, they have a context

relation, if CCS(c1, c2) does not equal 0. And they have a

data relation, if Dep(c1, c2) equals to 1. Herein, Dep(c1,

c2) is determined as follows:

1 2 2 1

1 2

1
(,)

0

d dif c c or c c
Dep c c

else
­ ⎯⎯→ ⎯⎯→= ®
¯

As in Figure 1, the component SCCMetric and
RCMetric have a context relation. And the component

DependenceGraph and Element have a data relation.

Definition 4 The weighted interaction graph WIG

of a package p is an undirected graph, WIG(p) = (V(p),

E(p)) where V(p) is a set of components in p, and E(p)

is a set of edges labeled with weights Wgt, i.e.

E(p) = {(c1, c2) ∈ V(p) × V(p) | Wgt(c1, c2) > 0}

where

Wgt(c1, c2) = CCS(c1, c2) + Dep(c1, c2)

Based on Definition 4, the higher the sum of the

weights of WIG(p) is, the closer the components of p

are tied. Thus, the measure, SCC (Similar Context
Cohesiveness) is defined as the ratio of the sum of

weights of WIG(p) to the number of all possible

context and data relations of p.

Definition 5 For a package p and V(p) = {c1, c2,…, cm},

we have

(,) ()

(,)

1()
(1)

1 1

i j

i j
c c E p

Wgt c c
if mSCC p m m
if m

∈
­
°° >= ® −
°

=°̄

¦

When m = 1, there is only one component in p. In

this case, p is cohesive obviously. We thus set SCC(p)

to 1. When m > 1, if each pair of components has no

relation, SCC(p) = 0. And if the Wgt for each pair of

components reaches the maximum value 2, SCC(p) =

1. Thus, SCC(p) ∈ [0, 1].

In the context of SCC, we regard that for a cohesive

package p, WIG(p) should be a connected graph and

the weight for each edge should be no less than 0.5.

According to graph theory, a connected graph with m

nodes has no less than m – 1 edges. Thus, the

theoretical threshold of SCC is 1 / 2m. For example,

the threshold for the package CohesionMetrics is 0.17.

Figure 2 shows WIG(CohesionMetrics). And based

on Definition 5, SCC(CohesionMetrics) = 0.44, much

greater than 0.17, which is consistent with the fact that

CohesionMetrics is cohesive.

SCC satisfies the monotony and combination rule

which is proposed by Briand et al
[11-12]

. It is widely

accepted that a good module cohesion measure should

conform to these two rules.

Theorem 1 For a package p, SCC(p) does not

decrease when adding a data dependence in p.

Proof Let c1, c2 ∈ p, when adding a data dependence

c2
d⎯⎯→ c1, we have:

(1) SR(c1) = SR(c1) ∪ SR(c2), thus ∀ci ∈ p and ci ≠ c1,

RSS(c1, ci) does not decrease.

(2) SD(c2) = SD(c1) ∪ SD(c2), thus, ∀ci ∈ p and ci ≠ c2,

DSS(c2, ci) does not decrease.

(3) Dep(c1, c2) = 1.

According to Definition 4 and 5, SCC(p) does not

decrease when adding a data dependence in p. ͣ�

Theorem 2 For the package p1, p2, and there is no

relation between p1 and p2, let p3 = p1 ∪ p2, then SCC(p3)

≤ Max(SCC(p1), SCC(p2)).

Proof Based on SCC, there are no relation between

p1 and p2 if they satisfy

∀c1 ∈ p1 ∧ ∀c2 ∈ p2: Wgt(c1, c2) = 0

When combining p1 and p2, the number of the

components of p3 is equal to the sum of the number of the

components of p1 and p2. Let m1 = |p1|, m2 = |p2|, we have:

If m1 = 1 and m2 = 1, then SCC(p3) is visibly 0. Thus,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 = 1 and m2 ≠ 1 (m1 ≠ 1 and m2 = 1), then,

2
3 2 2

2

1
() () ()

1

mSCC p SCC p SCC p
m

−= <
+

Therefore,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 ≠ 1 and m2 ≠ 1, then,

1 1 1 2 2 2
3

1 2 1 2

(1) () (1) ()
()

()(1)

m m SCC p m m SCC pSCC p
m m m m

− + −=
+ + −

Figure 2. WIG(CohesionMetrics)

130

components. The context of a component reflects the
relationship between the component and the rest of the
software. In real world, engineers always design or
comprehend a component by means of the context
where the component exists. The similar contexts of
two components indicate that the components are
related semantically to some degree. In the next
section, we will discuss how to use the component
context to evaluate the cohesion of a package.

3. Similar context based package cohesion measure

To properly evaluate the cohesiveness of a package,
we should identify the coupling between components
through their contexts. Therefore in this section, we
first discuss the context of a component. Then, we
propose a new package cohesion measure called SCC
based on the component context.

3.1. Component context

In this paper, we regard that the context of a
component c is composed of two parts: One is the
components that c has data dependences on. Another is
the components that have data dependences on c. For
properly define the context, we give a formal definition of
data dependence.

Definition 1 A component c1 has a data dependence
on another component c2, denoted by d⎯⎯→ , if c1
references a function, a variable or a type defined in c2.
A component c1 has an indirect data dependence on
another component c2, denoted by c1

d+⎯⎯→ c2, if (c1,
c2) belong to the transitive closure of d⎯⎯→ .

For instance in Figure 1, the component RCMetric
has a data dependence on the component Element.

Definition 2 For a component c, we have:
SR(c) = {ci | ci

d+⎯⎯→ c}
SD(c) = {ci | c d+⎯⎯→ ci}

Here, SR(c) is set of the components that have data
dependences on c, which represents the components
that may be affected when c is changed. SD(c) contains
the components that c has data dependences on, which
denotes the components whose changes may leads to
the change of c. Then, the context of a component is
defined as a tuple of SR and SD.

Definition 3 For a component c, the context of c is
(SR(c), SD(c)), denoted by CC(c).

It is rational to infer that two components c1 and
c2are related tightly if their contexts are similar. Since
the context of a component is composed of SR and SD,
the evaluation of the similarity between CC(c1) and
CC(c2), denoted by CCS(c1, c2), need to allow for the

similarity between SR(c1) and SR(c2), denoted by
RSS(c1, c2), and the similarity between SD(c1) and
SD(c2), denoted by DSS(c1, c2). Herein, the similarity
between two sets S1, S2 is defined as the number of
elements that differ:

1 2
1 2

1 21 2

1 2

| |
| |(,)
0

S S if S S
S SSimilarity S S

if S S

∩­ ∪ ≠ ∅° ∪= ®
° ∪ = ∅¯

When RSS(c1, c2) = 0 and DSS(c1, c2) = 0, CCS(c1,
c2) should also equal to 0. When RSS(c1, c2) = 1 and
DSS(c1, c2) = 1, CCS(c1, c2) should achieve maximum
value 1. Thus,

1 2 1 2 1 2(,) (,) (1) (,)CCS c c kRSS c c k DSS c c= + −

Herein, the value of k belongs to [0, 1]. In the rest
of this paper, we take k as 0.5 which represents that
RSS and DSS are in the same important position.
Consider the component SCCMetric and RCMetric in
the package CohesionMetrics in Figure 1:

SR(SCCMetric) = {Evaluator}
SR(RCMetric) = {Evaluator}
SD(SCCMetric) =

{DependenceGraphBuilder, Element}
SD(RCMetric) =

{DependenceGraphBuilder, Element}
RSS(SCCMetric, RCMetric) = 1
DSS(SCCMetric, RCMetric) = 1
CCS(SCCMetric, RCMetric) = 1

CCS(c1, c2) has capability of revealing the semantic
coupling between c1 and c2. On the one hand, RSS(c1,
c2) reflects the degree that the two components are
reused together. In terms of Common Reuse Principle
[1], the components tending to be reused together are
always related tightly. Generally speaking, it is seldom
for a component to be reused solely. To achieve one
task, a reusable component needs to collaborate with
other components that are part of the reusable
abstraction. Thus, the components always reused
together serve for a common abstraction regardless of
whether there are data dependences between them or
not. Indeed, the more frequently the components are
commonly reused, the more tightly they are related. On
the other hand, DSS(c1, c2) represents the degree that
the two components use the common components.
Indeed, c1 and c2 have high probability of performing
similar or semantic-related operations in virtue of the
shared components, such as the components in the
package CohesionMetrics in Figure 1. This is similar to
the shared type employed in class cohesion measures [5, 9-

10]. Thus, DSS(c1, c2) can mine the semantic relation
between c1 and c2 to some extent.

129

(4)

(5)

64Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the classes that should not change their packages and/or the
packages that should not be changed. A set of measures is
defined to determine and quantify the quality of a package.
The number of package dependencies (|PD|) normalises
these measures.

The package cohesion metric is defined to be the direct
dependencies between its classes. Hence, the cohesion of a
package P is proportional to the number of its internal
dependencies (|P Int.D |) according to the CCP Principle [19].
The cohesion quality is given as follows:

where

 |PD| is the number of all internal and external
dependencies of classes in the package.

G. Approach by Bauer and Trifu
Bauer and Trifu [28] have proposed an approach,

architecture-aware adaptive clustering, to produce
meaningful decompositions in a system. They have
evaluated their approach by defining two metrics: the
average cohesion of a subsystem and the average coupling
between subsystems.

Method

The approach was based on providing better
understanding of the system. They tried to recover from the
original decomposition and then impose an appropriate
structure. The new structure aims to maximise subsystems
cohesion. To evaluate the recovered subsystem
decomposition, they performed a comparative study that is
based on two criteria, accuracy and optimality. For
accuracy, they compared the resulting decompositions with
both the original package structure and the ideal Common
Reuse Principle structure of [21]. For optimality, they used
some optimality metrics to show whether the resulting
decompositions have high cohesion and low coupling. To
evaluate their approach, two metrics were defined: average
cohesion of the subsystems and average coupling between
the subsystems of a given decomposition. The average
cohesion metric is given by:

where

 D: a composition

noInternalEdges(Si): number of edges between

classes in Si

|D|*: number of subsystems except single-class

subsystems in D

Si: subsystem number i in D

 |Si|: number of classes in subsystem Si

H. Approach by Seng et al.
The approach by Seng et al. [29] aims to develop

existing object-oriented system decompositions by defining
new decompositions with better metric values and fewer
violations of design principles. They defined the problem as
a search problem. The quality of the resulting subsystem
decompositions is measured by the fitness function that
combines software metrics and design heuristics.

Method

The fitness function consists of cohesion, coupling,
complexity metrics, as well as cyclic dependencies and
bottleneck heuristics. The value of each individual function
is between 0 and 1, where the optimal value is 1. The
cohesion of a system s is the summation of cohesion values
for the individual subsystems in s. The cohesion for a
subsystem si is measured by counting the number of different
classes in si known by some class cj ⊂ si ,(#k(cj)), and
dividing this by the square number of classes in si , (#c(si)).
The resulting value can be normalised if divided by the
number of subsystems (#s).

I. Approach by Tagoug

Tagoug [30] has proposed coupling and cohesion
metrics on subjects, which are similar to packages. Each
subject is a collection of classes. The approach aims to
measure cohesion and coupling at the system level. The
quality metric, which combines cohesion and coupling
values, measures the decomposition’s quality as early as the
analysis and design phases of the software development
lifecycle.

Method

The two metrics measure the quality of object-oriented
decomposition. The cohesion metric focuses on the
interactions of components inside a subject, while the
coupling metric focuses on the interactions of components
among subjects. The cohesion of subject E is given by:

!!
C(E)=

Wij
j=i+1

n

∑
i=1

n−1

∑
Wmax *(n*(n−1)/2)

where
 E: a set of classes of S.
 Wij: the sum of the weights of links in Lij.
 Lij: the set of all links between classes Pi and Pj.
 Wmax = max {Wij} in system S

other hand, moving c7 increases the number of inter-package
dependencies. In Modularization2, there are 6 inter-
package dependencies compared to 5 for Modularization1.

III. MODULARIZATION QUALITY

Our goal is to automatically optimize the decomposition
of software system into packages so that the resulting
organization of classes/packages, mainly, reduces connectivity
and cyclic-connectivity between packages. This goal is
inspired from well known quality principles already discussed
in [3], [11], [23] and in particular from the following
principle: packages are desired to be loosely coupled and
cohesive to a certain extent [11]. In such a context, we
need to define measures that evaluate package cohesion and
coupling.

In addition, cyclic dependencies between packages are
considered as an anti-pattern for package design [23].
In this section we define two suites of measures: the first is
used when evaluating modularization quality and the second
is used when evaluating modularity quality of single package.
Note that all measures we define in this section take their
value in the interval [0..1] where 1 is the optimal value and
0 is the worst value.

A. Measuring Modularization Quality

Inter-Package Dependencies: according to Common
Closure Principle (CCP) [23], classes that change together
should be grouped together. In such a context, optimizing
modularization requires reducing the sum of inter-package
dependencies (IPD =

P|MP |
i=1 |piExt.Out.D

|) [3], [11]. Since
we do not change the dependencies between classes during
our optimization process, we use the sum of inter-class
dependencies (ICD =

P|MC |
j=1 |cjOut.D

|) as normalizer. We
define the measure CCQ to evaluate the Common Closure
Quality of a modularization M as follows:

CCQ(M) = 1� IPD

ICD

Inter-Package Connections: according to Common
Reuse Principle (CRP) [23], classes that are reused together
should be grouped together. In such a context, optimizing
modularization requires reducing the sum of inter-package
connections (IPC =

P|MP |
i=1 |piOut.Con

|) [3], [11]. We define
the measure CRQ to evaluate the Common Reuse Quality
of a modularization M as follows:

CRQ(M) = 1� IPC

ICD

Inter-Package Cyclic-Dependencies: according to
Acyclic Dependencies Principle (ADP) [23], dependen-
cies between packages must not form cycles. In such
a context, optimizing modularization requires reducing
the sum of inter-package cyclic-dependencies (IPCD =P|MP |

i=1 |piOut.Cyc.D
|). We define the measure ADQ to mea-

sure the Acyclic Dependencies Quality of a modularization
M as follows: ADQ(M) = 1� IPCD

ICD

Inter-Packages Cyclic-Connections: as for cyclic de-
pendencies between packages, reducing cyclic connections
between packages is required.
For example, in Modularization1 in Fig. 1, there are 3
cyclic dependencies [(c3, c6), (c7, c1), (c7, c2)] and 2 cyclic
connections [(p1, p2), (p2, p1)]; moving c7 to p3 will reduce
the number of cyclic-dependencies: in modularization2

there are only 2 cyclic dependencies [(c6, c9), (c7, c6)], but
it remains 2 cyclic connections [(p2, p3), (p3, p2)]. We thus
deduce that reducing inter-package cyclic dependencies does
not necessarily reduce inter-package direct cyclic-connections
(IPCC =

P|MP |
i=1 |piOut.Cyc.Con

|).
We define the measure ACQ to evaluate the Acyclic Con-
nections Quality of a modularization M as follows:

ACQ(M) = 1� IPCC

ICD

B. Measuring Package Quality

In addition to measures presented in Section III-A, we
define a set of measures that help us determine and quantify
the quality of a single package within a given modularization.
To normalize the value of those measures we use the number
of dependencies related to the considered package (|pD|)
with |pD| > 0.

Package Cohesion: we relate package cohesion to the
direct dependencies between its classes. In such a context,
we consider that the cohesion of a package p is proportional
to the number of internal dependencies within p (|pInt.D|).
This is done according to the Common Closure Principle
(CCP) [23]. We define the measure of package cohesion
quality similarly to that in [1] as follows:

CohesionQ(p) = |pInt.D|
|pD|

Package Coupling: we relate package coupling to
its efferent and afferent coupling (Ce,Ca) as defined by
Martin in [24]. Package Ce is the number of packages that
this package depends upon (|pPro.P |). Package Ca is the
number of packages that depend upon this package (|pCli.P |).
According to the common reuse principle, we define the
measure of package coupling quality using the number of
package providers and clients as follows:

CouplingQ(p) = 1� |pP ro.P[pCli.P |
|pD|

Package Cyclic-Dependencies: for automatically detect-
ing packages that suffer from direct-cyclic dependencies
we define a simple measure that evaluates the quality of
package cyclic dependencies (CyclicDQ) using the number
of package cyclic dependencies:

CyclicDQ(p) = 1� |pCyc.D|
|pD|

Similarly we define another measure that evaluates package
cyclic connections quality (CyclicDQ) using the number of
package cyclic connections:

CyclicCQ(p) = 1� |pCyc.Con|
|pD|

105105

the MoJo7 metric. The ideal CRP structure is the ideal
decomposition from the point of view of the Common
Reuse Principle [14]. In order to obtain this decom-
position, we applied our MMST algorithm on a set of
similarities that were computed using only the indirect
coupling. The MoJo metric counts the minimum num-
ber of basic operations (moves and joins) that must be
performed to transform one decomposition to another.
In essence, this metric shows how similar two decom-
positions are. It is clear, from the above mentioned de-
scription, that the lower the value of the MoJo metric,
the more similar the two decompositions. Similarity to
the original package structure means that subsystems
contain only semantically related classes. We base this
affirmation on the assumption that the original pack-
age structure was designed to reflect groups of seman-
tically related classes. Similarity to the ideal CRP
structure means that all the semantically related classes
are in a single subsystem because they are consistently
used together. In addition to these measurements, we
also rely on manual inspection of the decompositions
to prove that the architecture-aware adaptive clustering
produces more accurate decompositions than its non-
adaptive counterpart.

• Optimality. Most of the other clustering approaches
are evaluated using some sort of optimality metric
which shows that the resulting decompositions exhibit
desirable attributes of the subsystem: high internal co-
hesion and low external coupling. In our case, op-
timality is just a secondary criterion. We wanted to
prove that the superior accuracy of our approach is not
achieved at the expense of optimality. To evaluate our
approach based on this criterion, we have defined two
metrics: average cohesion of the subsystems and av-
erage coupling between the subsystems of a given de-
composition. The formulas to compute these metrics
are given below:

avgCohesion(D) =

∑
Si∈D
|Si|>1

noInternalEdges(Si)
|Si|2−|Si|

2

|D|∗

avgCoupling(D) =

∑
Si,Sj∈D

i<j

noExternalEdges(Si,Sj)
|Si|∗|Sj |

|D|2−|D|
2

where D is a decomposition, |D| is the number
of subsystems in decomposition D, Si is the ith

subsystem in D, |Si| is the number of classes in

7For a description of the MoJo metric, see [24].

subsystem Si, noInternalEdges(Si) is the number
of undirected edges between the classes of Si and
noExternalEdges(Si, Sj) is the number of undi-
rected edges between classes from Si and classes from
Sj . Note that when computing the average cohesion,
we do not consider single-class clusters as the inter-
nal cohesion of such clusters is undefined. |D|∗ is the
number of subsystems that are not single-class subsys-
tems in decomposition D. Also, avgCoupling(D) is
not defined for decompositions that contain a single
cluster.

Both the Accuracy and Optimality related measure-
ments were done for three different values of the closeness
factor given as a parameter to the MMST clustering algo-
rithm.

We have applied the above mentioned evaluation proce-
dure on two case studies: the Java AWT library and the SSH-
Tools project. The following subsection presents the results
obtained for the former.

3.1 The Java AWT Library

The Java AWT Library is a collection of classes for cre-
ating lightweight user interfaces and for painting graphics
and images. It is part of the standard Java platform. It is
structured into 14 relatively large packages.

Table 2 presents time and size measurements for the Java
AWT library.

From this table, we can clearly see that the only time and
memory consuming phase is the fact extraction phase. Still,
the size of the source model (38 MBytes) and the execution
time (under 5 minutes) are reasonable for a project so large
(more than 140,000 lines of code).

Next, table 3 presents the accuracy related measurements
for the Java AWT library. The accuracy and optimality ta-
ble headings contain the following abbreviations: Pack -
the original package structure, CRP - the ideal CRP struc-
ture, NA - the decomposition produced by the non-adaptive
clustering, and A - the decomposition produced by the
architecture-aware adaptive clustering.

The results clearly show that the architecture-aware
adaptive clustering produces more accurate decomposi-
tions than its non-adaptive counterpart. In the case of
architecture-aware adaptive clustering, the values of the
MoJo metric, although lower than in the case of non-
adaptive clustering, are rather high for the comparison with
the original package structure. This is due to the differ-
ence in average cluster size. Our MMST tends to create
small clusters, while the original package structure contains
a small number of large clusters. The problem will be dis-
cussed in more detail later on in this section.

The manual inspection of the clusterings revealed some
very interesting results. We have compared only the cluster-

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

way, that the newly created individuals are likely to have an
improved fitness.

Furthermore the operators are designed to be non-destructive
and to preserve a complete subsystem candidate as far as
possible. The operators take care to produce only consistent
and complete decompositions, so we do not waste computa-
tion time on infeasible solutions.

The crossover operator forms two children from two par-
ents. After choosing the parents, the operator selects a se-
quence of subsystem candidates in both parents (step 0)
and mutually integrates them as new subsystem candidates
in the other parent (step 1) and vice versa, thus forming
two new children consisting of both old and new subsystem
candidates. Old subsystem candidates which now contain
duplicated classes are deleted (step 2), their non-duplicated
classes are collected (step 3) and distributed over the re-
maining subsystem candidates (step 4). In this step we con-
sider the number of dependencies between the classes that
are to be distributed to new subsystem candidates. We al-
locate them to those subsystem candidates which have the
strongest connections to the classes. The process of the
crossover operator is depicted in Figure 3, where we show
how one of the two possible children is created.

The split&join mutation either divides a subsystem can-
didate into two smaller subsystem candidates or joins two
subsystem candidates by unifying their classes. The oper-
ator splits a subsystem candidate in such a way, that the
separation in two subsystem candidates occurs at a loosely
associated point in the dependency graph. Similarly, the
operator connects two subsystem candidates with strong as-
sociation weight.

Elimination mutation deletes a subsystem candidate and
distributes its classes to other subsystem candidates, based
on association weights. Elimination mutation is part of our
crossover operator discussed above.

Adoption mutation tries to find a new subsystem candi-
date for an orphan, i.e. a subsystem candidate containing
only a single class. Thus our approach naturally implements
an orphan adoption technique [18]. Orphan adoption avoids
useless subsystems candidates containing only a single class.
Our operator simply moves the orphan to the subsystem
candidate that has the highest connectivity to the orphan.

2.2.3 Initial population
The building block theory tells us, that the GA constructs

solutions by combining building blocks. But where do these
building blocks come from? As a general purpose search the
GA is claimed to find building blocks over time [8]. But
since we design a specialized GA for software decomposi-
tion, we can use domain knowledge to shortcut the search
for building blocks and speed up the convergence. Thus
the suboptimal results of problem specific algorithms can
be used to create an initial population that might help the
GA to find proper building blocks fast [10].

For good starting populations, two competing properties
are desirable. On the one hand the individuals should have
a high fitness, so good building blocks are already present in
the population. On the other hand, the GA needs diversity
in the population to be able to explore the search space.

We propose to balance the competing goals by taking ran-
domly selected connected components of the dependency
graph for half of our population and highly fit ones for the
rest.

The strategy for finding highly fit individuals may vary
depending on the availability of existing decompositions:

• If a suitable decomposition is given (e.g. by the pack-
age structure of a Java system), we use it as the highly
fit initial population.

• If no decomposition is available, we attempt to build
several suboptimal decompositions. Our approach is
based on a modification of Kruskal’s algorithm for the
construction of minimum spanning trees (MST) on the
dependency graph [20]. We modify this greedy algo-
rithm by defining a threshold for the unification of
two subtrees of the MST. This results in a solution
that consists of a forest representing initial building
blocks of the decomposition. Using different thresh-
olds, which are chosen randomly from a certain inter-
val, we can create a set of individuals representing the
highly fit half of our initial population.

2.3 Fitness function
Our fitness function fit(s) is a multi modal fitness func-

tion. Each of the individual functions calculates a value
between 0 and 1, where 1 is the optimal value. Such a multi
modal fitness function can be easily mapped into a linear
fitness function, by just adding up the weighted individual
values.

fit(s)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cohesion(s) :

#s∑

i=1

#c(si)∑

j=1

#k(cj)

#c(si)2

#s

coupling(s) : 1 −
#s∑
i=1

#rO(si)
#r

complexity(s) :
#s∑
i=1

(
com(si) ∗ #c(si)

#c

)

cycles(s) : 1 −
n∑

i=1
size(scc[i])k

#sk

bottlenecks(s) : 1 −
#s∑
i=1

min(inDeg(si),outDeg(si))
#s∗maxDeg

Currently we are using standard coupling and cohesion
metrics as parts of our fitness function [2]. To measure
the cohesion for a system s, we sum up the cohesion val-
ues for the individual subsystems in s. The cohesion for a
subsystem si is determined by counting the number of dif-
ferent classes inside si known by some class cj ∈ si (#k(cj))
and divide this by the square of the number of classes in si

(#c(si)). This value is then normalized by dividing it by
the number of subsystems (#s).

The coupling function is the sum of the coupling values for
each subsystem in s. The coupling value for one subsystem
si is calculated in the following way: at first, we count the
number of dependency edges between classes inside si and
classes belonging to other subsystems sj (#rO(si)). This
number is divided by the overall number of dependency
edges (#r) in s.

The complexity function adds up the complexity values
com(si) of all subsystems si in s, normalized by the propor-

tion of classes #c(si)
#c of si in s. The complexity value com(si)

of a subsystem si depends on four threshold parameters:
com(si) is considered to be optimal (i.e = 1) if the com-
plexity of a subsystem is inside the interval [minO, maxO].
Otherwise, the value is linearly interpolated between 0 and 1
inside the intervals [minU, minO] and [maxO, maxU]. This

1047

(6)

(7)

(8)

(9)

65Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 n = |E|, n > 1

The cohesion value is between 0, i.e., there are no links
between classes, and 1, maximum links with maximum
weight. The weights of links between classes of a subject
are ordered in Table I based on the degree of association
according to the object-oriented expert designers.

TABLE I. WEIGHTS OF LINKS BETWEEN CLASSES.

Links Type Weights (Wij)

Whole Part Structure 0.9

Inheritance 0.8

Instance Connection 0.7

Message Connection 0.6

Conceptual Link 0.5

J. Approach by Albattah and Melton
The approach by Albattah and Melton [23] is motivated

by the package cohesion principles [21]. They proposed two
different cohesion metrics to measure two different cohesion
concepts or types based on Martin’s package cohesion
principles in [21]. The first cohesion type, Common Reuse
(CR), includes the factors that help in assessing CR
cohesion. Similarly, the second cohesion type, Common
Closure (CC), includes the factors that help in assessing CC
cohesion. After each type of cohesion is measured by itself,
the two values of CR and CC may be combined to one
unified value of package cohesion, while still recognising
the two types.

Method

The CR metric measures cohesion based only on the
common reuse factors of the package. The elements of a
package have different degrees of reachability. Reachability
of a class in a package is the number of classes in the same
package that can be reached directly or indirectly. The CR
metric is defined as follows:

“Let c ∈ C, and suppose there is an incoming relation to
c from a class in a different package. Then c is called an in-
interface class. The cardinality of the intersection of the hub
sets of all the in-interface classes in C divided by the
number of classes in C is the CR of P ”.

CR= |∩ In-interface class hub sets| / |C|

where

Hubness(c) = {d ∈ C: if there is a path c àd}

 C: set of classes in package P

 c and d: classes in C

The CC metric considers the package dependencies on
other packages as well as the internal dependencies between
classes of the package. The classes of the package should
depend on the same set of packages and, thus, they will have
the same reasons for a change. The CC metric is defined as
follows:

“The cardinality of the intersection of the reachable sets
divided by the cardinality of the union of the sets represents
the CC of P ”.

CC= (|∩ Reachable Package sets | / |∪ Reachable Package sets |)

The combined cohesion CH is defined as follows:

CH =
2 −D
2

D= (1−CR)2 +(1−CC)2

IV. THE GENERAL EXAMPLE
While we try to understand each of the previously

presented approaches, we rely on our best understanding for
each. One method of empirical investigation is to apply all
the approaches on the same situation and compare the
results. The approaches have been applied to measure the
cohesion of P1 in Figure 1. The concern is to measure the
cohesion of P1 only for the purpose of comparison between
the approaches. If all the approaches rely on the same idea,
their assessments of the cohesion of P1 will be alike.
Otherwise, they probably rely on different concepts of
package cohesion.

In Figure 1, there are six packages and a number of
classes in each package. The arrows represent the
dependencies between classes within the same package, i.e.,
in P1, or between classes in different packages. The
direction of the dependency is very important because it
shows the depended-upon class. For example, C6 depends
on C2 but not the opposite. In the figure, P1 has four classes
that have incoming and outgoing dependencies. Using the
presented approaches, we try to measure how cohesive are
the classes of P1. It is worth mentioning that all the
presented approaches consider the dependencies between
classes to measure cohesion, but in different ways. Some
approaches, such as Albattah and Melton [23], consider the
direction of the dependencies. However, some other
approaches, such as Martin [21], do not consider the
direction of the dependencies. For this difference and other
differences between the presented approaches, it is expected
to find distinct cohesion assessment values for P1.

Again, all calculations are made based on our own
understanding of each approach.

(10)

(11)

(12)

(13)

66Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 1. The general example.

Table II presents the cohesion values of package P1 for
the different approaches.

TABLE II. COHESION VALUES OF THE PRESENTED APPROACHES.

Although all the presented approaches have the same
range of cohesion values except Martin’s approach [21],
they end up with different cohesion values for the same
package, i.e., P1 in Figure 1. For example, the approaches
by Bauer and Trifu [28] and Tagoug [30] assess the
cohesion of P1 as relatively high. In contrast, the approach
by Albattah and Melton [23] assesses the cohesion of P1 as
poor.

This simple comparison raises a question about the
theory behind these different approaches. The distinct
evaluation results for the same package means that the
presented approaches rely on different views of cohesion.
These views can be noticed by investigating the presented
approaches. We believe cohesion has different types or parts

and some approaches focus only on one part. This can lead
to misleading cohesion assessments. Cohesion has three
different concepts that led to different approaches. The first
concept considers cohesion as an internal property of a
package that can be measured from inside the package only,
such as the approach by Martin [21]. The second concept
considers cohesion as a property that can be measured from
outside the package, such as the approach by Ponisio and
Nierstrasz [22]. The third concept considers cohesion to be
measured from both inside and outside the package, such as
the approach by Albattah and Melton [23].

These three concepts represent three scopes where
cohesion has been measured in the presented approaches.
The scope of package cohesion can be used to classify the
presented approaches. Table III presents this classification
based on the scope of cohesion used in each approach, i.e.,
internal, external, or both.

TABLE III. CLASSIFICATION OF THE PRESENTED APPROACHES.

Approach Method
Scope of Cohesion

Internal External

Misic [19] External Objective ✓

Ponisio and
Nierstrasz [22]

Common Use of
the package ✓

Martin [21] Relational
Cohesion ✓

Zhou et al. [24] Similar Context
Cohesiveness ✓ ✓

Abdeen et al.
[25]

Dependency
Analysis ✓

Bauer and Trifu
[28] Average Cohesion ✓

Seng et al. [29] Dependency
Analysis ✓

Tagoug [30] Interactions inside
the package ✓

Albattah and
Melton [23]

Common Reuse &
Common Closure ✓ ✓

The classification in Table III can reveal, somehow, the
reason behind the diversity of package cohesion approaches
that led to distinct results in Table II. Package cohesion has
been viewed in different ways. It is worth saying that all the
views may be right but they are different. This leads to the
idea that there is more than one type of cohesion. The
previous research works treated cohesion as one type or one
concept, except for the research carried out by Albattah and
Melton [23], and this was not accurate in our opinion.

We support the idea of Albattah and Melton [23] that is
presented in this paper about cohesion. They defined
cohesion as an internal property of the package and it has
two different types. The first type can be measured from
outside the package and it represents how well the classes in

Approach
Cohesion

Metric Value Min Max

Misic [19] Ψ(S) 0.33 0 1

Ponisio and
Nierstrasz [22]

CU 0.125 0 1

Martin [21] H 1.25 > 0 N(N-1)*

Zhou et al. [24] SCC(p) 0.36 0 1

Abdeen et al. [25] CohesionQ(p) 0.29 0 1

Bauer and Trifu
[28]

avgCohesion(D) 0.67 0 1

Seng et al. [29] cohesion(s) 0.25 0 1

Tagoug [30] C(E) 0.67 ** 0 1

Albattah and
Melton [23]

CH 0 0 1

* N: number of classes in the package
**Assuming that all the connections are instance connections with 0.7
weights.

67Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the package cooperate to provide a service to classes outside
the package. The second type measures how well the classes
in the package are closed in using classes in other packages.
This type represents the closure of the package’s classes
against the same kind of changes, which is the same set of
depended-upon packages.

We believe cohesion is affected by internal and external
factors and it should be treated based on this concept for
accurate assessments. On the other hand, the generalised
term of “cohesion” should not be used if the approach only
relies on one consideration, i.e., internal or external. Terms
such as “Common Closure Cohesion” and “Common Reuse
Cohesion” can be used to describe the approach that relies
on one consideration, i.e., internal and external,
respectively. It is worth saying that Martin [21] has
established a theory behind the internal and external factors
by presenting the three package cohesion principles already
discussed in Section II. Moreover, Martin’s cohesion
principles have been used to distinguish between package
cohesion types in our previous work, Albattah and Melton
[23].

V. CONCLUSION AND FUTURE WORK
In this paper, a preliminary research survey on package

cohesion approaches is presented. The survey shows that
there is a rich variety of package cohesion understanding,
which has led to the production of different package
cohesion metrics in which each of them is based on a
specific view of cohesion. We believe that there are
significant differences in these metrics. Thus, the metrics of
these approaches measure different things. The example
given in the paper shows different values of cohesion and
motivates us to classify the presented approaches. A
preliminary classification reveals the reason behind the
diversity of package cohesion approaches that led to distinct
results in the given example. Obviously, the scope of
cohesion is the foundation for this classification. We
conclude that cohesion is more than one part and the term of
“cohesion” should not be used unless the internal and
external considerations are taken into account. Otherwise,
terms such as “Common Closure Cohesion” and “Common
Reuse Cohesion” can be used to describe the approach that
relies on one consideration, i.e., internal and external,
respectively.

In future work, we plan to examine the role of package
cohesion in predicting software maintainability and software
reusability.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, "A metrics suite for

object oriented design." IEEE Transactions on Software
Engineering, 20.6 (1994): 476-493.

[2] V. Basili, "Evolving and packaging reading technologies."
Journal of Systems and Software 38.1 (1997): 3-12.

[3] L. Briand, J. Daly, and Jürgen Wüst, "A unified framework
for cohesion measurement in object-oriented systems."
Empirical Software Engineering 3.1 (1998): 65-117.

[4] L. Briand, S. Morasca, and V. Basili, "Measuring and
assessing maintainability at the end of high level design."
Conference on Software Maintenance Proceedings, 1993.
CSM-93 (pp. 88-87), IEEE, 1993.

[5] B. Henderson-Sellers, L. Constantine, and I. Graham,
"Coupling and cohesion (towards a valid metrics suite for
object-oriented analysis and design)." Object Oriented
Systems 3.3 (1996): 143-158.

[6] S. Orlov and A. Vishnyakov, "Metric Suite Selection Methods
for Software Development of Logistics and Transport
Systems." Proceedings of the 11th International Conference
"Reliability and Statistics in Transportation and
Communication" (RelStat'11), 19-22 October 2011, Riga,
Lativia, p.301-310.

[7] J. Eder, G. Kappel, and M. Schrefl, "Coupling and cohesion
in object-oriented systems." Technical Reprot, University of
Klagenfurt, Austria (1994).

[8] Y. Lee, B. Liang, S. Wu, and F. Wang, "Measuring the
coupling and cohesion of an object-oriented program based on
information flow." In Proc. International Conference on
Software Quality, Maribor, Slovenia, 1995, (pp. 81-90).

[9] G. Gui and P. Scott, "Coupling and cohesion measures for
evaluation of component reusability." Proceedings of the
2006 International workshop on Mining software repositories,
2006, (pp. 18-21). ACM, 2006.

[10] M. Hitz, and B. Montazeri, "Measuring coupling and
cohesion in object-oriented systems." Proceedings of the
International Symposium on Applied Corporate Computing.
Vol. 50. 1995.

[11] W. Li and S. Henry, "Maintenance metrics for the object
oriented paradigm." Proceedings of First International
Software Metrics Symposium, 1993, (pp. 52-60), IEEE, 1993.

[12] S. Chidamber and C. Kemerer, “Towards a metrics suite for
object oriented design.” Vol. 26. No. 11 , 1991, (pp. 197-211).
ACM.

[13] J. Bieman and Byung-Kyoo Kang, "Cohesion and reuse in an
object-oriented system." ACM SIGSOFT Software
Engineering Notes. Vol. 20. No. SI. ACM, 1995.

[14] J. Bieman and Linda M. Ott, "Measuring functional
cohesion." IEEE Transactions on Software Engineering, Vol.
20, No. 8, (1994): (pp 644-657).

[15] L. Etzkorn, S. Gholston, J. Fortune, C. Stein, D. Utley, P.
Farrington, and G. Cox, "A comparison of cohesion metrics
for object-oriented systems." Information and Software
Technology Vol. 46, No. 10, (2004): (pp 677-687).

[16] H. Chae, Y. Kwon, and Doo-Hwan Bae, "A cohesion measure
for object-oriented classes." Software-Practice and
Experience, Vol. 30, No.12, (2000): (pp 1405-1432).

[17] L. Ott, , J. Bieman, B. Kang, and B. Mehra, "Developing
measures of class cohesion for object-oriented software." In
Proc. Annual Oregon Workshop on Software Merics
(AOWSM'95), vol. 11. 1995.

[18] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, "A class
cohesion metric for object-oriented designs." Journal of
Object-Oriented Programming, Vol. 11, No. 8, (1999): (pp
47-52).

[19] V. Misic, "Cohesion is structural, coherence is functional:
Different views, different measures." Proceedings of the
Seventh International Software Metrics Symposium, 2001,
(pp. 135-144), METRICS. IEEE, 2001.

[20] B. Xu, Z. Chen, and J. Zhao, "Measuring cohesion of
packages in Ada95." ACM SIGAda Ada Letters, Vol. 24,
No.1, (2004): (pp 62-67).

68Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

[21] R. C. Martin, Agile software development: principles,
patterns, and practices. Prentice Hall PTR, 2003.

[22] L. Ponisio and O. Nierstrasz, “Using contextual information
to assess package cohesion”, Technical Report No. IAM-06-
002, 2006, Institute of Applied Mathematics and Computer
Sciences, University of Berne, 2006.

[23] W. Albattah and A. Melton, “Package cohesion
classification”, in: Software Engineering and Service Science
(ICSESS), 2014 5th IEEE International Conference on, IEEE,
2014, (pp. 1–8).

[24] T. Zhou, B. Xu, L. Shi, Y. Zhou, and L. Chen, "Measuring
package cohesion based on context." IEEE International
Workshop in Semantic Computing and Systems, 2008.
WSCS'08, (pp. 127-132), IEEE, 2008.

[25] H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui,
"Automatic package coupling and cycle minimization." 16th
Working Conference on Reverse Engineering, 2009, (pp. 103-
112), WCRE'09. IEEE, 2009.

[26] T. Biggerstaff and A. Perlis, "Software reusability: vol. 1,
concepts and models." (1989).

[27] L. Briand, S. Morasca, and V. Basili, "Property-based
software engineering measurement." IEEE Transactions on
Software Engineering, Vol.22, No.1, (1996): (pp 68-86).

[28] M. Bauer and M. Trifu, "Architecture-aware adaptive
clustering of OO systems." Eighth European Conference on
Software Maintenance and Reengineering Proceedings 2004,
CSMR 2004, (pp. 3-14), IEEE, 2004.

[29] O. Seng, M. Bauer, M. Biehl, and G. Pache, "Search-based
improvement of subsystem decompositions." In Proceedings
of the 7th annual conference on Genetic and evolutionary
computation, 2005, (pp. 1045-1051), ACM, 2005.

[30] N. Tagoug, "Object-oriented system decomposition quality.",
7th IEEE International Symposium on High Assurance
Systems Engineering Proceedings, 2002, (pp. 230-235),
IEEE, 2002.

69Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

