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Abstract - This paper presents the design and implementation 

of a cloud-based middleware built on top of the Google Cloud 

Platform (PaaS), in order to exchange real-time information 

about outbreak notifications of global diseases in a system-level 

by using an extension of the HL7 Fast Healthcare 

Interoperability Resources (FHIR) specification to support 

statistical data based on the ICD-10 medical classification list. 

The proposed solution aims to allow healthcare organizations 

to register their systems to send and receive notifications, so 

the alerts are spread to all the subscribed systems using 

webhooks in a publish/subscribe fashion. 

Keywords - middleware; google cloud pub/sub; google cloud 

platform; FHIR 

I.  INTRODUCTION 

There is an increasing demand for real-time monitoring 
of a broad variety of complex events. The processing of 
these information streams originated from multiple sources 
allows the early identification of threats and swift response. 
With the advent of modern communication technology, we 
are able to report incidences of disease outbreaks worldwide 
in a timely manner. Institutions such as the World Health 
Organization (WHO) and the Centers for Disease Control 
have been involved in the development of surveillance 
mechanisms that triggers alerts that support the decision-
making process about how to respond to these incidents. 

As results, there has been many successful experiences in 
using different forms of communication to exchange data 
related to surveillance and control of diseases, such as Short 
Message Service (SMS) [1][2], integration of device data 
capture [3] and system-level notifications [4]. 

Healthcare records are increasingly becoming digitized. 
In order to support system-level exchange of clinical data, a 
set of standards are required. The HL7 specification 
comprises a set of international standards to exchange 
clinical data between healthcare applications. In an attempt 
to improve its simplicity and extensibility, the HL7 
introduced a new specification known as Fast Healthcare 
Interoperability Resources (FHIR). When compared with its 
predecessors, HL7 FHIR offers a whole new set of features, 
such as: support for multiple data formats: Extensible 
Markup Language (XML) and JavaScript Object Notation 
(JSON), extensible data model and a RESTful API. 

This paper describes the Platform for Real-Time 
Verification of Epidemic Notification (PREVENT), a cloud-
based message-oriented middleware in collaboration with the 
use of an extended instance of the FHIR specification to 
support statistical reports for disease surveillance in order to 
monitor and notify outbreak occurrences in real-time fashion. 

In our solution, we have developed our middleware 
application on top of the Google Cloud Platform, using the 
Google Cloud Pub/Sub, which is a many-to-many, 
asynchronous messaging service. Healthcare organizations 
may send and receive push notifications through the use of a 
registered webhook endpoint that can accept POST requests 
over HTTPS. 

This paper is further structured as follows: In Section 2, 
we discuss the foundations for this paper. In Section 3, we 
present the architectural approaches proposed for the 
middleware and some of the design choices implemented. In 
Section 4, we explain our evaluation approach and present 
the results obtained. In Section 5, we discuss related work   
and finally, Section 6 presents our conclusions and possible 
future work. 

II. FOUNDATIONS 

In this Section, this paper presents key concepts that 

served as basis for the development of this work. 

A. WHO 

The WHO is a specialized worldwide health agency 
subordinated to the United Nations (UN) that, according to 
its constitution [5], one of its main objectives is the 
development and improvement of the health of people to the 
highest possible levels. Still, according to the WHO 
constitution, it is responsible for coordinating efforts to 
control and prevent outbreaks and diseases. The WHO 
supervises the implementation of the International Health 
Regulations and publishes a series of medical classifications, 
including the International Statistical Classification of 
Diseases and Related Health Problems (ICD) [6]. The ICD is 
designed to promote international comparability in the 
collection, processing, classification, and presentation of 
mortality and morbidity statistics. 

According to the International Health Regulations (IHR), 
an international legal instrument that is compulsory in 196 
countries and in all the WHO member states, its goal is to 
assist the international community in the prevention and 
response to potential cross-border public health risks. The 
IHR requires that countries report disease outbreaks and 
public health events to WHO [7]. 

The present work discusses a system platform that allows 
national health organizations, members of the United 
Nations, hospitals or healthcare agencies, regardless the 
location, to subscribe their applications to send and receive 
real-time notifications for disease surveillance. Thus, they 
contribute with the propagation of the notified information, 
so it can achieve the widest possible reach through the use of 
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a cloud-based platform. Therefore, countries and healthcare 
organizations may act promptly under the emergency and 
disaster risk management protocol to prevent, prepare, 
respond and recover from incidents due to any danger that 
might represent a threat to human health security. 

B. HL7 and FHIR 

To reach its goal, this work analyzes a set of international 
standards that provide a framework for the integration and 
share of clinical and administrative data between systems 
and electronic devices dedicated to health care. The HL7 [8] 
was created in 1987 and has been maintained by Health 
Level Seven International, a nonprofit international 
organization that supports and promotes the development of 
international interoperability standards in healthcare systems. 

The second version of HL7, an ad hoc approach to 
integrate various fields in health care, hospitals, clinics and 
administrative applications, has become a widely used 
standard, adopted and supported by most healthcare 
application vendors in North America [9]. Despite HL7 v2 
wide acceptance, the limitations of the ad hoc approach have 
not allowed significant high scale use in larger multiplatform 
environments. Another downside observed on HL7 v2 is the 
lack of a formal data model that can unify concepts and 
interfaces for message transmission. HL7 v3 emerged as a 
response to all the problems recognized on the previous 
version. However, it was heavily criticized by the industry 
for being inconsistent, overly complex and infeasible to 
implement in real life systems. For a while, it appeared as if 
interoperability initiatives for health care had lost 
momentum. 

Hence, FHIR was created with the objective of 
improving HL7 messaging standards and addressing some of 
the issues identified on the previous specifications. There 
have been discussions towards a new approach for data 
exchange in health care. This approach provides a 
Representational State Transfer (REST) interface, which is a 
very simple and lightweight interoperable alternative for 
system integration. REST-based architectures are known for 
its scalability, user-perceived performance and ease of 
implementation approach that provides a fast data 
transmission pattern mostly using the HTTP protocol [10]. 
Resource interoperability allows information to be readily 
distributed and provides an alternative to document-centric 
approaches by directly exposing data elements as services. 

FHIR uses syntax based on XML or JSON, simplifying 
the system-level communication. It also offers support for an 
extensible data model, allowing applications to enhance its 
data structures using FHIR extensibility mechanism. The 
features mentioned on this paper were decisive factors for 
the adoption of FHIR on the development of PREVENT. 

C. Cloud Computing and Scalability 

According to A. T. Velte et al. “In essence, cloud 
computing is a construct that allows you to access 
applications that actually reside on a location other than your 
computer or other Internet-connected device; most often, this 
will be a distant data center” [11]. This is a constant reality 
for the majority of the Internet users on a daily basis. Among 

the benefits of cloud computing cited by [11], there are 
simplicity, knowledgeable vendors, more internal resources, 
security, and scalability. 

Scalability is seen as a fundamental feature of cloud 
computing. It appears as if computational resources are 
infinite and end users easily notice the increase of 
performance of used resources in a cloud-based platform. 
Scalability is not restricted to expanding resource capacity, 
being scalable is to increase the capacity of operations in an 
efficient and adequate manner, maintaining the quality of 
service [12]. In the literature, it is possible to identify two 
dimensions of scalability: vertical and horizontal. Vertical 
scalability refers to the improvement of hardware capabilities 
by incrementing existing nodes individually. Horizontal 
scalability refers to the addition of extra hardware nodes to 
the current solution in a way that it can be possible to 
distribute application requests between these machines [13]. 
In the context of this work, PREVENT is designed and 
implemented with focus on horizontal scalability. In order to 
sustain a large volume of time-constrained notifications and 
to leverage the platform overall scalability, PREVENT is 
deployed in a cloud-based platform. 

D. PREVENT and Complex Event Processing (CEP) 

CEP is a new technology to extract information from 
distributed message-based systems. This technology allows 
users of a system to specify the information that is of interest 
to them. It can be low-level network processing data or high-
level enterprise management intelligence, depending on the 
role and point of view of individual users. It operates not 
only on sets of events but also on relationships between 
events [14].  

In order to respond in a suitable manner, it is 
fundamental to use technology that supports the construction 
and management of event-oriented information systems, and 
is also able to perform real-time data analysis. CEP consists 
in processing various events in order to identify their 
significance within a cloud of information [15]. CEP 
involves rules to aggregate, filter and match low-level 
events, coupled with actions to generate new, higher-level 
events from those events [16]. 

PREVENT has its own complex event processing unit, 
namely, PREVENT CEP Engine (PCEPE). PREVENT 
randomly receives data messages derived from healthcare 
applications subscribed as data providers or data sources, 
once data messages have been received, they are delegated to 
PREVENT internal complex data processing unit (PCEPE) 
that identifies the source and semantics of the data received, 
extracting relevant information. 

After the information extraction phase previously 
described, the data collected goes through a second-phase 
analysis that intends to identify if the events notified at that 
time indicate a warning situation. As an example, a 
significant volume of reports of a certain disease from a 
specific geographically delimited area, points to a relevant 
situation of alert. 

Finally, PREVENT only delivers relevant notifications to 
each subscribed message receiver. Figure 1 presents the 
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processing flow for data received from health care 
organizations in the PREVENT platform. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.  CEP diagram in PREVENT. 

An event processing approach is ideal for applications 

concerned with the constant delivery of responses [15]. For 

sensitive information that requires a high level of 

consistency, it is extremely important that PREVENT 

responses are cohesive. This way, having an internal unit for 

the processing of the received events is required for the 

proper functioning of the PREVENT platform. 

III. MIDDLEWARE 

In this Section, this paper explores the proposed 
architecture and the workflow of events implemented in our 
middleware platform. Every step below is described as part 
of the process designed to perform the management of the 
subscribed applications, the process of data analysis and the 
delivery of notifications in the subscription topic: 

• Healthcare applications may subscribe to our 
middleware platform in order to send and receive 
notifications to/from other systems; 

• PREVENT will register the healthcare application in 
a subscription topic, and reply with an assigned 
application ID; 

• Healthcare applications may now send notifications 
to PREVENT subscription topic; 

• PREVENT will perform a real-time analysis of the 
data received, and publish notifications that match 
the specified criteria; 

• Healthcare applications may now receive 
asynchronous notifications sent by other 

applications, delivered by PREVENT in a push 
request. 

A. System Architecture 

The system architecture designed for PREVENT is 
illustrated in Figure 2. In this diagram, PREVENT is 
organized into the Google App Engine [17] which is a 
hosting environment for web-based cloud applications. It is 
part of the Google Cloud Platform, as well as the Google 
Cloud Datastore, which is a schemaless NoSQL scalable 
datastore, and the Google Cloud Pub/Sub, an asynchronous 
messaging framework. Both framework platforms are used 
for data persistence and messaging (publish/subscribe 
pattern) services. It is important to mention that this 
middleware was developed in the Java programming 
language, using the Java Servlet API, a standard to 
implement applications hosted on Web servers under the 
Java platform. Despite being implemented on top of the Java 
platform, PREVENT is a completely agnostic technology, it 
uses interoperable standards such as HL7 FHIR, REST and 
JSON, and it can be integrated to any healthcare application, 
regardless the implementation language. 

 

 
Figure 2.  PREVENT Deployment Diagram. 

Persistence is used on PREVENT to store data related to 
the subscribed healthcare applications and the statistical 
reports extracted from notifications received. The 
information stored by PREVENT at the Google Cloud 
Datastore is relevant not only for the delivery of real-time 
notifications, but it may also be useful for audit and access 
control policy and procedures. The data stored is replicated 
across multiple datacenters using a highly available platform 
based on the Paxos algorithm, which is a family of protocols 
for solving consensus in distributed environments [21]. 

PREVENT is designed to be a Message-oriented 
middleware (MOM) platform. It is implemented by using the 
publish/subscribe pattern, since it requires many-to-many 
communication. The Google Cloud Pub/Sub [18] platform 
supports two delivery strategies: push and pull delivery. In 
the push delivery, the server sends a request to the subscriber 
application at a previously informed endpoint URL for every 
message notification. In the pull delivery, the subscribed
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Figure 3.  Subscription & Notification Scenario Class Diagram.

application has to explicitly invoke the API pull method, 
which requests the delivery of any existing message 
available in the subscription topic to the invoker. In our 
middleware implementation, we have chosen the push 
delivery strategy, based on the following criteria: 

• Reduced network traffic; 

• Reduced latency; 

• Restrict/eliminate impacts of adaptation on 
healthcare applications (No need for message 
handling and flow control). 

However, it’s important to note that Google Cloud 
Pub/Sub platform is still a Beta release, so few limitations 
may be applied. Currently, the only supported endpoint URL 
for push delivery is an HTTPS server that can accept 
Webhook delivery. For this reason, we designed an internal 
HTTPS endpoint message listener that can be used as a 
proxy by healthcare applications in order to receive 
notifications that are subsequently forwarded to a regular 
HTTP endpoint URL. 

B. Subscription Request 

Healthcare organizations that want their application to 
send and receive notifications from our middleware should 
send subscription requests to PREVENT informing a single 
parameter named callback endpoint. The value of this 
parameter should correspond to a regular HTTP or HTTPS 
URL that will be invoked for notification delivery. As a 
response, PREVENT will reply with a unique application ID 
assigned for the request in JSON format as illustrated in 
Figure 3. As exhibited in the class diagram (See Figure 3), 
our middleware platform receives subscription requests 
through a Java servlet. The requests are subsequently 
assigned to the SubscriptionManager class, responsible for 
interacting with the Google Cloud Pub/Sub and Google 
Datastore APIs in order to both create a new subscription and 
store application data. 

Once successfully registered, healthcare applications are 
allowed to send notifications to our middleware by 
informing its unique application ID with an extended HL7 
FHIR message instance in JSON format. 

C. Publishing Notifications 

Previously registered systems should be able to publish 

notifications to all the subscribed applications. In order to 

do so, subscribed applications should always inform their 

application ID with an extended version of the HL7 FHIR 

message, as shown on Figure 3. As demonstrated in the 

class diagram (See Figure 3), there is another servlet class to 

receive requests for notification dispatch. This servlet class 

is expecting an HL7 FHIR message in JSON format. After 

the message is successfully parsed into its Java object 

representation, it will be dispatched to the 

NotificationManager class, responsible for the delivery of 

the message by invoking a method on the Google Cloud 

Pub/Sub API to add the new message to the subscription 

topic, making it available for delivery. 
As mentioned earlier, HL7 FHIR provides a flexible 

mechanism for the inclusion of additional information into 
the FHIR data model. The class DiagnosticStatiscalReport 
shown in the diagram above (See Figure 3) is an example of 
an extension implemented on top of the FHIR specification. 
According to the FHIR specification, in order to use an 
extension, we must follow a three-step process, as defined in 
[19]. 

D. Delivery of Notifications 

Notifications added to the subscription topic will be 
asynchronously sent to the registered endpoints for every 
subscribed application, in a multithread context. Messages 
are dispatched in the body of an HTTP push request. The 
body is a JSON data structure as depicted on Figure 4. 

 
Figure 4.  Google Cloud Pub/Sub JSON message data structure. 
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The data attribute contained into the message data type 
structure holds the HL7 FHIR message encoded in Base64 
format. Once the FHIR message is retrieved, in order to 
restore it back to its original form, healthcare applications 
must decode it. Furthermore, to indicate the successful 
delivery of the message received and avoid duplicate 
deliveries, healthcare applications must return one of the 
following HTTP status code: 200, 201, 203, 204 or 102. 
Otherwise, the Google Cloud Pub/Sub retries sending the 
message indefinitely to assure its delivery, using an 
exponential backoff algorithm in order to avoid network 
congestion [23]. The use of an exponential backoff algorithm 
is a feature offered by the messaging platform, in order to 
guarantee message delivery in case of message destination is 
unreachable or unavailable. Therefore, no message 
expiration or timeout is applicable. 

It is expected to configure push endpoints with SSL 
certificates, so data integrity is guaranteed since all messages 
sent to them are encrypted over HTTPS. However, 
healthcare applications that do not provide an HTTPS 
webhook enabled endpoint, may still receive notifications 
using a regular HTTP endpoint URL. As already mentioned, 
PREVENT offers an internal message listener component 
that acts as a proxy for notification of delivery. During the 
subscription request processing, PREVENT will 
automatically assign an internal push endpoint for healthcare 
applications that informed regular HTTP URLs. Therefore, 
for every notification to be delivered, PREVENT hands it 
over to its internal message listener component that 
subsequently dispatches the notifications to their 
corresponding destinations. In order to manage HTTP 
connections efficiently, PREVENT uses the Apache 
HttpComponents, which is a toolset of low-level Java 
components APIs focused on HTTP [20]. Apache 
HttpComponents is designed to be a flexible framework, 
supporting blocking, non-blocking and event driven I/O 
models. In our middleware implementation, we selected the 
asynchronous non-blocking I/O model, in order to be able to 
handle thousands of simultaneous HTTP connections in an 
efficient manner. 
 

 
Figure 5.  Message Listener Component Class Diagram 

The class diagram shown on Figure 5 presents a short 

representation of the elements discussed on the previous 

paragraph. 

IV. EVALUATION 

We have developed a proof-of-concept implementation 

in order to evaluate the middleware. Our goal is to show 

how effective and responsive a cloud-based middleware 

platform for real-time surveillance can be. In accordance 

with the criteria established, we use a few metrics to 

measure the efficiency and performance of the middleware 

platform. In our experiments, we evaluate the middleware 

by using a set of simulation tools. The test environment set 

up for the evaluation is composed by a cloud-based instance 

of the middleware distributed into the Google Cloud 

Platform, a set of 50 callback endpoints, and an Intel i5 

2.60GHz 6GB RAM Linux workstation. Each callback 

endpoint simulates a subscribed healthcare application, 

previously registered on the middleware. In order to act as 

an enlisted application, we have implemented a simple Java 

servlet class and a PHP file that basically returns an HTTP 

status code of 200 (OK) to acknowledge the successful 

reception of notifications delivered. The callback endpoints 

are deployed into two separate cloud platforms: Digital 

Ocean [22] and Google Cloud Platform. The tests are 

divided in two different scenarios. The first test scenario is 

executed at the execution environment of callback 

endpoints. On the second test scenario, we use a local 

computer workstation to perform a stress test. Both test 

scenarios will be conducted using a set of preconfigured 

simulation tools. In this evaluation, the following metrics 

are gathered and further analyzed: 

• Throughput: measured by the number of delivered 
notifications per second; 

• Error Ratio: measured by the number of requests 
failed or rejected by the middleware; 

• Message Loss Ratio: measured by the proportion 
between the number of lost messages and the total 
number of messages delivered; 

• Message Delivery Time: measured by the time taken 
to a notification request to be sent to the middleware 
and received by the subscribed healthcare 
applications. 

A. Simulation Description 

We perform the dispatch of messages using JMeter, a Java 
based testing tool, to send multiple HTTP requests. 

On the first test scenario, our test suite is configured to 
send one message request per second, limited to 60 messages 
to be delivered to 50 subscribed callback endpoints. 
Messages used in the test are defined on HL7 FHIR JSON 
format. Each message size is approximately 1 KB. This 
scenario seeks to evaluate the performance of the 
middleware about the delivery ratio and message delivery 
time. In order to measure the total message delivery time, we 
must consider that the actual delivery of each message sent 
to the middleware occurs in an asynchronous manner. 
Therefore, time tracking has to be split into two separate 
variables: 

• T¹ = Amount of time it takes for message requests 
sent to the middleware to be responded;
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Figure 6.  HTTP messages delivered 

• T² = The average of the amount of time it takes for 
the middleware to send notifications received to 
all of the subscribed callback endpoints and get 
their message acknowledged;  

• This way, Total Message Delivery Time = T¹ + T². 
In order to obtain the values required to calculate both 

variables T¹ and T², we use both JMeter Test Results 
Report and Apache log4j, which is a Java-based logging 
utility. 

The second test scenario is divided into 4 different test 
cases. Each test case has different settings, related to the 
number of messages that are expected to be processed. The 
number of concurrent threads (publishers) configured for 
each test case are limited to 10, 20, 60 and 100, 
respectively. Every thread is expected to simultaneously 
send one message per second. Every message received 
needs to be processed and delivered to 50 subscribed 
endpoints. Therefore, we expect a total of 14500 messages 
delivered after all test cases are completed. To evaluate 
message delivery to all of the subscribed callback 
endpoints, we created a shell script using AWK, which is a 
data-driven scripting language used in Unix-like operating 
systems, to extract and parse NGINX and Apache HTTP 
Server access logs in order to quantify the number of 
successfully received requests based on a pre-determined 
pattern as shown on Figure 6. 

The results obtained will be summarized and compared 
to the total amount of messages sent. As a result, we 
expect to evaluate the middleware performance under 
heavy load, collecting and analyzing metrics like the 
throughput and message loss ratio. 

B. Results 

The evaluation shows that a cloud-based middleware 
for real-time surveillance works reliably and efficiently to 
report critical events in a timely manner. As illustrated on 
Figure 7, from a total of 14500 messages sent to the 
middleware platform, we reported 356 failed or rejected 
requests and 135 messages that have not been 
acknowledged as delivered. It corresponds respectively to 
2.45% and 0.93% of the total amount of messages 
processed. The results obtained could be even better, since 
we reported a large concentration of failed requests at the 
end of the last test case, due to quota limits exceeded. 

 
Figure 7.  Message Delivery 3D Grouped Column Chart 

In the same stress test scenario, we collected a set of 
performance related metrics, as shown in Table 1. The 
middleware comfortably supported the intense load of 
requests, maintaining good performance levels. Based on 
the results obtained, a few observations can be made about 
this platform. Throughput and performance are positively 
impacted under heavier load of concurrent requests. We 
believe that it happens due to reconfiguration algorithms 
implemented by the cloud platform, scaling to uphold the 
increasing volume of requests. However, we have also 
observed that the reliability of message delivery is 
negatively impacted under these circumstances. 

TABLE I.  PERFORMANCE RELATED METRICS 

Number 

of 

Samples 

Median 

(ms) 

Throughput kB/sec Lost 

Messages 

Failed 

Requests 

500 691 48,4/sec 474,75 0 0 

1000 394 55,2/sec 949,5 0 0 

3000 293 103,4/sec 2848,5 3 0 

10000 204 177,7/sec 9495,0 132 356 

 
In the test scenario executed at a registered callback 

endpoint environment, we collected and measured the total 
amount of time for every notification to be delivered to all 
of the subscribed endpoints, as described on the previous 
subsection. Figure 8 presents the total message delivery 
time measured at specific intervals during the test 
execution. The x-Axis represents time (HH:MM:SS) 
intervals at which messages were delivered, while the y-
Axis represents the total message delivery time in 
milliseconds for each notification sent during the test. 
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Figure 8.  Total Message Delivery Time 

Based on a string of experiments, we conclude that the 
differences observed in the results, exhibited on Figure 8, 
occur as a consequence of the following events: Network 
jittering, resource availability, and concurrency. The 
simulation results show that the performance provided by 
the platform, in terms of delivery ratio, throughput and 
timeliness is suitable to the middleware purpose. This is a 
consequence of the use of an asynchronous messaging 
approach and a cloud-based platform, capable of scaling 
and performing according to the restrictions imposed. 
Therefore, it is possible to offer a high degree of 
scalability using a publish/subscribe middleware for real-
time disease surveillance. Even for larger applications 
scenarios, where the number of subscribed healthcare 
applications is considerably higher, or where the messages 
exchanged are in a higher number, we believe that it is 
possible to scale in order to support the increase of load. 
Further experiments have shown that when the number of 
concurrent messages is increased, the middleware’s 
throughput is higher, while the performance is stable. 
However, with a higher amount of messages exchanged, 
we have observed an increase in the number of lost or 
unacknowledged messages. 

V. RELATED WORK 

Much of the related work has been covered in the 
previous Sections of this paper. In this Section, we revisit 
some of the topics discussed and present them in a 
summarized view. 

Healthcare Interoperability. As mentioned on 
Section 2, subsection B, multiple approaches have been 
attempted in order to promote interoperability initiatives 
for healthcare systems, as demonstrated on both [3] and 
[24]. Recent work has been developed in order to offer a 
powerful and extensible standard specification for 
healthcare system-level integration, namely FHIR [9]. In 
our work, we have slightly extended the FHIR data model 
in order to include statistical information to be further 
processed by a CEP unit. 

Disease Surveillance. This is an emerging field of 
research that has been achieving significant success in the 
early detection and report of disease outbreaks at regional 
scale. The DHIS 2 project as described in [1] uses Java 
enabled phones to send health related data using SMS. 

This is an example of how a low-cost disease surveillance 
mechanism can be helpful in the prevention or mitigation 
of occurrences, especially in developing countries [2]. 
Another successful example can be found in India and Sri 
Lanka, as described in the work of Waidyanatha et al [4]. 
The T-Cube project has been developed in order to detect 
emerging patterns of potentially epidemic events based on 
the analysis of digitized clinical health records. On our 
work, we use a similar approach, as previously described. 

The ESS project developed in Sweden is an Event-
based Surveillance System that uses records of telephone 
calls to the Swedish National Health Service, in order to 
monitor unusual patterns [25]. Statistical analysis is 
performed over collected data to calculate deviation limits. 
In an attempt to process larger datasets, Santos and 
Bernardino presented a system architecture for near real-
time detection of epidemic outbreak at global scale using 
on-line analytical processing (OLAP) techniques [26]. 

VI. CONCLUSIONS 

This paper has presented a middleware platform 

responsible for receiving and interpreting data informed 

by healthcare organizations, and based on the results 

obtained through data analysis, the middleware publishes 

real-time notifications to all healthcare applications 

subscribed to this platform. 

There is an increasing need for timely delivery of 

messages and notifications, in very large user base 

platforms. In this context, it is extremely important to 

develop a platform capable of scaling to sustain the 

expected levels of performance and throughput under 

growing demand. PREVENT uses the FHIR specification 

in order to exchange system-level messages, presenting a 

market-friendly environment for real-time integration of 

applications. FHIR is currently published as a Draft 

Standard for Trial Use (DSTU), hence we hope that this 

work may serve as a contribution on the promotion of 

interoperability initiatives, and a step towards the 

development of an international disease surveillance 

platform. 

We believe that several factors combined make 

PREVENT a scalable and efficient platform:  

• An asynchronous event-based approach for 

message processing, reducing network contention 

and the number of threads needed to process the 

same workload; 

• A network-efficient non-blocking I/O 

communication model for HTTP connections; 

• And a cloud hosting infrastructure. 

The results obtained from our experiments demonstrate 

that a cloud-based platform using the publish/subscribe 

pattern for real-time notifications represents an 

appropriate choice, in order to assure time-constrained 

delivery of mission-critical data. 

The contribution of this paper is a first step to enabling 

the use of the FHIR specification for healthcare system 

integration in order to support a global system-level 

137Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



outbreak warning platform. Our ongoing research aims to 

perform experiments using heterogeneous environments 

and datasets, in order to present richer interoperable 

scenarios. 

As future works, we plan to implement several 

extensions on our middleware platform in order to support 

functionalities like: security using OAuth; big data 

analytics for prediction using information extracted from 

notifications received; support for legacy and multi-

format messages (HL7 v2, short message services, etc.) 

using a message adapter layer for data transformation, and 

multiprotocol integration using TCP, HTTP and HTTPS. 
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