
Metrics Framework for Cycle-Time Reduction in Software Value Creation
Adapting Lean Startup for Established SaaS Feature Developers

Pasi Tyrväinen, Matti Saarikallio
Agora Center, Department of CS and IS

University of Jyväskylä, Finland
pasi.tyrvainen@jyu.fi, matti.saarikallio@gmail.com

Timo Aho, Timo Lehtonen, Rauno Paukkeri
Solita plc

Tampere, Finland
{timo.aho, timo.lehtonen, rauno.paukkeri}@solita.fi

Abstract— Agile software development methodologies driving
cycle-time reduction have been shown to improve efficiency,
enable shorter lead times and place a stronger focus on
customer needs. They are also moving the process development
focus from cost-reduction towards value creation. Optimizing
software development based on lean and agile principles
requires tools and metrics to optimize against. We need a new
set of metrics that measure the process up to the point of
customer use and feedback. With these we can drive cycle time
reduction and improve value focus. Recently the lean startup
methodology has been promoting a similar approach within
the startup context. In this paper, we develop and validate a
cycle-time-based metric framework in the context of the
software feature development process and provide the basis for
fast feedback from customers. We report results on applying
three metrics from the framework to improve the cycle-time of
the development of features for a SaaS service.

Keywords-metrics framework; cycle-time; agile; software
engineering process; lean startup; feedback; SaaS.

I. INTRODUCTION
The software engineering (SWE) process has

traditionally been managed on a cost basis by measuring
programmer effort spent per lines of code, function point or
requirement. These metrics have also been used to guide
software process improvement. In order to align more with
business strategy and value production the focus has shifted
more towards value creation instead of cost reduction. For
example, value-based SWE [1], software value-map [2] and
a special issue on return on investment (ROI) in IEEE
Software [3] have explored value in software development.
As a reaction to move away from a cost-reduction focus, the
recent goal of lean thinking has been to optimize for
perceived customer value [4]. Thus, we can say that
leadership approach for the software development process is
moving from a cost focus to a value focus.

Measuring the value of application software and cloud
services is difficult to do before it is in use, as you need to
consider the value of the software for the potential users, the
business value for the firm developing it and the value for
other stakeholders [1][5][6]. The current theories of value do
not present a simple way of assessing customer value [7].
Although companies put a great amount of effort into
increasing customers' perceived value in the product
development process, determining how and when value is

added is still a challenge even in marketing and management
sciences. [7] Further, the software engineering metrics are
measuring attributes of the software development process
(e.g., cost, effort, quality) while these metrics remain
disconnected from the attributes and metrics developed for
measuring value (see Table I). Various approaches have been
developed to overcome this gap [1][5][6][8][9][10][11][12]
[13][14][15][16] without any major break-through.

The software engineering community has adopted an
iterative approach to software development in form of Scrum
[17], XP [18] and other agile [19] methods. These promote
fast cycle user interaction and development process to keep
the effort focused on customer needs based on fast customer
feedback either interactively or through analysis of service
use behavior. The startup community has adopted a similar
approach and commonly uses the lean startup cycle [20] to
evaluate the hypothesis of customer needs using the build-
measure-learn cycle, which is repeated to improve customer
acceptability of the offering and the business value of the
startup. The common theme of these approaches is that
instead of trying to estimate or predict the value in advance,
try to shorten the cycle time from development to actual
customer feedback, which indicates the value of the software
in use. That is, from the SWE perspective, the speed of
feedback received from users is the best indicator of the
value of the newly created software. This indicates that
shortening the feedback cycle would drive the SWE process
towards faster reaction on customer value and higher value
creation.

Although there exists a common understanding about the
key role of a fast customer feedback cycle in linking the
SWE process to value creation, the measurement methods
and metrics available in literature are positioned either as
cost-based SWE methods or as value-oriented metrics with
little connection to the engineering process providing little
guidance for managing and developing the SWE process (see
Table I). Thus, the research question of this paper is, what
metrics would guide cycle-time-driven software engineering
process development in established organizations?

As the answer is context-dependent, a set of metrics will
be needed. This paper aims at filling this gap by proposing a
metrics framework enabling adoption of such metrics in a
variety of contexts where new features are incrementally
added to software.

220Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE I. POSITION OF THIS RESEARCH TO BRIDGE COST-
ORIENTED SOFTWARE ENGINEERING (SWE) METRICS
AND VALUE-ORIENTED BUSINESS METRICS

Measurement Domains

SWE Metrics Research Gap
Addressed Here Value Metrics

Scope
(measurement
target)

SWE Process Value Creation
Cycle

Customer Value
of Offering,

Value of Startup
Measured
Attribute

Cost, Effort,
Quality Cycle Time

Value for
Customer,
Value for
Enterprise

Examples
Function Points

per month,
Faults per lines

of code
Value in Use,

ROI, Lean
Analytics

Applying the guidelines of the design science method

[21], this research has been initiated based on company
needs presented in interviews of Software as a Service
(SaaS) development firms in a large industry-driven research
program [22], to target an issues with business relevance in
firms.

In Section II, we construct the metrics framework artifact
based on the analysis and synthesis of previous research
literature selected from the perspective of the research
question. Following the design science research guidelines,
we also demonstrate generalizability of the framework
artifact to several contexts by choosing from a variety of
metrics to target the specific process development needs. We
also propose a simple diagrammatic representation for
visualizing some of the metrics values in operational use to
pinpoint development tracks requiring attention in an
organization with multiple parallel feature-development
teams.

In Section III, we evaluate the metrics framework by
applying it to the case of a firm developing new features for
an existing SaaS service and discuss the impact of the
findings on revising the target of the next process
improvement actions. In Section IV, we summarize the
results, draw the conclusions and propose directions for
further research.

II. THE CYCLE-TIME METRICS FRAMEWORK

A. Developing the Framework
The flow of new features through a SWE process can be

measured at various points in time with an aim to reduce
delay between points to reduce cycle time. The scope of the
process measured will impact the attention of the software
developing organization. In the narrowest scope, the cycle
time measured includes the basic software development
cycle while the widest cycle takes into account the customer
needs and experience and, thus, matches and even expands
the lean startup cycle [20].

In the proposed framework (see right side of Figure 1),
the feature life-cycle begins with three planning phase
events: 1) a need emerges, 2) a software development

organization recognizes the need, and 3) the decision is made
to develop the feature. In large established organizations, the
identification of feature needs has been excluded from the
responsibility of the SWE organization to responsibility of
the product marketing organization, while the
entrepreneurship-oriented startup community has
emphasized the value of including the need identification
step as an inherent part in the fast business development
cycle of the organization developing the software.
Sometimes there is an intentional lag between events 2 and 3
as the decision may be to wait for the right time window (cf.
real options [23][24]), or features with higher priority are
consuming all resources available.

Continuing from the 3 events that form the beginning of
the feature life cycle (above) and for the purposes of
measuring the value creation cycle, the main development
events included in this framework are 4) development starts,
5) development done, and 6) feature deployed. Use of XP,
Scrum and other iterative and incremental development (IID)
processes has aimed at reducing the time between events 4
and 5 (or fixing that to 2–4-week cycles). The cycle-time
from 4 to 5 is here referred to as the Development cycle (see
Figure 1). Moving from packaged software to cloud delivery
and SaaS development along with moving from an annual or
a six-month software release cycle to continuous integration
(CI [25]) and continuous delivery (CD [26]) in development
operations (devops [27]) has reduced the interval between 4
and 6.

After the event 6, the traditional software engineering
process is often thought to be completed, while many
entrepreneurship-oriented approaches, such as Lean Startup
[20], go further, starting from building a product to
measuring the use of it, which produces data used for
learning and for producing ideas for the next development
cycle (see left side of Figure 1). That is, building the product
based on current ideas is only one of the three main events
needed for value creation: build–measure–learn [20]. For
considering the business and customer perspectives in this
metrics framework for the value creation cycle, we need to
expand beyond step 6 to include the use, measuring and
learning phases: 7) when the feature gets used, 8) when
feedback data is collected to support learning, and 9) when a
decision is made based on the feedback. Note that events 8
and 9 resemble events 2 and 3 while not all information from
customer needs is collected through measuring the use of the
current product. It is also commonly assumed that the time
from feature deployed (6) to first use (7) is short, while
without measured data this can be an incorrect assumption.
There have been cases where almost half of software features
were never used [28]. Further, if software quality is high, it
can take some time to get feedback, and it may require many
uses of the feature before customer sends feedback about
problems. Additionally, it can take time for a feature to get
sufficient number of uses to allow for a reliable analysis of
customer behavior (8). Also, the deployment process of the
company can delay the decision to act on the feedback (9).

221Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 Figure 1. The value-driven metrics framework for driving software engineering cycle-time reduction (on the right), the Lean Startup cycle (on the left)
and example cycles, for which cycle time can be used as the metrics driving cycle-time reduction (in the middle).

Figure 1 depicts the proposed framework. On the right

side we have the sequence of events identified. On the left
side, we have the Lean Startup cycle with horizontal arrows
pointing from the phases to related events of the
framework. The vertical arrows in the middle represent
examples of cycle times that can be used as a target metric
for developing SWE process. The cycles in the center are
labeled as follows: L = Lean Startup cycle, F = Full cycle
including fuzzy front end and full feature development cycle,
V = Value cycle from starting the development to value
capture, C = Core cycle from development start to first
feature use, and finally D+D2VC, where D = Development
cycle from start of development to production readiness and
D2VC = time from development done to value captured. We
emphasize that this list of cycles is not exclusive and new
cycle time metrics can be created with this framework on
demand for each context.

B. Changing Process Development Focus through Metrics
The various cycle-time metrics available in the

framework can be used for focusing process development
activity to specific process areas based on the need (see
Table II). For example, if the basic software development
process has been well developed and if some incremental
development process, automated testing and continuous
integration are applied, it may be useful to shift the attention
to continuous deployment. In that case, the metric to be
followed can be changed from Development cycle to cycle
time between events 4 and 6, from start of development to
start of production (see the second line in Table II).
Changing the metric will also change the focus of attention
and can often result in adjusting the processes, resource
allocations or tools used.

TABLE II. EXAMPLE PROCESS DEVELOPMENT TARGETS WHEN USING ALTERNATIVE CYCLE-TIME METRICS

Cycle Start Event End Event Addressed Capabilities Process Development Focus
D,
Development

4: Development
Started

5: Development
Done

XP, Scrum and other IID processes, automated
testing and continuous integration (CI)

Using this cycle-time metrics addresses
cycle-time of the basic SW development
process

Time to
production

4: Development
Started 6: In Production Same as in D, adding continuous deployment

(CD) to the measurement scope
Using metrics for this cycle time focuses
attention to CD capability

C, Core cycle 4: Development
Started 7: Feature Used Same as previous adding communication

(diffusion) to customer base to the scope
Here the focus shifts to integrating customer
facing team with development

V, Value cycle 4: Development
Started

8: Value
Captured

Adding customer analytics and customer feed-
back capabilities to the previous scope

Shifts focus to integrating analytics capability
to IID+CI+CD capability

Time to Value 4: Development
Started *: Break Even As Value cycle, but using this metrics assumes

that value produced can be evaluated. As in Value cycle
D2VC 5: Development

Done
8: Value
Captured

Post-development processes needed to deliver
the created value and to get the feedback

Focusing on value cycle capabilities after the
basic SW development process.

Fuzzy Front
End

1: Feature
Needed

3: Feature
Ordered

Deep customer understanding (between events
1 and 2) and market understanding (2 to 3)

Measuring capability to find customer needs
close to actionable market

...

222Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In large organizations, where the product-marketing
department is responsible for collecting market requirements
and for product launches, the processes crossing product
development and product-marketing departments may be
problematic. In these cases, choosing the Value cycle, Time
to Value or Design done to value captured (D2VC) as a
common metric for both of the departments will enforce
collaboration between the departments and will likely
improve the total value creation capability of the
organization, while local metrics within the departments are
likely to lead to local optimization leading to non-optimal
organizational behavior. It should be noted, that this issue
appears mainly in large established organizations rather than
in small startup firms, the needs of which the lean startup
approach has been developed.

The time to value cycle in Table II ends with the event of
reaching the breakeven point, which is marked with an
asterisk “*” rather than a number representing a specific
ordering in the framework. In some cases a pay-per-use
business model provides a basis to determine the break-even
point for a feature, while in some cases the break-even point
is estimated by qualitative means. A new feature may
produce enough value to reach the break-even point when it
is published (event 6) or when it is used for the first time
(event 7). However, in many contexts this event occurs close
to event 8, Value captured, that is, the feature use count is
high enough, and sufficient feedback has been received, to
ascertain whether the feature was worth the development
effort. Based on these examples and the other examples in
Table II we can observe, that the choice of applicable metrics
is context dependent. Thus there is a need for a framework
for metrics, which supports choosing the metric applicable
for a specific situation.

C. Depicting Cycle-Time Elements
Depicting the proposed cycle-time metrics makes it

easier to decide whether to further develop or even to drop a
existing feature and will also help in communicating the
cycle-time reduction agenda to software engineers and other
parties involved. For this purpose we devised a simple
diagrammatic representation presented in Figure 2. In this
example, the development starts at point 4 and ends at point
5. The y-coordinate represents the cumulative development
time, in line with the cumulative cost for the organization.
This linear curve is intentionally simplistic as the focus is on
the form of the curve after event 5. In contrast, software
engineering oriented representations, such as the Kanban
Cumulative Flow Diagram [29], focus on analysis of the
development cycle from 4 to 5 and ignore activity after
production readiness.

From event 5 on, the horizontal line represents the
duration of the waiting time from ready-to-deploy through
deployment to first use. The feature is used for the first time
in production at event 7. After that the dropping logarithmic
curve represents the speed at which feedback has been
received. After the second use the curve comes down to half,
after the third use to one third of the original, and so on.

Figure 2. Depiction of the cycle times for feature analysis and process

development. The numbers refer to the event number in the framework.

That is, the curve represents development time divided by
number of times used. A context-specific target threshold for
development time per times used is presented as a dotted line
and the time when the curve reaches the threshold is marked
with an asterisk “*”.

In line with our approach to focus on the cycle times, this
graphical representation aims at depicting the cumulative
effort invested to the feature during development. There is a
risk embedded in this development effort as it has not
received feedback from the customers. Thus it is potential
waste if customers do not accept the feature. This risk is
mitigated along the narrowing gap of the asymptotic curve
and the horizontal axis and reaching the threshold indicates
that enough customer feedback has been received to
ascertain whether it has been worth developing the feature.
Event 8, Value captured, is serving this purpose as the event
when sufficient user feedback is gained to evaluate the value
of the newly developed feature and for adjusting the
development plans accordingly, to further develop the
feature or to drop it. In addition to guiding value creation,
fast feedback from event 8 makes it easier for software
developers to fix errors and modify the feature as long as
they can still recall the implementation of the feature and
have not moved on to new assignments.

Although measuring value is difficult, we would also like
to identify the time-to-value cycle, that is the time from
starting the development to break even, to the point at which
its value to the customer exceeds the development costs.
Now we face the challenge that while the cost can be easily
measured in terms of time or money, value as a concept is
not clearly defined and even if it were it would be hard to
measure. We can speculate that the break-even point could
be reached already on deployment (for features whose
existence provides value even if they are not used, e.g.,
emergency-situation feature), on first use (when customer
finds it), after a certain amount of uses (some use value
derived from each), or sometimes a feature can fail to
become profitable. Thus, the location of this measurement
point cannot, in general, be identified in the sequence of
events in the proposed framework, rather it is context
dependent.

If we want to measure value, we need to define value.
Historically three forms of economic value are the use value,
exchange value and price [30]. There are many theoretical
divisions of value to support decision making about which

223Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

software feature to work on next [2][5][7][8][9][10][11][12]
[13][14][15][16][24][30][31], but most theories consider the
use value to the customer as essential. For the purposes of
metrics development the focus will be on customer use
value. It is important to note that due to market mechanism,
exchange value is less or equal to use value [30]. This means
that we could calculate a monetary estimate for the upper
bound of the value captured by the software developer, that
can be compared with cost. Still, the issue is problematic.

If we assume that there is use value for a feature, and in
some cases the use value can be estimated as equal for each
use, we would like to measure directly the cost versus
benefits ratio: !"#"$%&'"() !"#$#

!"#"$%&'
. However, as discussed the

benefits are challenging to measure and, at worst, we might
need a new metric for each feature. This leads us to suggest
that we isolate the hard-to-measure part, benefits, by instead
measuring the precisely calculable cost per use 𝛽 =
!"#"$%&'"() !"#$#

!"#$% !"#$
 and only if possible compare it to the

estimated value for the user, based on a case-by-base
estimation method. Next, we will show, using a case study,
that reaching events “*” and 8 produce very similar value for
process development and feature decision making and that
they can be used interchangeably. Thus, time to receive
enough feedback is also a good, practical proxy for value
produced.

III. METRICS VALIDATION CASE STUDY

A. Target Organization and Service
We evaluated the metrics framework in a mid-sized

Finnish software company, Solita Ltd. The case software
development team develops a publicly available SaaS
(lupapiste.fi) used by citizen applying for a construction
permit related to real estate and other structures. This
privately operated intermediary service provides a digital
alternative to avoid the time-consuming paper-based process
of dealing directly with the public authority. This service is
used by employees of the licensing authority in the
municipalities (about 100 users), the applicants (citizens and
companies, about 100 per month), and architects and other
consultants (1-2 per application). The software development
process metrics were evaluated with the usage data collected
from the process flow of five new features of this SaaS
service deployed during the observation period, in mid-2014.

The service has a single page front-end that connects
through a RESTful API to its back-end. Each call to the API
is recorded on the production log files with a time stamp. We
mined and analyzed the log entries together with the
development data captured by the version control system. In
this case, we chose features that introduced a new service to
the API and were thus possible to trace automatically with a
simple script that queried the monitoring system
automatically. Some manual work was needed to find the
features that introduced a new API, but automation of this
work is also possible.

B. Results from Applying the Metrics to Sample Features
From the recorded event time stamps we calculated three

metrics values for the case features. Development cycle (D)
from start (4) to done (5) in working days. Lag to production
from done (5) to deployed (6) in calendar days. And
finally, D2VC, time from development done (5) to value
captured (8). In this context the target company estimated
that enough feedback data was collected for learning when
the feature was used four times per each day spent on
development, which gave the context-specific definition for
the value capture event (8). Table III presents the data that is
depicted in Figure 3. To enable comparison, all the features
are shifted in the time axis to have event 4 (start of
development) at day 0. In a daily use, an alternative
depiction can show the timeline representing the history of
all features to current point of time from which it is easy to
identify development peaks and, more specifically, to notice
the curves that remain high after the peak which indicates a
demand for action. Either a feature has not been deployed
and promoted well for the users or there is no user need for
the feature.

C. Case Analysis and Discussion
From Table III we can see that for these five features the

average of development effort needed to implement and test
the features was about eight working days. When the
development was done, on an average 12 calendar days was
spent on waiting for deployment of the feature to the
production environment. We can also observe that the
features with lower priority (F1647 Unsubscribe and F1332
Note) have almost double the lag to production compared to
the other features.

TABLE III. DESCRIPTION OF THE SAMPLE FEATURES, THEIR PRIORITY,
DEVELOPMENT TIME (IN WORKING DAYS), LAG TO
DEPLOYMENT (IN CALENDAR DAYS) AND DEVELOPMENT
TO VALUE CAPTURED (D2VC; IN CALENDAR DAYS)

Feature id

Pr
io

ri
ty

D

ev
el

op
m

en
t

(d
ay

s)

L
ag

 to

de
pl

oy
m

en
t

(d
ay

s)

D
2V

C
 (

da
ys

)

Description of the
feature

F1332 Note 2 10 24 24
Authority user can add a
textual note that other
users cannot see.

F1498
Attachment 4 9 10 N/A

Applicant user can set
the target of an uploaded
attachment.

F1507
Validate 4 10 1 49

System validates the
form prior the user sends
the application.

F1537 Sign 4 7 11 15
Authority user can
require an applicant to
sign a verdict.

F1647
Unsubscribe 3 2 15 28 Authority user can

unsubscribe emails.
Average 8 12 29

224Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 3. Depiction of the cycle-times of the five features. Development working days share the rising line starting from (event 5) and end in event 6

(start of the gray horizontal line), deployment (7, white dots in the right end of the gray part of the horizontal lines) and usage (yellow dots). To enable
comparison, all the features are synced to have event 5 (start of development) at day 0.

The average time from completion of development to
value capture is 29 days (this does not include feature F1498
Attachment, which did not reached the number of uses
needed for the threshold). From the depiction in Figure 3, we
can also see that this feature is no longer used. This feedback
triggers the discussion on the reasons for the discontinuation
of use of the feature to determine if there is a need to
improve it or remove it from the service. When the target is
to minimize the cycle times, minimizing the lag from
production readiness to deployment (from event 5 to 6) and
the means to increase the use of new features are clearly the
places where major improvement can be reached much
easier than from reducing average development time. By
plotting the events in this way, it is easy to identify the
places where changes can be made as well as to
communicate the need with the development teams.

The results triggered also a discussion on the release
practices of the firm. From the service use statistics it is
possible to see that the service is heavily used from Monday
to Thursday, less on Friday and very little during weekends.
Thus it is likely that features released on Mondays will get
used sooner than the ones released on Fridays, which
provides the additional benefit that the feedback from users
(8) would reach the developers when they still recall the
software they were working on. Even more profound than
the weekly cycle is a similar variation related to the vacation
seasons. Deploying new features just prior to vacations will
have negative impact on the Value cycle, as described above.

IV. SUMMARY, CONCLUSIONS AND FURTHER RESEARCH
The feedback from practitioners suggests that the current

literature lacks metrics that could be used for directing a
software development organization from the business
perspective to enhance effective value creation and value
capture. Although the Lean Startup Methodology proposes to
develop the software via the build–measure–learn cycle, we

seem to lack the means to measure the value that the
delivered software creates. Also the researchers have
observed this problem and conclude [7], that the current
theories of value do not present a simple way of assessing
customer-perceived value. Although companies put a great
amount of effort into increasing customers' perceived value
in the product development process, determining how and
when value is added is still a challenge even in marketing
and management sciences [7]. Previous literature on XP,
Scrum, lean startup and related approaches has indicated that
in the context of SaaS services, delivering new versions of a
service to the customer, collecting the usage data and making
further decisions based on the data provides the most
promising path for the software vendor to understand
customer-perceived value. Agile methods have been shown
to enable shorter lead times and a stronger focus on customer
needs [32].

Shortening the cycle times provides increased flexibility
maintaining options to change development direction with
speed [20][22] as well as other business benefits for software
service firms. This encouraged us to search for metrics that
help software firms in the process development towards
shorter cycles. On this basis, we formulated the research
question as, what metrics would guide the cycle-time-driven
software engineering process development in established
organizations?

As the proposed solution, we adopted and extended the
lean startup [20] value creation cycle and constructed a
framework for metrics based on the times between main
observable events within the cycle, all the way through to
receiving and analyzing user feedback. This focuses attention
on fast execution of the value creation within the user
feedback cycle. That is, we are not trying to measure value
of the results of the cycle, such as the value of the product
produced or the value of the startup or progress of the startup
in creating the offering, as in lean analytics [12].

225Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

By finding the measurable values from within the value
creation cycle, the cycle-time metrics framework aims at
bridging the gap between cost-oriented SWE metrics and
value-oriented business metrics. Cycle-time reduction serves
as the intermediary of increased value creation guiding
software feature development and software process
development. The metrics measure the calendar time
between the key events. The first three events are related to
feature need identification and the business decision to
implement the specific feature (event 3). The core events
following this decision are start of the development (4), the
feature is ready for deployment (5), the feature is deployed
(released, 6), and first use of the feature by a customer (7).
These events are followed by feedback related events, the
feature feedback data has been collected and analyzed (8)
and a decision is made based on the feedback (9). The time
intervals between the core events (4-7) are of most interest
for the engineering while the other events (1-3 and 8-9)
relate to the customer-perceived value analysis of the feature.
We also provided examples on how changing the
measurement cycle directs the process development to new
process areas.

Our empirical focus was at the level of features being
added to an existing SaaS offering. In the empirical part, the
times between the events in the core cycle were measured for
five new features in the development processes of an
independent software vendor’s SaaS service. The results
showed that the core metrics were able to capture and bring
up useful characteristics of the business process that
triggered both a “drop vs. develop feature” discussion (for
feature F1498) and a number of process development
discussions. In these five feature development cases the
average development time was shorter than the waiting time
for the feature to be released. This has negative impact to the
efficiency of fixing potential problems emerging during the
first uses of the feature by first users, as the developers have
already oriented towards another assignment. The detection
of the delay of feature releases lead to a further analysis of
the vendor’s release practices in general and prompted quick
improvements to their process.

Although the results from the empirical part showed that
the metrics are useful in practice, there are still several
avenues of further research that we wish to explore. The
empirical part used data from the engineering system and
customer feedback data to identify the core events. This
seems to be a useful starting point and the firm in our case
study would like to extend the collection of data to cover as
many of the nine events as possible and as automatically as
possible. The time from release readiness to analyzed
customer feedback seems to be a particularly useful
measurement of deployment performance.

In general, collecting the data can and should be
automated using engineering information systems to the
extent possible (events 1 and 8 cannot be detected
automatically). For the other events, we propose collecting
and depicting the data graphically in real-time status displays
providing an overview of the development activities for
business and engineering management. As we can observe
from the empirical case, the results are useful both for

focusing process development activities and for making
business decisions regarding which features will be
developed further, which will be used as they are, and which
features will be removed from the service. This way the
simplified depiction can provide transparency between the
business and the development organization. Thus we
encourage further empirical work on the automation of data
collection and its depiction based on events identified in the
framework.

In startups the result of value creation cycle can be
analyzed in the context of the evolution of the enterprise
[12]. In context of established feature development
processes, this framework adopted the approach of using
only cycle times between events as the metrics within the
value creation cycle. This is due to limited applicability of
suitable previous research results for real-time customer-
perceived value analysis beyond A/B testing and similar
tools that can be used between events 7 and 8. Although
cycle time metrics seems to provide high added value to
focus process development in connecting software
development with customer value, investigating the value
capture events 8 and “*” further is needed. Finding an easy
to apply means for estimating the perceived user benefits
would enable various new developments supporting the
operative business development of a software engineering
team.

ACKNOWLEDGMENT

This work was supported by TEKES as part of the Need
for Speed (N4S) Program of DIGILE (Finnish Strategic
Centre for Science, Technology and Innovation in the field
of ICT and digital business).

REFERENCES
[1] B. W. Boehm, “Value-based software engineering: Overview

and agenda,” in Value-based software engineering, Springer
Berlin Heidelberg, 2006, pp. 3-14

[2] M. Khurum, T. Gorschek, M. Wilson, “The software value
map - an exhaustive collection of value aspects for the
development of software intensive products,” Journal of
software: evolution and process. Wiley, 2012, 711-741.

[3] H. Erdogmus, J. Favaro, W. Strigel, “Return on investment,”
IEEE Software 3(21), 2004, pp. 18–22.

[4] K. Conboy, “Agility from first principles: reconstructing the
concept of agility in information systems development,”
Information Systems Research, 20(3), 2009, pp. 329-354.

[5] S. Barney, A. Aurum, C. Wohlin, “A product management
challenge: Creating software product value through
requirements selection,” Journal of Systems Architecture,
54(6), 2008, pp. 576-593.

[6] A. Fabijan, H, Holström Olsson, J. Bosh, “Customer
Feedback and Data Collection Techniques in Software R&D:
A Literature Review,” in Software Business. Springer
International Publishing, 2015, pp. 139-153.

[7] J. Gordijn, and J.M. Akkermans, “Value-based requirements
engineering: exploring innovative e-commerce ideas,”
Requirements Engineering 8(2), 2003, pp. 114-134.

[8] M. Rönkkö, C. Frûhwirth, S. Biffl, “Integrating Value and
Utility Concepts into a Value Decomposition Model for

226Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Value-Based Software Engineering,” PROFES 2009,
Springer-Verlag, LNBIP 32, 2009, pp. 362–374.

[9] R.B. Woodruff, and F.S. Gardial, Know your customer: New
approaches to customer value and satisfaction. Cambridge,
MA, Blackwell, 1996.

[10] C. Grönroos, “Value-driven relational marketing: from
products to resources and competencies,” Journal of
Marketing Management 13(5), 1997, pp. 407–419.

[11] T. Woodall, “Conceptualising ‘value for the customer’: An
attributional, structural, and dispositional analysis,” Academy
of Marketing Science Review, no. 12, 2003, pp. 1526–1749.

[12] A. Croll, and B. Yoskovitz, Lean Analytics: Use Data to
Build a Better Startup Faste,. O'Reilly Media, Inc. 2013.

[13] P. Tyrväinen, and J. Selin, “How to sell SaaS: a model for
main factors of marketing and selling software-as-a-service,”
in: Software Business, Springer, Berlin Heidelberg, 2011, pp.
2-16.

[14] V. Mandić, V. Basili, L. Harjumaa, M. Oivo, J. Markkula,
“Utilizing GQM+ Strategies for business value analysis: An
approach for evaluating business goals,” The 2010 ACM-
IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, 2010.

[15] M. Saarikallio, and P. Tyrväinen, “Following the Money:
Revenue Stream Constituents in Case of Within-firm
Variation,” in: Software Business. Springer International
Publishing, 2014, pp. 88-99.

[16] J. Bosch, “Building products as innovation experiment
systems,” in: Software Business, Springer, Berlin Heidelberg,
2012, pp. 27-39.

[17] K. Schwaber, and M. Beedle, Agile Software Development
with SCRUM, Prentice Hall, 2002.

[18] K. Beck, Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[19] A. Cockburn, Agile Software Development, 1st edition, 256
p. Addison-Wesley Professional, December 2001.

[20] E. Ries, The Lean Startup: How Today's Entrepreneurs Use
Continuous Innovation to Create Radically Successful
Businesses. Crown Publishing Group, 2011.

[21] A.R. Hevner, S.T. March, J. Park, S. Rami, “Design Science
in Information Systems Research,” MIS Quarterly, Vol. 28,
No. 1, 2004, pp. 75-105.

[22] J. Järvinen, T. Huomo, T. Mikkonen, P. Tyrväinen, “From
Agile Software Development to Mercury Business,” in:
Software Business. Towards Continuous Value Delivery,
Springer Berlin Heidelberg, LNIB, vol. 182, 2014, pp 58-71.

[23] H. Erdogmus, and J. Favaro, “Keep your options open:
Extreme programming and the economics of flexibility,” in
Giancario Succi, James Donovan Wells and Laurie Williams,"
Extreme Programming Perspectives", Addison Wesley, 2002.

[24] M. Brydon, “Evaluating strategic options using decision-
theoretic planning,” Information Technology and
Management 7, 2006, pp. 35–49.

[25] M. Fowler, Continuous Integration, 2006.
http://martinfowler.com/articles/continuousIntegration.html
retrieved: Septmeber, 2015.

[26] J. Humble, and D. Farley, Continuous delivery: reliable
software releases through build, test, and deployment
automation, Pearson Education, Jul 27, 2010.

[27] P. Debois, “Devops: A software revolution in the making,”
Cutter IT Journal, vol. 24, no. 8, August, 2011.

[28] J. Johanson, Standish Group Study, presenation at XP2002.
[29] K. Petersen, and C. Wohlin. "Measuring the flow in lean

software development." Software: Practice and experience,
vol. 41, no. 9, 2011, pp. 975-996.

[30] J.S.Mill, Principles of political economy, 1848, abr.
ed., J.L.Laughlin, 1885.

[31] M. Cohn, Agile estimating and planning. Pearson Education
Inc. 2006.

[32] M. Poppendieck and M.A. Cusumano, “Lean software
development: A tutorial,” Software, IEEE, vol. 29, no. 5,
2012, pp. 26–32.

227Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

