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Abstract— Agile software development methodologies driving 
cycle-time reduction have been shown to improve efficiency, 
enable shorter lead times and place a stronger focus on 
customer needs. They are also moving the process development 
focus from cost-reduction towards value creation. Optimizing 
software development based on lean and agile principles 
requires tools and metrics to optimize against. We need a new 
set of metrics that measure the process up to the point of 
customer use and feedback. With these we can drive cycle time 
reduction and improve value focus. Recently the lean startup 
methodology has been promoting a similar approach within 
the startup context. In this paper, we develop and validate a 
cycle-time-based metric framework in the context of the 
software feature development process and provide the basis for 
fast feedback from customers. We report results on applying 
three metrics from the framework to improve the cycle-time of 
the development of features for a SaaS service.  

Keywords-metrics framework; cycle-time; agile; software 
engineering process; lean startup; feedback; SaaS. 

I.  INTRODUCTION 
The software engineering (SWE) process has 

traditionally been managed on a cost basis by measuring 
programmer effort spent per lines of code, function point or 
requirement. These metrics have also been used to guide 
software process improvement. In order to align more with 
business strategy and value production the focus has shifted 
more towards value creation instead of cost reduction. For 
example, value-based SWE [1], software value-map [2] and 
a special issue on return on investment (ROI) in IEEE 
Software [3] have explored value in software development. 
As a reaction to move away from a cost-reduction focus, the 
recent goal of lean thinking has been to optimize for 
perceived customer value [4]. Thus, we can say that 
leadership approach for the software development process is 
moving from a cost focus to a value focus. 

Measuring the value of application software and cloud 
services is difficult to do before it is in use, as you need to 
consider the value of the software for the potential users, the 
business value for the firm developing it and the value for 
other stakeholders [1][5][6]. The current theories of value do 
not present a simple way of assessing customer value [7]. 
Although companies put a great amount of effort into 
increasing customers' perceived value in the product 
development process, determining how and when value is 

added is still a challenge even in marketing and management 
sciences. [7] Further, the software engineering metrics are 
measuring attributes of the software development process 
(e.g., cost, effort, quality) while these metrics remain 
disconnected from the attributes and metrics developed for 
measuring value (see Table I). Various approaches have been 
developed to overcome this gap [1][5][6][8][9][10][11][12] 
[13][14][15][16] without any major break-through.  

The software engineering community has adopted an 
iterative approach to software development in form of Scrum 
[17], XP [18] and other agile [19] methods. These promote 
fast cycle user interaction and development process to keep 
the effort focused on customer needs based on fast customer 
feedback either interactively or through analysis of service 
use behavior. The startup community has adopted a similar 
approach and commonly uses the lean startup cycle [20] to 
evaluate the hypothesis of customer needs using the build-
measure-learn cycle, which is repeated to improve customer 
acceptability of the offering and the business value of the 
startup. The common theme of these approaches is that 
instead of trying to estimate or predict the value in advance, 
try to shorten the cycle time from development to actual 
customer feedback, which indicates the value of the software 
in use. That is, from the SWE perspective, the speed of 
feedback received from users is the best indicator of the 
value of the newly created software. This indicates that 
shortening the feedback cycle would drive the SWE process 
towards faster reaction on customer value and higher value 
creation.  

Although there exists a common understanding about the 
key role of a fast customer feedback cycle in linking the 
SWE process to value creation, the measurement methods 
and metrics available in literature are positioned either as 
cost-based SWE methods or as value-oriented metrics with 
little connection to the engineering process providing little 
guidance for managing and developing the SWE process (see 
Table I). Thus, the research question of this paper is, what 
metrics would guide cycle-time-driven software engineering 
process development in established organizations?  

As the answer is context-dependent, a set of metrics will 
be needed. This paper aims at filling this gap by proposing a 
metrics framework enabling adoption of such metrics in a 
variety of contexts where new features are incrementally 
added to software. 
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TABLE I.   POSITION OF THIS RESEARCH TO BRIDGE COST-
ORIENTED SOFTWARE ENGINEERING (SWE) METRICS 
AND VALUE-ORIENTED BUSINESS METRICS  

 
Measurement Domains 

SWE Metrics Research Gap 
Addressed Here Value Metrics 

Scope 
(measurement 
target) 

SWE Process Value Creation 
Cycle 

Customer Value 
of Offering, 

Value of Startup 
Measured 
Attribute 

Cost, Effort, 
Quality Cycle Time 

Value for 
Customer, 
Value for 
Enterprise 

Examples 
Function Points 

per month, 
Faults per lines 

of code  
Value in Use, 

ROI, Lean 
Analytics 

 
Applying the guidelines of the design science method 

[21], this research has been initiated based on company 
needs presented in interviews of Software as a Service 
(SaaS) development firms in a large industry-driven research 
program [22], to target an issues with business relevance in 
firms. 

In Section II, we construct the metrics framework artifact 
based on the analysis and synthesis of previous research 
literature selected from the perspective of the research 
question. Following the design science research guidelines, 
we also demonstrate generalizability of the framework 
artifact to several contexts by choosing from a variety of 
metrics to target the specific process development needs. We 
also propose a simple diagrammatic representation for 
visualizing some of the metrics values in operational use to 
pinpoint development tracks requiring attention in an 
organization with multiple parallel feature-development 
teams.  

In Section III, we evaluate the metrics framework by 
applying it to the case of a firm developing new features for 
an existing SaaS service and discuss the impact of the 
findings on revising the target of the next process 
improvement actions. In Section IV, we summarize the 
results, draw the conclusions and propose directions for 
further research. 

II. THE CYCLE-TIME METRICS FRAMEWORK 

A. Developing the Framework  
The flow of new features through a SWE process can be 

measured at various points in time with an aim to reduce 
delay between points to reduce cycle time. The scope of the 
process measured will impact the attention of the software 
developing organization. In the narrowest scope, the cycle 
time measured includes the basic software development 
cycle while the widest cycle takes into account the customer 
needs and experience and, thus, matches and even expands 
the lean startup cycle [20]. 

In the proposed framework (see right side of Figure 1), 
the feature life-cycle begins with three planning phase 
events: 1) a need emerges, 2) a software development 

organization recognizes the need, and 3) the decision is made 
to develop the feature. In large established organizations, the 
identification of feature needs has been excluded from the 
responsibility of the SWE organization to responsibility of 
the product marketing organization, while the 
entrepreneurship-oriented startup community has 
emphasized the value of including the need identification 
step as an inherent part in the fast business development 
cycle of the organization developing the software. 
Sometimes there is an intentional lag between events 2 and 3 
as the decision may be to wait for the right time window (cf. 
real options [23][24]), or features with higher priority are 
consuming all resources available.  

Continuing from the 3 events that form the beginning of 
the feature life cycle (above) and for the purposes of 
measuring the value creation cycle, the main development 
events included in this framework are 4) development starts, 
5) development done, and 6) feature deployed. Use of XP, 
Scrum and other iterative and incremental development (IID) 
processes has aimed at reducing the time between events 4 
and 5 (or fixing that to 2–4-week cycles). The cycle-time 
from 4 to 5 is here referred to as the Development cycle (see 
Figure 1). Moving from packaged software to cloud delivery 
and SaaS development along with moving from an annual or 
a six-month software release cycle to continuous integration 
(CI [25]) and continuous delivery (CD [26]) in development 
operations (devops [27]) has reduced the interval between 4 
and 6.  

After the event 6, the traditional software engineering 
process is often thought to be completed, while many 
entrepreneurship-oriented approaches, such as Lean Startup 
[20], go further, starting from building a product to 
measuring the use of it, which produces data used for 
learning and for producing ideas for the next development 
cycle (see left side of Figure 1). That is, building the product 
based on current ideas is only one of the three main events 
needed for value creation: build–measure–learn [20]. For 
considering the business and customer perspectives in this 
metrics framework for the value creation cycle, we need to 
expand beyond step 6 to include the use, measuring and 
learning phases: 7) when the feature gets used, 8) when 
feedback data is collected to support learning, and 9) when a 
decision is made based on the feedback. Note that events 8 
and 9 resemble events 2 and 3 while not all information from 
customer needs is collected through measuring the use of the 
current product. It is also commonly assumed that the time 
from feature deployed (6) to first use (7) is short, while 
without measured data this can be an incorrect assumption. 
There have been cases where almost half of software features 
were never used [28]. Further, if software quality is high, it 
can take some time to get feedback, and it may require many 
uses of the feature before customer sends feedback about 
problems. Additionally, it can take time for a feature to get 
sufficient number of uses to allow for a reliable analysis of 
customer behavior (8). Also, the deployment process of the 
company can delay the decision to act on the feedback (9). 
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  Figure 1. The value-driven metrics framework for driving software engineering cycle-time reduction (on the right), the Lean Startup cycle (on the left) 
and example cycles, for which cycle time can be used as the metrics driving cycle-time reduction (in the middle).   

 
Figure 1 depicts the proposed framework. On the right 

side we have the sequence of events identified. On the left 
side, we have the Lean Startup cycle with horizontal arrows 
pointing from the phases to related events of the 
framework. The vertical arrows in the middle represent 
examples of cycle times that can be used as a target metric 
for developing SWE process. The cycles in the center are 
labeled as follows: L = Lean Startup cycle, F = Full cycle 
including fuzzy front end and full feature development cycle, 
V = Value cycle from starting the development to value 
capture, C = Core cycle from development start to first 
feature use, and finally D+D2VC, where D = Development 
cycle from start of development to production readiness and 
D2VC = time from development done to value captured. We 
emphasize that this list of cycles is not exclusive and new 
cycle time metrics can be created with this framework on 
demand for each context. 

B. Changing Process Development Focus through Metrics 
The various cycle-time metrics available in the 

framework can be used for focusing process development 
activity to specific process areas based on the need (see 
Table II). For example, if the basic software development 
process has been well developed and if some incremental 
development process, automated testing and continuous 
integration are applied, it may be useful to shift the attention 
to continuous deployment. In that case, the metric to be 
followed can be changed from Development cycle to cycle 
time between events 4 and 6, from start of development to 
start of production (see the second line in Table II). 
Changing the metric will also change the focus of attention 
and can often result in adjusting the processes, resource 
allocations or tools used. 

 

TABLE II.   EXAMPLE PROCESS DEVELOPMENT TARGETS WHEN USING ALTERNATIVE CYCLE-TIME METRICS  

Cycle Start Event End Event Addressed Capabilities Process Development Focus  
D, 
Development 

4: Development 
Started 

5: Development 
Done 

XP, Scrum and other IID processes, automated 
testing and continuous integration (CI) 

Using this cycle-time metrics addresses 
cycle-time of the basic SW development 
process 

Time to 
production 

4: Development 
Started 6: In Production Same as in D, adding continuous deployment 

(CD) to the measurement scope 
Using metrics for this cycle time focuses 
attention to CD capability 

C, Core cycle 4: Development 
Started 7: Feature Used Same as previous adding communication 

(diffusion) to customer base to the scope 
Here the focus shifts to integrating customer 
facing team with development  

V, Value cycle 4: Development 
Started 

8: Value 
Captured 

Adding customer analytics and customer feed-
back capabilities to the previous scope 

Shifts focus to integrating analytics capability 
to IID+CI+CD capability 

Time to Value 4: Development 
Started *: Break Even As Value cycle, but using this metrics assumes 

that value produced can be evaluated. As in Value cycle 
D2VC 5: Development 

Done 
8: Value 
Captured 

Post-development processes needed to deliver 
the created value and to get the feedback 

Focusing on value cycle capabilities after the 
basic SW development process. 

Fuzzy Front 
End 

1: Feature 
Needed 

3: Feature 
Ordered 

Deep customer understanding (between events 
1 and 2) and market understanding (2 to 3) 

Measuring capability to find customer needs 
close to actionable market 

... ... ... ... ... 
 

 

222Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances



In large organizations, where the product-marketing 
department is responsible for collecting market requirements 
and for product launches, the processes crossing product 
development and product-marketing departments may be 
problematic. In these cases, choosing the Value cycle, Time 
to Value or Design done to value captured (D2VC) as a 
common metric for both of the departments will enforce 
collaboration between the departments and will likely 
improve the total value creation capability of the 
organization, while local metrics within the departments are 
likely to lead to local optimization leading to non-optimal 
organizational behavior. It should be noted, that this issue 
appears mainly in large established organizations rather than 
in small startup firms, the needs of which the lean startup 
approach has been developed.  

The time to value cycle in Table II ends with the event of 
reaching the breakeven point, which is marked with an 
asterisk “*” rather than a number representing a specific 
ordering in the framework. In some cases a pay-per-use 
business model provides a basis to determine the break-even 
point for a feature, while in some cases the break-even point 
is estimated by qualitative means. A new feature may 
produce enough value to reach the break-even point when it 
is published (event 6) or when it is used for the first time 
(event 7). However, in many contexts this event occurs close 
to event 8, Value captured, that is, the feature use count is 
high enough, and sufficient feedback has been received, to 
ascertain whether the feature was worth the development 
effort. Based on these examples and the other examples in 
Table II we can observe, that the choice of applicable metrics 
is context dependent. Thus there is a need for a framework 
for metrics, which supports choosing the metric applicable 
for a specific situation.  

C. Depicting Cycle-Time Elements 
Depicting the proposed cycle-time metrics makes it 

easier to decide whether to further develop or even to drop a 
existing feature and will also help in communicating the 
cycle-time reduction agenda to software engineers and other 
parties involved. For this purpose we devised a simple 
diagrammatic representation presented in Figure 2. In this 
example, the development starts at point 4 and ends at point 
5. The y-coordinate represents the cumulative development 
time, in line with the cumulative cost for the organization. 
This linear curve is intentionally simplistic as the focus is on 
the form of the curve after event 5. In contrast, software 
engineering oriented representations, such as the Kanban 
Cumulative Flow Diagram [29], focus on analysis of the 
development cycle from 4 to 5 and ignore activity after 
production readiness. 

From event 5 on, the horizontal line represents the 
duration of the waiting time from ready-to-deploy through 
deployment to first use. The feature is used for the first time 
in production at event 7. After that the dropping logarithmic 
curve represents the speed at which feedback has been 
received. After the second use the curve comes down to half, 
after the third use to one third of the original, and so on.  
 

 
Figure 2. Depiction of the cycle times for feature analysis and process 

development. The numbers refer to the event number in the framework. 
 

That is, the curve represents development time divided by 
number of times used. A context-specific target threshold for 
development time per times used is presented as a dotted line 
and the time when the curve reaches the threshold is marked 
with an asterisk “*”. 

In line with our approach to focus on the cycle times, this 
graphical representation aims at depicting the cumulative 
effort invested to the feature during development. There is a 
risk embedded in this development effort as it has not 
received feedback from the customers. Thus it is potential 
waste if customers do not accept the feature. This risk is 
mitigated along the narrowing gap of the asymptotic curve 
and the horizontal axis and reaching the threshold indicates 
that enough customer feedback has been received to 
ascertain whether it has been worth developing the feature. 
Event 8, Value captured, is serving this purpose as the event 
when sufficient user feedback is gained to evaluate the value 
of the newly developed feature and for adjusting the 
development plans accordingly, to further develop the 
feature or to drop it. In addition to guiding value creation, 
fast feedback from event 8 makes it easier for software 
developers to fix errors and modify the feature as long as 
they can still recall the implementation of the feature and 
have not moved on to new assignments. 

Although measuring value is difficult, we would also like 
to identify the time-to-value cycle, that is the time from 
starting the development to break even, to the point at which 
its value to the customer exceeds the development costs. 
Now we face the challenge that while the cost can be easily 
measured in terms of time or money, value as a concept is 
not clearly defined and even if it were it would be hard to 
measure. We can speculate that the break-even point could 
be reached already on deployment (for features whose 
existence provides value even if they are not used, e.g., 
emergency-situation feature), on first use (when customer 
finds it), after a certain amount of uses (some use value 
derived from each), or sometimes a feature can fail to 
become profitable. Thus, the location of this measurement 
point cannot, in general, be identified in the sequence of 
events in the proposed framework, rather it is context 
dependent. 

If we want to measure value, we need to define value. 
Historically three forms of economic value are the use value, 
exchange value and price [30]. There are many theoretical 
divisions of value to support decision making about which 
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software feature to work on next [2][5][7][8][9][10][11][12] 
[13][14][15][16][24][30][31], but most theories consider the 
use value to the customer as essential. For the purposes of 
metrics development the focus will be on customer use 
value. It is important to note that due to market mechanism, 
exchange value is less or equal to use value [30]. This means 
that we could calculate a monetary estimate for the upper 
bound of the value captured by the software developer, that 
can be compared with cost. Still, the issue is problematic. 

If we assume that there is use value for a feature, and in 
some cases the use value can be estimated as equal for each 
use, we would like to measure directly the cost versus 
benefits ratio: !"#"$%&'"()  !"#$#

!"#"$%&'
. However, as discussed the 

benefits are challenging to measure and, at worst, we might 
need a new metric for each feature. This leads us to suggest 
that we isolate the hard-to-measure part, benefits, by instead 
measuring the precisely calculable cost per use 𝛽 =
!"#"$%&'"()  !"#$#

!"#$%  !"#$
 and only if possible compare it to the 

estimated value for the user, based on a case-by-base 
estimation method. Next, we will show,  using a case study, 
that reaching events “*” and 8 produce very similar value for 
process development and feature decision making and that 
they can be used interchangeably. Thus, time to receive 
enough feedback is also a good, practical proxy for value 
produced. 

III. METRICS VALIDATION CASE STUDY 

A. Target Organization and Service 
We evaluated the metrics framework in a mid-sized 

Finnish software company, Solita Ltd. The case software 
development team develops a publicly available SaaS 
(lupapiste.fi) used by citizen applying for a construction 
permit related to real estate and other structures. This 
privately operated intermediary service provides a digital 
alternative to avoid the time-consuming paper-based process 
of dealing directly with the public authority. This service is 
used by employees of the licensing authority in the 
municipalities (about 100 users), the applicants (citizens and 
companies, about 100 per month), and architects and other 
consultants (1-2 per application). The software development 
process metrics were evaluated with the usage data collected 
from the process flow of five new features of this SaaS 
service deployed during the observation period, in mid-2014.  

The service has a single page front-end that connects 
through a RESTful API to its back-end. Each call to the API 
is recorded on the production log files with a time stamp. We 
mined and analyzed the log entries together with the 
development data captured by the version control system. In 
this case, we chose features that introduced a new service to 
the API and were thus possible to trace automatically with a 
simple script that queried the monitoring system 
automatically. Some manual work was needed to find the 
features that introduced a new API, but automation of this 
work is also possible. 

B. Results from Applying the Metrics to Sample Features 
From the recorded event time stamps we calculated three 

metrics values for the case features. Development cycle (D) 
from start (4) to done (5) in working days. Lag to production 
from done (5) to deployed (6) in calendar days. And 
finally, D2VC, time from development done (5) to value 
captured (8). In this context the target company estimated 
that enough feedback data was collected for learning when 
the feature was used four times per each day spent on 
development, which gave the context-specific definition for 
the value capture event (8). Table III presents the data that is 
depicted in Figure 3. To enable comparison, all the features 
are shifted in the time axis to have event 4 (start of 
development) at day 0. In a daily use, an alternative 
depiction can show the timeline representing the history of 
all features to current point of time from which it is easy to 
identify development peaks and, more specifically, to notice 
the curves that remain high after the peak which indicates a 
demand for action. Either a feature has not been deployed 
and promoted well for the users or there is no user need for 
the feature.  

C. Case Analysis and Discussion 
From Table III we can see that for these five features the 

average of development effort needed to implement and test 
the features was about eight working days. When the 
development was done, on an average 12 calendar days was 
spent on waiting for deployment of the feature to the 
production environment. We can also observe that the 
features with lower priority (F1647 Unsubscribe and F1332 
Note) have almost double the lag to production compared to 
the other features.  

TABLE III.   DESCRIPTION OF THE SAMPLE FEATURES, THEIR PRIORITY, 
DEVELOPMENT TIME (IN WORKING DAYS), LAG TO 
DEPLOYMENT (IN CALENDAR DAYS) AND DEVELOPMENT 
TO VALUE CAPTURED (D2VC; IN CALENDAR DAYS)  

Feature id 

Pr
io

ri
ty

 
D

ev
el

op
m

en
t  

(d
ay

s)
 

L
ag

 to
 

de
pl

oy
m

en
t  

(d
ay

s)
 

D
2V

C
  (

da
ys

) 

Description of the 
feature 

F1332 Note 2 10 24 24 
Authority user can add a 
textual note that other 
users cannot see. 

F1498 
Attachment 4 9 10 N/A 

Applicant user can set 
the target of an uploaded 
attachment. 

F1507 
Validate 4 10 1 49 

System validates the 
form prior the user sends 
the application. 

F1537 Sign 4 7 11 15 
Authority user can 
require an applicant to 
sign a verdict. 

F1647 
Unsubscribe 3 2 15 28 Authority user can 

unsubscribe emails. 
Average  8 12 29  
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Figure 3. Depiction of the cycle-times of the five features. Development working days share the rising line starting from (event 5) and end in event 6 

(start of the gray horizontal line), deployment (7, white dots in the right end of the gray part of the horizontal lines) and usage (yellow dots). To enable 
comparison, all the features are synced to have event 5 (start of development) at day 0. 
 

The average time from completion of development to 
value capture is 29 days (this does not include feature F1498 
Attachment, which did not reached the number of uses 
needed for the threshold). From the depiction in Figure 3, we 
can also see that this feature is no longer used. This feedback 
triggers the discussion on the reasons for the discontinuation 
of use of the feature to determine if there is a need to 
improve it or remove it from the service. When the target is 
to minimize the cycle times, minimizing the lag from 
production readiness to deployment (from event 5 to 6) and 
the means to increase the use of new features are clearly the 
places where major improvement can be reached much 
easier than from reducing average development time. By 
plotting the events in this way, it is easy to identify the 
places where changes can be made as well as to 
communicate the need with the development teams. 

The results triggered also a discussion on the release 
practices of the firm. From the service use statistics it is 
possible to see that the service is heavily used from Monday 
to Thursday, less on Friday and very little during weekends. 
Thus it is likely that features released on Mondays will get 
used sooner than the ones released on Fridays, which 
provides the additional benefit that the feedback from users 
(8) would reach the developers when they still recall the 
software they were working on. Even more profound than 
the weekly cycle is a similar variation related to the vacation 
seasons. Deploying new features just prior to vacations will 
have negative impact on the Value cycle, as described above. 

IV. SUMMARY, CONCLUSIONS AND FURTHER RESEARCH 
The feedback from practitioners suggests that the current 

literature lacks metrics that could be used for directing a 
software development organization from the business 
perspective to enhance effective value creation and value 
capture. Although the Lean Startup Methodology proposes to 
develop the software via the build–measure–learn cycle, we 

seem to lack the means to measure the value that the 
delivered software creates. Also the researchers have 
observed this problem and conclude [7], that the current 
theories of value do not present a simple way of assessing 
customer-perceived value. Although companies put a great 
amount of effort into increasing customers' perceived value 
in the product development process, determining how and 
when value is added is still a challenge even in marketing 
and management sciences [7]. Previous literature on XP, 
Scrum, lean startup and related approaches has indicated that 
in the context of SaaS services, delivering new versions of a 
service to the customer, collecting the usage data and making 
further decisions based on the data provides the most 
promising path for the software vendor to understand 
customer-perceived value. Agile methods have been shown 
to enable shorter lead times and a stronger focus on customer 
needs [32]. 

Shortening the cycle times provides increased flexibility 
maintaining options to change development direction with 
speed [20][22] as well as other business benefits for software 
service firms. This encouraged us to search for metrics that 
help software firms in the process development towards 
shorter cycles. On this basis, we formulated the research 
question as, what metrics would guide the cycle-time-driven 
software engineering process development in established 
organizations? 

As the proposed solution, we adopted and extended the 
lean startup [20] value creation cycle and constructed a 
framework for metrics based on the times between main 
observable events within the cycle, all the way through to 
receiving and analyzing user feedback. This focuses attention 
on fast execution of the value creation within the user 
feedback cycle. That is, we are not trying to measure value 
of the results of the cycle, such as the value of the product 
produced or the value of the startup or progress of the startup 
in creating the offering, as in lean analytics [12]. 
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By finding the measurable values from within the value 
creation cycle, the cycle-time metrics framework aims at 
bridging the gap between cost-oriented SWE metrics and 
value-oriented business metrics. Cycle-time reduction serves 
as the intermediary of increased value creation guiding 
software feature development and software process 
development. The metrics measure the calendar time 
between the key events. The first three events are related to 
feature need identification and the business decision to 
implement the specific feature (event 3). The core events 
following this decision are start of the development (4), the 
feature is ready for deployment (5), the feature is deployed 
(released, 6), and first use of the feature by a customer (7). 
These events are followed by feedback related events, the 
feature feedback data has been collected and analyzed (8) 
and a decision is made based on the feedback (9). The time 
intervals between the core events (4-7) are of most interest 
for the engineering while the other events (1-3 and 8-9) 
relate to the customer-perceived value analysis of the feature. 
We also provided examples on how changing the 
measurement cycle directs the process development to new 
process areas.  

Our empirical focus was at the level of features being 
added to an existing SaaS offering. In the empirical part, the 
times between the events in the core cycle were measured for 
five new features in the development processes of an 
independent software vendor’s SaaS service. The results 
showed that the core metrics were able to capture and bring 
up useful characteristics of the business process that 
triggered both a “drop vs. develop feature” discussion (for 
feature F1498) and a number of process development 
discussions. In these five feature development cases the 
average development time was shorter than the waiting time 
for the feature to be released. This has negative impact to the 
efficiency of fixing potential problems emerging during the 
first uses of the feature by first users, as the developers have 
already oriented towards another assignment. The detection 
of the delay of feature releases lead to a further analysis of 
the vendor’s release practices in general and prompted quick 
improvements to their process. 

Although the results from the empirical part showed that 
the metrics are useful in practice, there are still several 
avenues of further research that we wish to explore. The 
empirical part used data from the engineering system and 
customer feedback data to identify the core events. This 
seems to be a useful starting point and the firm in our case 
study would like to extend the collection of data to cover as 
many of the nine events as possible and as automatically as 
possible. The time from release readiness to analyzed 
customer feedback seems to be a particularly useful 
measurement of deployment performance.  

In general, collecting the data can and should be 
automated using engineering information systems to the 
extent possible (events 1 and 8 cannot be detected 
automatically). For the other events, we propose collecting 
and depicting the data graphically in real-time status displays 
providing an overview of the development activities for 
business and engineering management. As we can observe 
from the empirical case, the results are useful both for 

focusing process development activities and for making 
business decisions regarding which features will be 
developed further, which will be used as they are, and which 
features will be removed from the service. This way the 
simplified depiction can provide transparency between the 
business and the development organization. Thus we 
encourage further empirical work on the automation of data 
collection and its depiction based on events identified in the 
framework.  

In startups the result of value creation cycle can be 
analyzed in the context of the evolution of the enterprise 
[12]. In context of established feature development 
processes, this framework adopted the approach of using 
only cycle times between events as the metrics within the 
value creation cycle. This is due to limited applicability of 
suitable previous research results for real-time customer-
perceived value analysis beyond A/B testing and similar 
tools that can be used between events 7 and 8. Although 
cycle time metrics seems to provide high added value to 
focus process development in connecting software 
development with customer value, investigating the value 
capture events 8 and “*” further is needed. Finding an easy 
to apply means for estimating the perceived user benefits 
would enable various new developments supporting the 
operative business development of a software engineering 
team. 
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