ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Revisiting The Package-level Cohesion Approaches

Waleed Albattah
Information Technology Department
Qassim University
Qassim, Saudi Arabia
e-mail: w.albattah@qu.edu.sa

Abstract—Software measurements play a critical role in
assessing software properties. Cohesion is one of the software
properties that are considered to have a relationship with
software quality. Many cohesion metrics have been proposed
by researchers to assess cohesion on different software
abstractions, i.e., class-level and package-level. The proposed
package-level cohesion metrics in the literature seem to differ
in their assessment of cohesion. In this paper, we try to
investigate this issue and establish whether cohesion has only
one concept. The conclusion of this paper encourages further
investigation and comparison between the existing package-
level cohesion metrics.

Keywords—Cohesion; package; metric; ~measurement;
software.

1. INTRODUCTION
With the increased importance of software

measurements in assessing software properties, research
works have produced and are continuing to produce new
software measures. One specific type of measure is
cohesion. Cohesion refers to the degree to which the
elements of a specific component belong together [3].

During software maintenance, developers spend at least
50% of their time analysing and understanding software [2].
In object-oriented programming languages, e.g., Java,
assembling only closely related classes into packages can
improve software maintenance. Package cohesion metrics
measure the coherence of a package amongst its elements
that should be closely related. Cohesion is an internal
attribute of software that affects its maintainability and
reusability. Following the design principles [21], a high
level of cohesion has as its goal to achieve software
maintainability and promote its reusability [22][26].

Package-level cohesion research has received very little
focus compared with research on other abstractions, e.g.,
class-level. When one examines the literature on package
cohesion metrics, it is clear that there are significant
differences in these metrics. Thus, the following natural
question arises: do these metrics measure the same thing?
This question will be addressed in this paper.

The paper is organised as follows. In Section II, we
present Package Cohesion Principles [21]. The existing
approaches to package cohesion are presented in Section III.
Section IV presents the general example for all the existing

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Suliman Alsuhibany
Computer Science Department
Qassim University
Qassim, Saudi Arabia
e-mail: salsuhibany@qu.edu.sa

approaches. The conclusion and future work are given in
Section V.

II. PACKAGE COHESION PRINCIPLES

R. C. Martin [21] has presented six principles for
package design, which have since become well-known and
well-accepted. The first three principles are for package
cohesion and they help to allocate system classes to
packages. This allocation can help to manage the software
during its development. In our previous work [23], the three
package cohesion principles of Martin [21] were discussed
and they are introduced here briefly from [23]:

1) The Reuse-Release Equivalence Principle (REP)
“The granule of reuse is the granule of release”

This states that the reuse of the code should be the same
size as the release one. If a person decides to reuse someone
else’s code, he needs a guarantee that the support will
continue and the release of new versions will be on the same
original size. To ensure the reusability of the code, the author
must organise the classes into reusable packages and then
track them with the release.

2) The Common Reuse Principle (CRP)
“The classes in a package are reused together. If you reuse
one of the classes in a package, you reuse them all”

This principle tells us which classes should be grouped
together. As it states, the classes that tend to be reused
together should be in the same package. It is more likely for
reusable classes to depend on each other, so classes are
rarely reused in separation. CRP states that the classes of a
package should be inseparable, which means that if a
package depends on this package, it should depend on all of
its classes and not on a number of them. In short, classes
that are not tightly coupled to each other should not be kept
in the same package.

3) The Common Closure Principle (CCP)
“The classes in a package should be closed together against
the same kinds of changes. A change that affects a package
affects all the classes in that package and no other
packages”

From the maintenance point of view, while the change is
not avoidable, it should be controlled (minimised). If a
change has been made on one package, there is no need to

62

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

re-release or revalidate packages that do not depend on the
changed package. The CCP states that the classes in the
package should not have different reasons to change.

While the previous two principles, REP and CRP, focus
on reusability, the CCP focuses on the system
maintainability. If a change is made on the code, it would be
better to be on one package or on a few packages rather than
being on many packages. The classes that are tightly related
will change together. Hence, if they are kept in the same
package, only one package or a small number of packages
are going to be affected when a change happens. Also, the
effort regarding revalidating and re-releasing of software
will be minimised.

III. THE EXISTING PACKAGE COHESION APPROACHES

A number of cohesion approaches have been proposed on
class and method levels [1][3]-[6]-[18]. In this section, we
present some of the existing package-level cohesion
approaches. A brief description is given for each. In the
literature, Misic [19], Ponisio and Nierstrasz [22], Martin
[21], Xu et al. [20], Zhou et al. [24], Abdeen et al. [25], and
Albattah and Melton [23] have each proposed different
methods to measure package cohesion. Each proposes a
cohesion metric on the package level. A brief discussion for
each approach is given next.

A. Approach by Misic

Misic [19] proposes a way to measure a functional
cohesion. Since a number of approaches were focusing on
cohesion as an internal structure issue, Misic claimed that
cohesion could be also observed externally by focusing on its
functional property regardless of the package’s internal
structure.

The approach measures the similarity of package objects
(elements). The similarity between elements can be
measured by looking at the external clients’ usage patterns.

Method

Misic defined write and read range concepts. The write
range of an object O, W(O), refers to the set of objects
(servers) used by this object (client). The read range of an
object O, R(0O), refers to the set of objects (clients) used by
this object (server).

Given a set of objects S, let R(S) be its client set (Read
range), S,, the subset that IS? used to write its clients, and let
Sw(x) be the part of that subset that IS? used to write the
client x. Then, the coherence is given by the following
formula:

Y, (#S (x)-1)

__ xeR(S)
V)=

XeR(S)

where

#S stands for the number of elements in S.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

The coherence measure proposed by Misic can be
calculated internally or externally. For internal coherence,
the summation in the numerator and denominator will be
restricted only for clients inside the questioned set. Similarly,
the summation will be restricted only for clients outside the
questioned set to measure the external cohesion.

B. Approach by Ponisio and Nierstrasz

Ponisio and Nierstrasz [22] proposed a similar approach
to measure package cohesion. The proposed contextual
metric measures the cohesion based on the common use by
clients. The approach idea is to propose the Common-Use
(CU) metric that measures the package cohesion by taking
into account the way that a package’s classes are accessed
by other packages.

Method

CU measures the cohesion of package P by considering
the use of its elements by the package clients. If all the
clients use the same set of P’s elements, these elements share
the same responsibilities of P, and then P is cohesive.
Instead, if the clients use a different set of P’s elements,
these elements have different responsibilities, and then P is
not cohesive.

There is a need for weight to differentiate between client
packages. Not all clients have the same degree in assessing
P’s cohesion. The weight reduces the influence of P’s
cohesion from the promiscuous clients.

Definition: “We define the weight of a (client) package
Pciient as the inverse of the number of connections that P jient
has with other packages.”

1
w(Pclient) ==

fan in(Pclient) +fan Out(Pclient)

The definition of CU is given as follows:

“We define Common-Use (CU) as the sum of weighted
pairs of classes from the interface of a package having a
common client package (f), divided by the number of pairs
that can be formed with all classes in the interface.”

f(a,b) = weight(a, b)

U= > :
oper #Pairs
Where
I = interface(P)
#Pairs = 7|I‘X(|21‘_1)
C = clients(a) N clients(b)
_ {1 ifC#0
f(a,0) a { 0, otherwise
weight(a,b) = 3 .o %

The value of CU is between 0, which represents that the
interface classes of the package have disjoint responsibilities,
and 1, which means that the interface classes of the package
are used together.

2

3)

63

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

C. Approach by Martin

Martin [21] presents a set of principles of object-
oriented package design. Three of these principles, package
cohesion principles, try to help the software architect to
organise classes over packages. These principles are: REP,
CCP, and CRP, discussed earlier in Section II. The three
principles aim to provide a high quality of package
cohesion.

Method

Martin [21] proposed a number of simple package-level
metrics. One of them is a relational cohesion of a package.
The package cohesion metric is presented as an average
number of internal relations per class. Regardless of the
package external dependencies that are considered in other
cohesion metrics, the metric measures the connectivity
between package elements. This metric is quite simple to
apply, and is given by:

H=(R+1)/N “4)
where
H: package cohesion
R: number of internal relations
N: number of the package classes

The extra “1” in the numerator prevents cohesion H
from equalling zero when N=1. This metric gives all internal
relations the same weight and disregards the external ones.
It has been applied to a number of software projects and is
widely accepted.

D. Approach by Xu et al.

Xu et al. [20] propose an approach to measuring the
package cohesion in Ada95 object-oriented programming
language. The proposed metric is based on dependence
analysis between package entities. It is assumed that the
package may have objects and sub-programs.

Method

The package dependence graph (PGDG) describes all
types of dependencies: inter-object dependence graph
(00G), inter-subprogram dependence graph (PPG), and
subprogram-object dependence graph (POG). The method
measures package cohesion according to PGDG. It assumes
that package PG has n objects and m subprograms, where #,
m> 0.

To present the measure in a unified model, a power for
each object PW(O) is given:

Cohesion(O) O is a package object
Cohesioin(PG(0)) Oisa type object
1 others

Xu et al. [20] claimed that, according to the definitions, it
is easy to prove that the measure satisfies the four properties
given by Briand et al. [3][27] to develop a good cohesion
measure.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

However, an Ada package represents a logical grouping
of declarations. The role of an Ada package is similar to the
role of class in other languages, such as Java [24]. Thus, this
package cohesion metric cannot be applied to the general
example in the next section. An Ada package actually falls in
the category of class-level cohesion metric.

E. Approach by Zhou et al.

Zhou et al. [24] proposed an approach to measuring
package semantic cohesion called the Similar Context
Cohesiveness (SCC). In this approach, the common context
is used to assess the degree of relation between two
components. SCC measures the inter- and intra-package
dependencies that can reveal semantic cohesion between
components.

Method

The proposed package cohesion measure SCC is based
on the component context. The context of component c is
composed of two sets: the components that depend on ¢ and
those that ¢ depends on. The SCC metric is given by:

Y. Wat(e,.c,)
(¢ < E(p)

m(m—1)
1 if m=1

SCC(p)= if m>1

where
m: number of components c in p

Wgt(cla CZ) = CCS(C15 Cz) + Dep(cla CZ)

Dep(cl,cz)z{l if ¢—%>c, or ¢,—%>c¢

0 else

CCS(cy,cy): denotes the similarity between the contexts of
two components ¢; and ¢, , and is given by:
CCS(cy, ¢3) = kRSS(cy, ¢p) + (1-k)DSS(cy, ¢2)
k: represents the position’s importance
RSS(cl, ¢2): similarity between Sg(c1) and Sg(c2)
DSS(c1, ¢2): similarity between Sp(c1) and Sp(c2)

Se(©) = {c, | ¢, —d+_yc}
SD(C) = {Ci | CL} Ci}

F. Approach by Abdeen et al.

The approach proposed by Abdeen et al. [25] is based on
the Simulated Annealing technique. The approach aims to
reduce package coupling and cycles by moving classes
between packages. Two metrics have been defined for this
purpose, coupling and cohesion metrics.

Method

The approach automatically reduces package coupling
and cycles by moving classes between packages considering
the existing class organisation and package structure. This
approach can help maintainers to define: the maximum
number of classes that can change their packages, the
maximum number of classes that a package can contain, and

)

64

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the classes that should not change their packages and/or the
packages that should not be changed. A set of measures is
defined to determine and quantify the quality of a package.
The number of package dependencies (|Pp|) normalises
these measures.

The package cohesion metric is defined to be the direct
dependencies between its classes. Hence, the cohesion of a
package P is proportional to the number of its internal
dependencies (|P j..p |) according to the CCP Principle [19].
The cohesion quality is given as follows:

CohesionQ(p) = 1pinenl

(6)
lppl
where
|Pp| is the number of all internal and external

dependencies of classes in the package.

G. Approach by Bauer and Trifu

Bauer and Trifu [28] have proposed an approach,
architecture-aware adaptive clustering, to produce
meaningful decompositions in a system. They have
evaluated their approach by defining two metrics: the
average cohesion of a subsystem and the average coupling
between subsystems.

Method

The approach was based on providing better
understanding of the system. They tried to recover from the
original decomposition and then impose an appropriate
structure. The new structure aims to maximise subsystems
cohesion. To evaluate the recovered subsystem
decomposition, they performed a comparative study that is
based on two criteria, accuracy and optimality. For
accuracy, they compared the resulting decompositions with
both the original package structure and the ideal Common
Reuse Principle structure of [21]. For optimality, they used
some optimality metrics to show whether the resulting
decompositions have high cohesion and low coupling. To
evaluate their approach, two metrics were defined: average
cohesion of the subsystems and average coupling between
the subsystems of a given decomposition. The average
cohesion metric is given by:

Z nolnternalEdges(S;)

[S;12 =154l
S;ep e
[S;1>1

avgCohesion(D) =

®)

|D[*

where
D: a composition
nolnternalEdges(Si): number of edges between
classes in Si
|D|*: number of subsystems except single-class

subsystems in D

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Si: subsystem number i in D

|S7|: number of classes in subsystem Si

H. Approach by Seng et al.

The approach by Seng et al. [29] aims to develop
existing object-oriented system decompositions by defining
new decompositions with better metric values and fewer
violations of design principles. They defined the problem as
a search problem. The quality of the resulting subsystem
decompositions is measured by the fitness function that
combines software metrics and design heuristics.

Method

The fitness function consists of cohesion, coupling,
complexity metrics, as well as cyclic dependencies and
bottleneck heuristics. The value of each individual function
is between 0 and 1, where the optimal value is 1. The
cohesion of a system s is the summation of cohesion values
for the individual subsystems in s. The cohesion for a
subsystem s; is measured by counting the number of different
classes in s; known by some class ¢; C s; ,(#k(c;)), and
dividing this by the square number of classes in s; , (#c(s))).
The resulting value can be normalised if divided by the
number of subsystems (#s).

#s #c(s;)

#k(cj)
2 X Fe(si)?
. =1 g:l 7
cohesion(s) 75

1. Approach by Tagoug

Tagoug [30] has proposed coupling and cohesion
metrics on subjects, which are similar to packages. Each
subject is a collection of classes. The approach aims to
measure cohesion and coupling at the system level. The
quality metric, which combines cohesion and coupling
values, measures the decomposition’s quality as early as the
analysis and design phases of the software development
lifecycle.

Method

The two metrics measure the quality of object-oriented
decomposition. The cohesion metric focuses on the
interactions of components inside a subject, while the
coupling metric focuses on the interactions of components
among subjects. The cohesion of subject E is given by:

n-1 n
2 X Wi

i=1 j=i+l

w_ *n*(n-1)/2)

)

C(E)=

where
E: a set of classes of S.
Wij: the sum of the weights of links in Lij.
Lij: the set of all links between classes Pi and Pj.
Wmax = max {Wij} in system S

(7

65

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

n=|E,n>1

The cohesion value is between 0, i.e., there are no links
between classes, and 1, maximum links with maximum
weight. The weights of links between classes of a subject
are ordered in Table I based on the degree of association
according to the object-oriented expert designers.

TABLE L WEIGHTS OF LINKS BETWEEN CLASSES.
Links Type Weights (Wij)
Whole Part Structure 0.9
Inheritance 0.8
Instance Connection 0.7
Message Connection 0.6
Conceptual Link 0.5

J. Approach by Albattah and Melton

The approach by Albattah and Melton [23] is motivated
by the package cohesion principles [21]. They proposed two
different cohesion metrics to measure two different cohesion
concepts or types based on Martin’s package cohesion
principles in [21]. The first cohesion type, Common Reuse
(CR), includes the factors that help in assessing CR
cohesion. Similarly, the second cohesion type, Common
Closure (CC), includes the factors that help in assessing CC
cohesion. After each type of cohesion is measured by itself,
the two values of CR and CC may be combined to one
unified value of package cohesion, while still recognising
the two types.

Method

The CR metric measures cohesion based only on the
common reuse factors of the package. The elements of a
package have different degrees of reachability. Reachability
of a class in a package is the number of classes in the same
package that can be reached directly or indirectly. The CR
metric is defined as follows:

“Let ¢ € C, and suppose there is an incoming relation to
¢ from a class in a different package. Then c is called an in-
interface class. The cardinality of the intersection of the hub
sets of all the in-interface classes in C divided by the
number of classes in C is the CR of P .

CR= |ﬁ In-interface class hub sets‘ / |C| (10)
where

Hubness(c) = {d € C: if there is a path ¢ >d}

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

C: set of classes in package P
c and d: classes in C

The CC metric considers the package dependencies on
other packages as well as the internal dependencies between
classes of the package. The classes of the package should
depend on the same set of packages and, thus, they will have
the same reasons for a change. The CC metric is defined as
follows:

“The cardinality of the intersection of the reachable sets
divided by the cardinality of the union of the sets represents
the CC of P .

CC: (|ﬁ Reachable Package sets | / |U Reachable Package sets |) (1 1)

The combined cohesion CH is defined as follows:

J2-D

(12)
V2

CH =

D=1(1-CRY +(1—-CCY: (13)

IV. THE GENERAL EXAMPLE

While we try to understand each of the previously
presented approaches, we rely on our best understanding for
each. One method of empirical investigation is to apply all
the approaches on the same situation and compare the
results. The approaches have been applied to measure the
cohesion of P/ in Figure 1. The concern is to measure the
cohesion of P/ only for the purpose of comparison between
the approaches. If all the approaches rely on the same idea,
their assessments of the cohesion of P/ will be alike.
Otherwise, they probably rely on different concepts of
package cohesion.

In Figure 1, there are six packages and a number of
classes in each package. The arrows represent the
dependencies between classes within the same package, i.e.,
in PI, or between classes in different packages. The
direction of the dependency is very important because it
shows the depended-upon class. For example, C6 depends
on C2 but not the opposite. In the figure, P/ has four classes
that have incoming and outgoing dependencies. Using the
presented approaches, we try to measure how cohesive are
the classes of P/. It is worth mentioning that all the
presented approaches consider the dependencies between
classes to measure cohesion, but in different ways. Some
approaches, such as Albattah and Melton [23], consider the
direction of the dependencies. However, some other
approaches, such as Martin [21], do not consider the
direction of the dependencies. For this difference and other
differences between the presented approaches, it is expected
to find distinct cohesion assessment values for PJ.

Again, all calculations are made based on our own
understanding of each approach.

66

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

P

n N

P P3

H a n ! ,-.
n
N

P5
P6
P

and some approaches focus only on one part. This can lead
to misleading cohesion assessments. Cohesion has three
different concepts that led to different approaches. The first
concept considers cohesion as an internal property of a
package that can be measured from inside the package only,
such as the approach by Martin [21]. The second concept
considers cohesion as a property that can be measured from
outside the package, such as the approach by Ponisio and
Nierstrasz [22]. The third concept considers cohesion to be
measured from both inside and outside the package, such as
the approach by Albattah and Melton [23].

These three concepts represent three scopes where
cohesion has been measured in the presented approaches.
The scope of package cohesion can be used to classify the
presented approaches. Table III presents this classification
based on the scope of cohesion used in each approach, i.e.,

Figure 1. The general example. internal, external, or both.
Table II presents the cohesion values of package P/ for TABLEIIL. CLASSIFICATION OF THE PRESENTED APPROACHES.
the different approaches.
A b Method Scope of Cohesion
pproac etho
TABLE II. COHESION VALUES OF THE PRESENTED APPROACHES. Internal External
Cohesion Misic [19] External Objective v
Approach
Metric Value Min Max Ponisio and Common Use of v/
. i 22 th
Misic [19] vs) 033 0) Nierstrasz [22] e package
. . Relational
Ponisio and cU 0.125 0 | Martin [21] Cohesion v
Nierstrasz [22] ’ Similar Context
ar Contex
Martin [21] H 1.25 >0 N(N-1)* Zhou etal. [24] Cohesiveness 4 4
Zhou et al. [24] SCC(p) 0.36 0 1 Abdeen et al. Dependency v/
- [25] Analysis
Abdeen et al. [25] CohesionQ(p) 0.29 0 1
Bauer and Trifu .
Bauer and Trifu . 28 Average Cohesion v
(28] avgCohesion(D) 0.67 0 1 [28]
Dependency
Seng et al. [29] cohesion(s) 0.25 0 1 Seng ctal. [29] Analysis 4
Tagoug [30] C(E) 0.67 ** 0 1 Tagoug [30] Interactions inside v/
the package
Albattah and
Melton [23] CH 0 0 1 Albattah and Common Reuse & v/ v/

* N: number of classes in the package
**Assuming that all the connections are instance connections with 0.7
weights.

Although all the presented approaches have the same
range of cohesion values except Martin’s approach [21],
they end up with different cohesion values for the same
package, i.e., P/ in Figure 1. For example, the approaches
by Bauer and Trifu [28] and Tagoug [30] assess the
cohesion of P/ as relatively high. In contrast, the approach
by Albattah and Melton [23] assesses the cohesion of P/ as
poor.

This simple comparison raises a question about the
theory behind these different approaches. The distinct
evaluation results for the same package means that the
presented approaches rely on different views of cohesion.
These views can be noticed by investigating the presented
approaches. We believe cohesion has different types or parts

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Melton [23] Common Closure

The classification in Table III can reveal, somehow, the
reason behind the diversity of package cohesion approaches
that led to distinct results in Table II. Package cohesion has
been viewed in different ways. It is worth saying that all the
views may be right but they are different. This leads to the
idea that there is more than one type of cohesion. The
previous research works treated cohesion as one type or one
concept, except for the research carried out by Albattah and
Melton [23], and this was not accurate in our opinion.

We support the idea of Albattah and Melton [23] that is
presented in this paper about cohesion. They defined
cohesion as an internal property of the package and it has
two different types. The first type can be measured from
outside the package and it represents how well the classes in

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the package cooperate to provide a service to classes outside
the package. The second type measures how well the classes
in the package are closed in using classes in other packages.
This type represents the closure of the package’s classes
against the same kind of changes, which is the same set of
depended-upon packages.

We believe cohesion is affected by internal and external
factors and it should be treated based on this concept for
accurate assessments. On the other hand, the generalised
term of “cohesion” should not be used if the approach only
relies on one consideration, i.e., internal or external. Terms
such as “Common Closure Cohesion” and “Common Reuse
Cohesion” can be used to describe the approach that relies
on one consideration, 1i.e., internal and external,
respectively. It is worth saying that Martin [21] has
established a theory behind the internal and external factors
by presenting the three package cohesion principles already
discussed in Section II. Moreover, Martin’s cohesion
principles have been used to distinguish between package
cohesion types in our previous work, Albattah and Melton
[23].

V. CONCLUSION AND FUTURE WORK

In this paper, a preliminary research survey on package
cohesion approaches is presented. The survey shows that
there is a rich variety of package cohesion understanding,
which has led to the production of different package
cohesion metrics in which each of them is based on a
specific view of cohesion. We believe that there are
significant differences in these metrics. Thus, the metrics of
these approaches measure different things. The example
given in the paper shows different values of cohesion and
motivates us to classify the presented approaches. A
preliminary classification reveals the reason behind the
diversity of package cohesion approaches that led to distinct
results in the given example. Obviously, the scope of
cohesion is the foundation for this classification. We
conclude that cohesion is more than one part and the term of
“cohesion” should not be used unless the internal and
external considerations are taken into account. Otherwise,
terms such as “Common Closure Cohesion” and “Common
Reuse Cohesion” can be used to describe the approach that
relies on one consideration, i.e., internal and external,
respectively.

In future work, we plan to examine the role of package
cohesion in predicting software maintainability and software
reusability.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, "A metrics suite for
object oriented design." IEEE Transactions on Software
Engineering, 20.6 (1994): 476-493.

[2] V. Basili, "Evolving and packaging reading technologies."
Journal of Systems and Software 38.1 (1997): 3-12.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

[10]

(1]

[13]

[14]

[15]

[16]

[17]

(18]

[19

—

[20]

L. Briand, J. Daly, and Jirgen Wiist, "A unified framework
for cohesion measurement in object-oriented systems."
Empirical Software Engineering 3.1 (1998): 65-117.

L. Briand, S. Morasca, and V. Basili, "Measuring and
assessing maintainability at the end of high level design."
Conference on Software Maintenance Proceedings, 1993.
CSM-93 (pp. 88-87), IEEE, 1993.

B. Henderson-Sellers, L. Constantine, and 1. Graham,
"Coupling and cohesion (towards a valid metrics suite for
object-oriented analysis and design)." Object Oriented
Systems 3.3 (1996): 143-158.

S. Orlov and A. Vishnyakov, "Metric Suite Selection Methods
for Software Development of Logistics and Transport
Systems." Proceedings of the 11th International Conference
"Reliability ~and Statistics in Transportation and
Communication" (RelStat'11), 19-22 October 2011, Riga,
Lativia, p.301-310.

J. Eder, G. Kappel, and M. Schrefl, "Coupling and cohesion
in object-oriented systems." Technical Reprot, University of
Klagenfurt, Austria (1994).

Y. Lee, B. Liang, S. Wu, and F. Wang, "Measuring the
coupling and cohesion of an object-oriented program based on
information flow." In Proc. International Conference on
Software Quality, Maribor, Slovenia, 1995, (pp. 81-90).

G. Gui and P. Scott, "Coupling and cohesion measures for
evaluation of component reusability." Proceedings of the
2006 International workshop on Mining software repositories,
2006, (pp. 18-21). ACM, 2006.

M. Hitz, and B. Montazeri, "Measuring coupling and
cohesion in object-oriented systems." Proceedings of the
International Symposium on Applied Corporate Computing.
Vol. 50. 1995.

W. Li and S. Henry, "Maintenance metrics for the object
oriented paradigm." Proceedings of First International
Software Metrics Symposium, 1993, (pp. 52-60), IEEE, 1993.

S. Chidamber and C. Kemerer, “Towards a metrics suite for
object oriented design.” Vol. 26. No. 11, 1991, (pp. 197-211).
ACM.

J. Bieman and Byung-Kyoo Kang, "Cohesion and reuse in an
object-oriented system." ACM SIGSOFT Software
Engineering Notes. Vol. 20. No. SI. ACM, 1995.

J. Bieman and Linda M. Ott, "Measuring functional
cohesion." IEEE Transactions on Software Engineering, Vol.
20, No. 8, (1994): (pp 644-657).

L. Etzkorn, S. Gholston, J. Fortune, C. Stein, D. Utley, P.
Farrington, and G. Cox, "A comparison of cohesion metrics
for object-oriented systems." Information and Software
Technology Vol. 46, No. 10, (2004): (pp 677-687).

H. Chae, Y. Kwon, and Doo-Hwan Bae, "A cohesion measure
for object-oriented classes." Software-Practice and
Experience, Vol. 30, No.12, (2000): (pp 1405-1432).

L. Ott, , J. Bieman, B. Kang, and B. Mehra, "Developing
measures of class cohesion for object-oriented software." In
Proc. Annual Oregon Workshop on Software Merics
(AOWSM'95), vol. 11. 1995.

J. Bansiya, L. Etzkorn, C. Davis, and W. Li, "A class
cohesion metric for object-oriented designs." Journal of
Object-Oriented Programming, Vol. 11, No. 8, (1999): (pp
47-52).

V. Misic, "Cohesion is structural, coherence is functional:
Different views, different measures." Proceedings of the
Seventh International Software Metrics Symposium, 2001,
(pp. 135-144), METRICS. IEEE, 2001.

B. Xu, Z. Chen, and J. Zhao, "Measuring cohesion of
packages in Ada95." ACM SIGAda Ada Letters, Vol. 24,
No.1, (2004): (pp 62-67).

68

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(21]

[22]

(23]

[25]

Copyright (c) IARIA, 2015.

R. C. Martin, Agile software development:
patterns, and practices. Prentice Hall PTR, 2003.

L. Ponisio and O. Nierstrasz, “Using contextual information
to assess package cohesion”, Technical Report No. IAM-06-
002, 2006, Institute of Applied Mathematics and Computer
Sciences, University of Berne, 2006.

W. Albattah and A. Melton, “Package cohesion
classification”, in: Software Engineering and Service Science
(ICSESS), 2014 5th IEEE International Conference on, IEEE,
2014, (pp. 1-8).

T. Zhou, B. Xu, L. Shi, Y. Zhou, and L. Chen, "Measuring
package cohesion based on context." IEEE International
Workshop in Semantic Computing and Systems, 2008.
WSCS'08, (pp. 127-132), IEEE, 2008.

H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui,
"Automatic package coupling and cycle minimization." 16th

Working Conference on Reverse Engineering, 2009, (pp. 103-
112), WCRE'09. IEEE, 2009.

principles,

ISBN: 978-1-61208-438-1

[26]

[27]

(28]

[29]

[30]

T. Biggerstaff and A. Perlis, "Software reusability: vol. 1,
concepts and models." (1989).

L. Briand, S. Morasca, and V. Basili, "Property-based
software engineering measurement." IEEE Transactions on
Software Engineering, Vol.22, No.1, (1996): (pp 68-86).

M. Bauer and M. Trifu, "Architecture-aware adaptive
clustering of OO systems." Eighth European Conference on
Software Maintenance and Reengineering Proceedings 2004,
CSMR 2004, (pp. 3-14), IEEE, 2004.

0. Seng, M. Bauer, M. Biehl, and G. Pache, "Search-based
improvement of subsystem decompositions." In Proceedings
of the 7th annual conference on Genetic and evolutionary
computation, 2005, (pp. 1045-1051), ACM, 2005.

N. Tagoug, "Object-oriented system decomposition quality.",
7th IEEE International Symposium on High Assurance
Systems Engineering Proceedings, 2002, (pp. 230-235),
IEEE, 2002.

69

