
Towards Flexible Business Software

Ahmed Elfatatry
Information Technology Department

Alexandria University
Alexandria Egypt

elfatatry@alexu.edu.eg

Abstract—Software flexibility is a multidimensional
problem. Solving one side of the problem might not enhance
the situation significantly. This work is motivated by both
the problem of software flexibility and the need for a
solution for highly volatile business software. The work
presented here is based upon ongoing research into software
flexibility. The main contribution of this work is the
proposal of a new framework to facilitate frequent changes
in both the business layer and the presentation layer.
Among systems that benefit from such design are workflow
systems and document oriented.

Keywords-Software Flexibility; Document Oriented
Systems; presentation layer

I. INTRODUCTION
Software flexibility is the ease with which a software

system can be modified in response to changes in system
requirements. Software flexibility is a multidimensional
problem. Solving one side the problem may not improve
the situation significantly. When software is built out of
layers, often, applying changes to one layer affects other
layers.

 Changing one part of a system may require changing
a number of related parts; this is known as the
"propagation effect" of change. Each of the related parts
may need to be dealt with differently. For instance, a
change request may affect business rules, user interface,
and data. Each of these facets needs to be designed in a
way that facilitates change.

The focus of this work is flexibility in business
software systems. While all software systems could be
subject to change, business software systems are more
likely to change as result of their changing environments.
Flexibility problems in business systems vary according
to the type of the system. Business software systems
include business information systems, workflow systems,
and document oriented systems [1]. In workflow systems,
for instance, modelling techniques produce tightly
coupled systems [2]. Minimal change in business
requirements may require the change of many parts of a
given model. A case in point is the model adopted by the
Workflow Management Coalition (WFMC) which
embeds transition information within activities [3]. As a
result, changing the sequence of activities may require

rewriting such activities. Other models integrate business
rules within the specification of the activities. This results
in activities that are complex and hard to maintain.

A Document-Oriented Application (DOA) is a type of
business applications that is built around business
documents. User interface in DOAs is both stage-based
and role-based where it displays and manipulates
business documents in several stages for different roles.
Such characteristics bring about a common requirement
for applying consistent stage-based and role-based
presentation behaviour throughout the entire application.

Adapting DOA after it has been deployed in
production usually involves allowing business-experts to
change business rules including specifications about
stages and/or roles for business documents. Combining
this requirement with the stage-based and role-based
characteristics brings about a design challenge: the
application should be designed to support flexibility both
in the business layer and the presentation layer. In other
words, the changes made to the business layer should also
affect the presentation layer in a consistent manner.

This paper is structured as follows. In Section 2, the
problem of building flexible business systems is
analysed. Section 3 introduces a framework for dealing
with flexibility issues. The evaluation of the proposed
work in presented in Section 4. Section 5 discusses the
contribution of the work and outlines the future
extensions.

II. PROBLEM AND MOTIVATION
Large changes in business requirements naturally

lead to large changes in the supporting software systems.
When small changes in business requirements lead to
large changes in the supporting software system, this
indicates the presence of a design problem. In this work,
flexibility related problems are classified into two main
classes. Each class exposes a different perspective of the
system.

A. User Interface problems
An important class of business software is Document

Oriented Applications (DOA). A Document Oriented
Application is a type of business applications that is built

102Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

around business documents. In such systems, work
procedures are done by exchanging documents according
to some rules related to both the persons using the
documents and the state of the given document. A case in
point is the exchange of legal documents in a court.
Current approaches used in building DOAs fail to solve
the issue of reflecting changes in business logic to user
interface in a way that retains flexibility [4]. Such
approaches have a number of problems discussed below.

• Violating the separation of concerns concept by
injecting large crosscutting concerns into user interface
[5]. Crosscutting concerns are software features whose
implementation is spread across many modules in the
form of tangled and scattered code [6]. For example,
reflecting presentation behaviour for the active role using
current approaches of security architectures results in
software that has application code tangled with security
code. Such tangling makes it difficult to change security
architecture once the software has been deployed [7].

• Concealing the high abstract view of business logic
behind presentation changes and blending it within the
presentation code. This hardens any attempts to
understand or extract business logic that leads to a
specific behaviour.

• Producing inflexible solutions that cannot cope with
changes in business rules. This leads to DOAs that lose
its ability to adapt change once it has been deployed in
production. The typical solution to modify or to include
new business rules requires a new cycle of development
and testing for each modified rule.

• Preventing business-experts who have the required
knowledge in a business domain from participating in
adapting DOAs. Usually, business experts do not
understand programming languages and therefore they
cannot directly change the application [8]. Instead, they
have to wait for IT-professionals to implement new
business rules and to change the behaviour of the user
interface.

B. Modelling Problems
Decisions at the conceptual level strongly affect

flexibility. The chosen model of decomposition has a
direct effect on the cost of change. This sub-section
outlines a number of problems that may result from the
modelling phase.

 Inability to respond to frequent changes of
business processes. Most workflow modelling techniques
produce tightly coupled systems. A minimal change in a
business attribute may require the change of many parts
of a given model. For instance, the model adopted by the
Workflow Management Coalition [WFMC] embeds
transition information within activities [3]. As a result,
changing the sequence of activities may lead to rewriting
of the activity body itself. Other models integrate

business rules within the specification of the activities
[9]. Such activities are complex and hard to be
maintained.

 Model inconsistency. The addition or deletion of
tasks, relationships, or rules at runtime may cause system
inconsistencies especially when changes are done in an
ad-hoc manner [10]. Consider a simple order processing
where the billing step and the shipping step take place at
same time. Assume that a change at run time is made so
that the shipping step is performed after the billing step.
If at the time of the change, a job had started with
shipping, it will never perform the billing step according
to the instructions of the new procedure. Thus, a
customer will not be billed for the goods that he receives.
If there are a large number of jobs being in the same
situation at the time of change, then a large number of
customers will not be billed. This is a very simple
example of a "dynamic bug". Many of these bugs are
much more difficult to detect and can have unexpected
effects. In the following section, the proposed framework
addresses these problems.

C. Research questions
The previous discussion of flexibility problems leads

to a number of research questions. First: how can we
build user interfaces that can accommodate changes in
other layers of the software system? Second: how can
workflow systems be more adaptive to change?

III. THE PROPOSED FRAMEWORK
To address the issues described above, we propose a

framework for flexibility. The following sub sections
describe the proposed framework.

D. Conceptual view
The proposed framework defines a workflow as a set

of activities as shown in Figure 1. The upper part of the
figure shows a design time view of a workflow. The
lower part of the figure shows the runtime view of the
figure. A workflow consists of one or more activities
ordered according to some transition flow rules.
Transition flows are not embedded within activities. They
are modelled as first class entities. Each activity is
assigned to a specific role according to binding
conditions. Role binding rules postpone the assignment of
an activity to an available user until runtime [11].

At runtime, activities are bounded to the appropriate
services through service requests. Business rules can be
bound to workflow at any time during its life cycle,
providing the ability to customize the workflow while it
is executed.

103Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

E. 3.2 Presentation Behaviour Layer (PBL)
In typical DOAs, a system is divided into three

layers: Data-Access layer, Business layer and
Presentation layer. In the proposed approach, we
introduce a fourth layer: Presentation-Behaviour Layer
(PBL) as shown in Figure 2. The main goal of this
layer is to provide a mechanism for applying
presentation changes in a consistent manner.

The PBL externalizes the logic of applying
presentation-behaviours instead of hard coding it within
the presentation layer. This externalization provides
support for building flexible DOAs. The PBL consists of
(PBM) and Presentation-Behaviours Run-time
(PBR). The PBM is responsible for defining and storing
presentation behaviours, while the PBR is the responsible
for applying such behaviours during the runtime. The
arrows show that PL uses services from BL and BL uses
services from DAL. Arrows on the left, show the
interaction between PBL and PL in response to a given
change.

Presentation-Behaviour Model (PBM). The PBM
consists of state machines and sequence flows. Each state
diagram describes the behaviours that the system should
apply at each stage of the process. One of the main
objectives of PBM is to externalize and store full
specifications about presentation changes outside the
presentation code. The specifications are stored in XML
documents which contain all the information required to
describe how and when to apply presentation
behaviours. When a change happens, it is analysed to its
atomic element and then reflected to the presentation
behaviour layer.

State machines. State machines are the ideal
placeholders to store specifications about presentation
behaviour for each process stage. They are suitable for
representing the stages of business documents. In
contrast to other approaches that blend presentation
behaviour within the source code, the state diagrams keep
the original definition of these behaviours inside the
BPM model. Obviously, this simplifies the
understanding of business rules that lead to a specific
presentation behaviour. In addition, storing
presentation behaviours in state diagrams representations
rather than source code allows business-experts to
participate in the development process by defining
presentation behaviours for each business requirement.

In the proposed approach, we employ state
diagrams to store specifications about business
processes and their related presentation behaviours.
Therefore, we need to store extra specifications about
presentation behaviours for each combination of a stage
and a role.

State: a state corresponds t o a document stage
i n a business process. Usually the state identifies a
significant point in the lifecycle of a business
process.

Actions: an action represents a business logic that
should run to perform a business task. In our approach,
actions are modelled as sequence diagrams which

Business Rules Transition Flow Data Flow

Workflow Activity Role

Service request

Constraints,
Actions, Events

Workflow instance

Message

Service instance
Running state

User

Has

Scheduled by Send/receive

Consist
of

Assign
ed to

 Role
binding

conditions

Events guide the
execution of

Govern and manage

Mapped into

Service discovery and
invocation

invoke

uses

D
es

ig
n

V
ie

w

Im
pl

em
en

ta
tio

n
V

ie
w

Figure 1. Design View & Implementation View

Figure 2. Presentation Behavior Layer

104Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

provide simplicity and flexibility. Operations and
Transitions are concrete forms of actions. From the
user interface perspective, actions (Operations and
Transitions) are reflected to user interfaces as tasks that
can be triggered by end-users.

Transitions: a transition represents a change
in the document stage. The transition connects a
source to target state. At any given time only one
transition can be executed for each document.

Guard conditions: a guard condition is an
optional specification that describes business rules. It has
to be evaluated before a transition can be executed.

Operations: an operation represents a business
logic that should run to perform a business task.
Operations can range from simple and common actions
such as CRUD (Create, Retrieve, Update, and Delete)
operations, to complex and custom tasks such as
"Calculating Taxes".

Attributes: an attribute represents a document
element that can be entered, modified and displayed.
The concept of attributes is introduced to the proposed
state diagrams to allow presentation behaviours to be
defined at the granularity of attributes.

Roles: the role-based nature of business documents
requires proper communication with access control
model. In the proposed approach, we enriched state
diagrams to define access controls for each element in
each stage.

Specifying Presentation Behaviour. The
proposed state machines have additional attributes that
describe presentation behaviour. The objective of these
attributes is to provide specifications that allow PBR to
apply presentation changes automatically to user
interfaces. The additional attributes deal with the
following issues.
• Controlling tasks. User interfaces in document
oriented applications provide end-users with a set of tasks
that are appropriate for both active stage and role.
Storing specifications about such tasks allows PBR to
display proper tasks upon each stage change. Definitions
of tasks include both visual and functional aspects. These
specifications transform the tasks from being code-
oriented to a higher and more abstract form. Such form
is more business-expert oriented. It treats tasks as
standalone elements that can be granted to or denied to
certain roles.

•Controlling default presentation modes and
exceptions. A document stage usually defines whether
the user interfaces allow end-users to modify
document information or not. The default mode allows
readers to easily figure-out the expected behaviour
especially in user interfaces that represent documents
with large set of attributes.

• Controlling common handlers. The architecture
of business documents results in common and
redundant operations that could be applied to any
document instance. For instance, all business
documents provide common business operations such
as CRUD operations, validation handlers, state
transitions and etc. Although these operations are
usually written centrally in the data access layer
(DAL) and the business layer (BL) respectively,
however, the code that calls them and displays their

results to end-users is usually written in each user
interface. Externalizing the decisions to activate or
deactivate such common operations into the
definitions of state machines provides more flexibility
to adapt user interfaces according to the
characteristics of each document stage.
• Controlling default authorization mode and its
exceptions. Similar to the presentation mode, the
default authorization mode simplifies defining
authorizations to document information.
• Controlling role access. Although the default
authorization mode discussed above facilitates the
definitions of implicit authorizations, however, there is
a need in some situations to define access roles in the
granularity of attributes, transitions, and
operations. We believe that this part is the most
complex and is responsible for most of the
crosscutting code.

IV. EVALUATION
At the architectural level, software quality attributes

such as flexibility are hard to measure using direct
quantitative measures. Other indirect methods are more
suitable for the nature of this work. Two methods have
been adopted to evaluate this work. The first method
examines the effects of different types of changes on the
proposed system and compares the results to those of
traditional workflow systems. The second method
evaluates this work by cross-referencing the features of
this solution and a number of flexibility requirements.

A. Comparing the proposed framework with
related work

One way to measure the success of the proposed
solution to achieve flexibility is to test it on different
scenarios of change and compare the ease of change with
the results of traditional workflow management systems.

A common area of change in businesses is policy
change. Policy changes usually have a substantial effect
on workflows. Existing workflow models deal with
business policies and rules in different ways. Usually,
workflow systems introduce only a limited type of
constraint that could be defined within an activity as a
transition condition. Modeling business policies with
such a model will be very hard. It may only be modeled
as a new activity with different behavior, and different
pre and post conditions which leads to a complex design.

Another way to model policies is to use a rule based
workflow model. The entire workflow composition logic
is specified in the form of if/then rules. Such a model
determines the boundaries of a workflow, and leaves the
freedom to the designer to specify the transitions between
the activities. The workflow components such as
activities, flows, roles, business policies are expressed in
terms of activities built in process specification. This
results in processes that are not modular, complex, and
hard to maintain. In such a case, business rules are hard
to change without affecting the core composition of the
model. This way of modeling decreases the flexibility of
the workflow.

105Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

The Proposed model introduces rules as a first class
abstraction that governs and guides workflow execution.
Each rule has enforcement conditions which state when
and how such a rule is enforced inside the flow. Rules are
not embedded within processes. Change in policies is
enforced by changing related rules. This principle makes
the workflow more simple and easy to maintain.
Workflow enactment engine enforces policies by
checking rules related to each step before performing it.
Rules do not only govern activities but also govern role
binding, services specifications, and exception handling.

The Model-View-Controller (MVC) is a software
pattern for implementing the separation of concerns
concept in the implementation of software systems. The
work presented here focuses on providing a mechanism
for reflecting changes on the presentation layer
specifically.

SNATA defines service oriented architecture for N-
tier application [11], however, it does not provide a
mechanism for change propagation between layers.

B. Matching the features of the solution to the
specified flexibility requirements

The proposed solution has been evaluated against a
set of flexibility requirements. This set of requirements is
derived from a number of well-established software
engineering principles such as abstraction, separation of
concerns, and loose coupling. The requirements are
discussed below.

R1: Support model evolution. Evolution of
workflows occurs over time as a result of changing tasks,
priorities, responsibilities, and people. Modifications
should be allowed at design time as well as at runtime.
The proposed solution allows structural changes as well
as behavioural changes. Structural changes allow model
evolution. The Rule manager provides an interface to
accomplish this requirement.

R2: Allow function/provider decoupling. The
provider of a specific functionality may not be specified
until runtime. Hard coding such information at design
time leads to systems that are not flexible. In the
proposed solution, activities are implemented as services.
Services are selected according to some criteria that may
not be known until runtime. Service selection constraints
are sent through service requests to each running instance
to select a suitable service and source of provision. A
new activity or behaviour could be added at runtime to
allow composition of a complex task.

R3: A workflow has to provide an integrated
multiple view of a business system.
A workflow model has to provide high level of
abstraction, and support visualization of its parts. The
Proposed framework combines an activity based model,
role model and a rule based model. A business system
may be viewed from one or more perspectives: roles,
processes, or rules. The proposed framework provides a
multi-view modeling of a business system.

R4: Support the management of evolving
workflow schema. Changes in business environment
have to propagate to running workflow instances. A
robust management system has to support propagation of

change to running instances in a consistent way. The
presented work didn’t address this requirement.

V. CONCLUSION
The main contribution of this work is the

introduction of a framework for dealing with change
in business software. The focus is on workflow
systems and user interface in document oriented
systems.

A major drawback of current approaches for
building document oriented applications is neglecting the
impact of change in business rules on user interfaces. The
result is having systems that are hard to change when
business requirements change. While it may be easy to
change the code related to business rules, the impact of
such changes on the user interface may cause undesirable
knock-on effect. For instance, many researches focus on
how to provide flexibility in the business layer by
providing workflow based solutions. However, the impact
of such changes on user interface is usually ignored.

It is necessary that flexibility should be addressed in
each logical layer and also between different
communicating layers. That is why it is common that
many business applications that provide flexibility in
the business layer and also provide flexibility in
presentation layer fail to sustain flexibility across the
boundary between the two layers.

To address such problems, we introduced the
Presentation Behaviour Layer (PBL) as a solution of
providing flexibility between business layer and
presentation layer. We believe that, the PBL can
eliminate most of the crosscutting concerns usually
found in document oriented applications to apply
presentation changes while keeping flexibility. In
addition, the visual representation of PBMs allows
business-experts to modify their applications based on
business rules without the need to touch the source code.

Building flexible workflow systems comes at a cost.
The main cost is the implementation efficiency. While
separating roles, business rules, and invocation
conditions, leads to a flexible design, it certainly adds
processing overhead.

Although a complete analysis of flexibility problems
and limitations has been discussed, the proposed solution
has mainly focused on modelling problems. Runtime
limitations still need more research. Currently, we are
working on enhancing the performance of workflow
engines. The ongoing work focuses on the development
of more propagation strategies and building workflow
engines able to efficiently weave rules with activities.

Three medium sized companies with average of seven
developers each have been chosen to implement the
proposed framework. The framework will be applied to
existing systems that are subject to frequent change
requests. A comparison between the performance before
and after using the framework will be published later.

REFERENCES
[1] C. Wiehr, N. Aquino, K. Breiner, M. Seissler and G. Meixner,

"Improving the flexibility of model transformations in the model-
based development of interactive systems," in Proceedings of the
13th IFIP TC 13 international conference on Human-computer

106Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

interaction - Volume Part IV, Lisbon, Portugal, 2011,pp. 540-543.
[2] S. Bhiri, G. Khaled , O. Perrin and C. Godart, Overview of

Transactional Patterns: Combining Workflow Flexibility and
Transactional Reliability for Composite Web Services, Springer
Berlin / Heidelberg, 2005, pp. 440-445.

[3] WfMC, "Interface 1: Process Definition Interchange," [Online].
[Accessed May 2015].

[4] O. Chapuis, D. Phillips and N. Roussel, "User interface façades:
towards fully adaptable user interfaces," in Proceedings of the 19th
annual ACM symposium on User interface software and
technology, Montreux, Switzerland, 2006, pp 309-318.

[5] A. Marot, "reserving the separation of concerns while composing
aspects on shared joinpoints," in 4th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2009, Orlando, Florida,
USA., 2009, pp. 837-839.

[6] A. Sabas, S. Shankar, V. Wiels and M. Boyer, "Undesirable Aspect
Interactions: A Prevention Policy," in Theoretical Aspects of
Software Engineering, Joint IEEE/IFIP Symposium, Montreal,
Montreal, QC, Canada, 2011, , pp. 225-228.

[7] G. Chao, "Human-Machine Interface: Design Principles of Visual
Information in Human-Machine Interface Design," in IHMSC '09
Proceedings of the 2009 International Conference on Intelligent
Human-Machine Systems and Cybernetics, IEEE Computer
Society Washington, 2009, pp. 262-265.

[8] M. Mike and D. Dwight , "End user developer: friend or foe?," J.
Comput. Small Coll., vol. 24, no. 4, pp. 40-45, April 2009, pp. 42-
49, 2009.

[9] T. Sterling and D. Stark, "A High-Performance Computing
Forecast: Partly Cloudy," Computing in Science and Eng., vol. 11,
no. 4, pp. 42-49, 2009.

[10] M. Blake, A. Bansal and S. Kona, "Workflow composition of

service level agreements for web services," Decision Support
Systems, vol. 53, no. 1, April 2012, pp. p. 234–244,.

[11] A. Elfatatry, Z. Mohamed and M. Eleskandarany, "Enhancing
Flexibility of Workflow Systems," 80 Int.J. of Software
Engineering, IJSE, vol. 3, no. 1, pp. 79-92, 2010.

[12] T. . C. Shan and W. H. Winnie , "Solution Architecture for N-Tier
Applications," in Proceedings of the IEEE International
Conference on Services Computing, September 2006, pp. 234-
244.

[13] C. Ackermann, M. Lindvall and G. Dennis, "Redesign for
Flexibility and Maintainability: A Case Study," in Software
Maintenance and Reengineering, Kaiserslautern, Germany, 2009,
2009, pp. 259-262.

[14] A. Bruno, F. Patern and C. Santoro, "Supporting interactive
workflow systems through graphical web interfaces and interactive
simulators," in TAMODIA '05 Proceedings of the 4th international
workshop on Task models and diagrams, Gdansk, Poland, 2005, pp
63-70.

[15] D. Gaurav, "A survey on guiding logic for automatic user interface
generation," in Proceedings of the 6th international conference on
Universal access in human-computer interaction: design for all
and eInclusion - Volume Part I, Orlando, FL, 2011, pp. 365-372.

[16] IEEE, "IEEE Standard Glossary of Software Engineering
Terminology," IEEE Std 610.12-1990, pp. 1-84, Dec 1990.

107Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

