
Model-Based Evaluation and Simulation of Software Architecture Evolution

Peter Alexander

Thai-German Graduate School of Engineering
King Mongkut’s University of Technology North Bangkok

Bangkok, Thailand
email: peter.a-sse2013@tggs-bangkok.org

Ana Nicolaescu, Horst Lichter

RWTH Aachen University
Research Group Software Construction

Aachen, Germany
email: {nicolaescu, lichter}@swc.rwth-aachen.de

Abstract—The software architecture description is often the rea-
soning basis for important design decisions. Nevertheless, during
the evolution of a system, the software architecture tends to devi-
ate from its description which gradually approaches obsolescence.
Software architecture reconstruction tools can be employed to
retrieve up-to-date descriptions, however reconstruction by itself
is never a purpose. The reconstructed architecture description
should, e.g., support the architects to identify the best evolution
variant with respect to a set of quality characteristics of interest.
The state of the art approaches address reconstruction and
evolution simulation in separation. To simulate changes, the
current state of the system must be first manually modeled. In our
previous work, we presented ARAMIS, an approach to support
the reconstruction and evaluation of software architecture with a
strong emphasis on software behavior. In this paper, we propose
the extension of our approach for enabling the simulation of
design decisions on the recovered architecture description. To
reduce complexity and support a more focused analysis, we allow
to specify and apply viewpoints, views, and perspectives on the
recovered description and its evolution simulations.

Keywords–Software Architecture Reconstruction; Software Ar-
chitecture Evaluation; Software Architecture Simulation; Software
Architecture Viewpoint; Software Architecture

I. INTRODUCTION

As abstractions of the architecture of a software system,
the prescriptive (as-designed) and descriptive (as-implemented)
architecture descriptions can greatly contribute to support
reasoning and evolution. However, very often design decisions
are not documented in the descriptive architecture description
[1], which consequently degrades [2] and gradually approaches
obsolescence. In consequence, further design decisions may be
taken based on low-fidelity reasoning. This situation can easily
lead to the continuous degradation of the system’s quality as
formulated in Lehman’s laws of software evolution [3].

To avoid this, the evolution should be analyzed using
up-to-date descriptive architecture descriptions. However, the
software architecture encompasses a wide variety of aspects,
making it very difficult to explore it in its entirety. To enable
a more focused analysis, the concepts of view and viewpoint
have been introduced and adopted by the major architecture
description standards (i.e., [4], [5]). Thus, an architecture
viewpoint (e.g., operational, deployment, logical) represents
”a set of conventions for constructing, interpreting, using, and
analyzing one type of Architecture View”. An architecture
view ”expresses the Architecture of a System of Interest” from
the perspective of several stakeholders using the conventions
of its corresponding viewpoint. According to [6], a perspective

is system-independent and specifies a further refinement of a
view according to a set of interesting quality properties.

Several view models have been proposed (e.g., [7], [8]) to
guide the description of software architectures. However, most
of them make a clear distinction between static and dynamic
views. The dynamic view is usually very complex, bloated
with huge low-level run-time information, making it hard to
document (and thus is often avoided) and understand. We
strongly argue that the dynamic view should be considered as a
description by itself and be considered from various viewpoints
and perspectives.

Given that the behaviour of a system is the one that actually
supports its use-cases, we think that evolution should also be
discussed at this level. The viewpoints and perspectives can be
then applied to support the analysis with relevant information
while avoiding cluttering.

In our previous work we proposed the Architecture Analy-
sis and Monitoring Infrastructure (ARAMIS), an approach for
the reconstruction and evaluation of software architectures with
a strong emphasis on software behavior. Our approach allows
to enrich the architecture description with the software’s static
and dynamic information and identify architectural degrada-
tion. In our previous work [9], we presented our achievement in
developing a semi-automatic approach to unobtrusively extract
the run-time interactions of a software system, map these on
architecture-level, identify unintended architectural behavior
and mark these as violations, and characterize the system’s
behavior using a series of architectural metrics. This paper
presents an extension of our approach to allow the simulation
of design decisions and the viewpoint-based analysis.

The remainder of this paper is organized as follows: in
Section II, we describe the ARAMIS meta-model and our
proposed viewpoint-supported evolution process; Section III
offers an overview of related work; Section IV discusses future
work and concludes the paper.

II. CONCEPT

ARAMIS aims to support the systematic evolution of
software architecture through the process depicted in Figure
1. We elaborate the process in four sequential sessions (mon-
itoring, analysis, evaluation, and evolution) in which a cycle
of activities (A) are divided between the architect (upper row)
and ARAMIS (lower row).

Monitoring. To allow ARAMIS to reconstruct the be-
havior of a software system, the architect needs to provide
the system’s run-time information obtained using run-time

153Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 1. ARAMIS Process

monitoring. To avoid collecting large chunks of unnecessary
information, the scope and granularity of the monitoring can
be configured (A1). Various system episodes can then be
executed, e.g., test cases and GUI interactions (A2). ARAMIS
then intercepts the run-time interactions between the system’s
code building blocks and persists these in a single collection,
a so-called episode, for later analysis (A3).

Analysis. By providing the system’s prescriptive archi-
tecture description (A4) and selecting the episodes to be
analyzed, the architect can trigger ARAMIS to reconstruct the
system’s descriptive architecture description (A5). Based on
this, ARAMIS then maps the code-level interactions from the
chosen episodes on architecture-level units from the prescrip-
tive architecture and validates these against architectural rules.
The result is then characterized using a series of architectural
metrics and presented for evaluation.

Evaluation. Upon analyzing the presented result (A6), the
architect might want to refine his view by applying a certain
viewpoint and/or perspective on it (A7), as later exemplified
in Subsection B. ARAMIS then refines the result accordingly
(A8) and builds various relevant visualizations thereof (A9) in
order to support reasoning of evolution variants.

Evolution. To assure that the evolved system will exhibit
the quality properties of interest, ARAMIS allows the archi-
tect to simulate the considered design decisions by applying
a mock-up architecture description on the current software
behavior. The simulated result can then be further refined using
viewpoints and perspectives (A10, A11). Iterative refinements
of the design decisions (A12, A10, A11) can be performed
through further simulations to gain the best evolution variant
for evolving the system (A13).

All in all, this cyclic process embodies the continuous re-
construction, evaluation and evolution of software architecture.

A. ARAMIS - Meta-Model
In our previous work [9], we presented the meta-model of

ARAMIS that can be used to create the system’s prescriptive
architecture description needed in A4. As depicted in Figure
2, we extended the meta-model to enable the definition of
viewpoints and perspectives (A7, A10), but also abbreviated
some parts which are loosely related to the focus of this paper.

The recorded episode from A2 produces a sequence of run-
time traces, which are basically an ordered lists of so-called

Execution Record Pairs. An execution record pair represents
a one-way communication between a pair of Code Building
Blocks which can be Java methods, classes, packages, etc,
depending on the monitoring granularity configured in A1.
This information serves as the system’s low-level dynamic
behavior and can be further processed by ARAMIS with the
provision of the Prescriptive Architecture Description (A4).

The Architecture Description captures a set of Architecture
Units (AU) and the Communication Rules between them.
Each architecture unit can contain other architecture units and
Code Units (CU), building a tree-like hierarchical structure.
The code unit is a representative of a single code building
block which participated during the run-time monitoring. It
is designed to be untyped in order to make it programming-
language independent and thus allowing further extension of
ARAMIS to monitor other systems than Java-based system.
Furthermore, the communication rule basically specifies pairs
of AUs and the communication permission types between them
(allowed/disallowed) (for a more detailed description, see [9]).

In order to focus the analysis on a specific type of system
behavior, a Viewpoint can be defined. It is composed by one or
more Communication Patterns which characterize the behavior
of interest. The communication pattern between a pair of
AUs specifies the communication direction and the number
of communication hops - which is the number of intermediate
AUs through which communication must pass between source
and destination (e.g., all communications originating from
some AU ”X” and ending in some AU ”Y” with 0 hops in
between, i.e., only direct communication). It is worth noting
that we designed the viewpoint to be scalable, allowing the
architect to break down the analysis to any level of software
architecture granularity. As a result, the viewpoint can support
the system-independent analysis.

Furthermore, a View is obtained by applying a view-
point on a concrete set of Episodes of a chosen Software
System. To further refine the obtained result from various
quality perspectives, Perspectives can be applied. We clas-
sify the perspective in four focuses: Unit Involvement, Unit
Interdependence, Communication Integrity, and Cardinality.
The unit involvement perspective focuses on identifying AUs
that are considered as active (more outgoing than incoming
communication) or passive (more incoming than outgoing
communication). The interdependence type perspective focuses
on identifying AUs depending on their coupling and cohesion

154Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 2. ARAMIS Meta-Model. The new elements of the meta-model are shaded.

attributes (e.g, highly coupled, low cohesion). The communi-
cation integrity perspective focuses on identifying violations
of the pre-specified rules. Last but not least, the cardinality
perspective focuses on quantifying the occurrences of a certain
element - which can be AU, CU, or communication pattern -
during the execution of some episodes to assess quality.

By versioning the architecture description and the episodes,
ARAMIS allows the architect to apply the same viewpoint
and perspective to obtain views that depict a system’s past
evolution or create simulations for the future. Furthermore,
to support the analysis of evolution impact, ARAMIS enables
the comparison of multiple views and highlight the differences
between them (e.g., evolution of number of violations).

B. ARAMIS - Domain Specific Language
To support the modeling of viewpoints and perspectives

(A7, A10) and the creation of views (A8, A11), we have
designed a domain-specific language (DSL). We chose DSL as
the modeling technique in order to provide high expressiveness
in specifying the system behavior and high readability for the
domain-experts. Also, with the ARAMIS-DSL, we intend to
offer flexibility in extracting only architectural data interesting
for a given purpose, thus reducing analysis complexity, espe-
cially in the case of large-scale software systems. Since this
paper presents our work in progress, we do not explain the
full-grammar of the DSL nor other implementation details.
Instead, we exemplify the application of the viewpoint and
view specification using an example case.

Example Case
Let ”LayeredArchitectureSystem” be a layered system that

the architect currently wants to analyze. It defines three layers:
application layer (top), business layer (middle), and data layer
(bottom). According to the layered design principles, each
layer should depend on the layer immediately below it and
the lower layers should not depend on any of the upper
layers. The architect is worried that a cyclic dependency
may have emerged between the business and data layers. An
uncontrolled evolution in this direction would render the two
layers monolithic.

Given his concern, the architect creates a viewpoint called
”CyclicDependency” using the ARAMIS-DSL, as presented in
Figure 3. The DSL keywords are made bold.

Figure 3. ARAMIS Viewpoint Specification DSL Example

The viewpoint specifies two variables: L1 and L2, which
represent the ”Business Layer” and ”Data Layer” architecture
units, respectively. Since the architect is interested in retrieving
any cyclic communication between the two, he can include a
communication pattern (named as ”CyclicCommunication”),
which starts from the L1 (business layer) to the L2 (data
layer) and then forwarded back to the L1 (business layer). The
architect can then apply this viewpoint on any layered system
to construct a view which specifically supports the cyclic
dependency analysis between the business and data layers.

Furthermore, the ARAMIS-DSL supports the specification
of views, which permits the architect to specify the system and
corresponding episodes to be analyzed, to apply viewpoints
and perspectives, and to perform evolution impact analysis.
Our decision to place the perspective specification along with
the view specification is based on our in line idea with the
paradigm of architectural perspective introduced in [6], that
the perspective aims to enhance the existing views to ensure
that the architecture exhibits the desired quality properties and
are therefore considered as ’orthogonal’ to viewpoints.

In Figure 4, we exemplify the application of ARAMIS-
DSL to specify two views: ”CurrentBehavior” and ”Simulat-
edBehavior”. The ”CurrentBehavior” view presents the actual
system behavior, whereas the ”SimulatedBehavior” presents
the simulated system behavior. To these views, we apply the
viewpoint ”CyclicDependency” and perspective of cardinality
to project the evolution of cyclic dependency occurrence.

For the sake of exemplifying, we assume that the architect
previously monitored an episode called ”aBusinessProcess”.

155Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 4. ARAMIS View and Perspective Specification DSL Example

The current prescriptive architecture description of the system
is given by the triple (”code unit version 1”, ”architecture unit
version 1”, ”rule version 1”). We assume that the architect has
applied the viewpoint ”CyclicDependency” on this particular
episode and architecture description, and consequently dis-
covered many cyclic communications between the ”Business
Layer” and ”Data Layer” architecture units. Therefore, the
architect simulated merging some Java packages (thus creating
”code unit version 2”) and moving the newly created code
unit to another layer (thus creating ”architecture unit version
2”), while the set of rules between the architecture units
remained the same. The architect now wants to check how
would the number of cyclic communication change if evolving
the architecture as described in his simulation. He achieves this
by applying the ”cardinality” perspective of ”CyclicCommuni-
cation” described in the used viewpoint, which quantifies the
number of cyclic communications in each of the constructed
views (”CurrentBehavior” and ”SimulatedBehavior”).

Figure 5. ARAMIS Simulation Result of the Example Case

The result, as it will be projected by ARAMIS is depicted
in Figure 5. The ARAMIS simulation gives the architect that
the design decisions he simulated in the ”SimulatedBehavior”
will reduce the number of cyclic communications. The archi-
tect can further refine and re-simulate his design decisions to
achieve a better result before bringing them into effect.

III. RELATED WORK

The reconstruction of software behavior and up-to-date
architecture description have been for long in the focus of
software architecture community. However, little emphasis has
been put on analyzing and validating the software dynamic
behavior on various abstraction levels, which are defined in the
static view of the architecture. For a more detailed overview
of the existing works in this regard, see [9].

Proposals regarding the simulation of software architec-
ture were also made. The simulation of various architectural
design decisions by replicating the system’s behavior from

UML diagrams have been offered (e.g., [10]–[12]). However,
a study about continuous architecture simulation [13] has
concluded that the modeling process of UML diagrams for
evaluation purposes is very time-consuming and it makes the
continuous simulation effort not appropriate for evaluating a
software architecture. Other approaches (e.g., [14], [15]) allow
to simulate the software architecture based on the software’s
run-time behavior and mainly focus on some quality attributes
like performance and availability. None of these simulation
approaches focuses on the preliminary reconstruction of the
architecture description as a basis for further analysis.

IV. CONCLUSION AND FUTURE WORK

All in all, this paper presented and exemplified our current
work to enable the viewpoint-based analysis and evolution of
software architecture within the ARAMIS project. Our next
steps are to conclude the implementation of the presented
concept and to evaluate the achieved result.

REFERENCES
[1] J. D. Herbsleb and D. Moitra, “Global software development,” IEEE

Software, vol. 18, no. 2, Mar/Apr 2001, pp. 16–20.
[2] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:

Foundations, Theory, and Practice. Wiley Publishing, 2009.
[3] M. M. Lehman, “Laws of software evolution revisited,” in Proceed-

ings of the 5th European Workshop on Software Process Technology.
London: Springer-Verlag, 1996, pp. 108–124.

[4] M. W. Maier, D. E. Emery, and R. Hilliard, “Software architecture:
Introducing IEEE standard 1471,” IEEE Computer, 2001.

[5] ISO/IEC/IEEE, “Systems and software engineering – architecture
description,” ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), 2011.

[6] N. Rozanski and E. Woods, Software Systems Architecture: Work-
ing with Stakeholders Using Viewpoints and Perspectives, 2nd ed.
Addison-Wesley, 2011.

[7] P. Kruchten, “The 4+1 view model of architecture,” IEEE Software,
vol. 12, no. 6, Nov. 1995, pp. 42–50.

[8] C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture.
Boston: Addison-Wesley, 2000.

[9] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen, “Run-time
monitoring-based evaluation and communication integrity validation of
software architectures,” in the 21st Asia-Pacific Software Engineering
Conference (APSEC 2014), Jeju, South Korea, December 1–4, 2014,
vol. 1. IEEE, December 2014, pp. 191–198.

[10] A. Kirshin, D. Dotan, and A. Hartman, “A uml simulator based on
a generic model execution engine,” in Proceedings of the 2006 Inter-
national Conference on Models in Software Engineering. Springer-
Verlag, 2006.

[11] V. Cortellessa, P. Pierini, R. Spalazzese, and A. Vianale, “Moses:
Modeling software and platform architecture in uml 2 for simulation-
based performance analysis,” in Proceedings of the 4th International
Conference on Quality of Software-Architectures: Models and Archi-
tectures. Springer-Verlag, 2008.

[12] R. Singh and H. S. Sarjoughian, “Software architecture for object-
oriented simulation modeling and simulation environments: Case study
and approach,” Computer Science Engineering Dept., Arizona State
University, Tempe, AZ, Tech. Rep., 2003.

[13] F. Mårtensson and P. Jönsson, “Software architecture simulation - a
continuous simulation approach,” Master’s thesis, Blekinge Institute of
Technology, 2002.

[14] V. Bogado, S. Gonnet, and H. Leone, “Modeling and simulation of
software architecture in discrete event system specification for quality
evaluation,” Simulation, vol. 90, no. 3, Mar. 2014, pp. 290–319.

[15] R. von Massow, A. van Hoorn, and W. Hasselbring, “Performance
simulation of runtime reconfigurable component-based software archi-
tectures,” in Software Architecture - 5th European Conference, ECSA
2011, Essen, Germany, September 13–16, 2011. Proceedings. Springer-
Verlag, 2011, pp. 43–58.

156Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

