
Efficient ETL+Q for Automatic Scalability in Big or Small Data Scenarios

Pedro Martins, Maryam Abbasi, Pedro Furtado
University of Coimbra

Department of Informatics
Coimbra, Portugal

email: {pmom, maryam, pnf}@dei.uc.pt

Abstract—In this paper, we investigate the problem of
providing scalability to data Extraction, Transformation, Load
and Querying (ETL+Q) process of data warehouses. In general,
data loading, transformation and integration are heavy tasks
that are performed only periodically. Parallel architectures and
mechanisms are able to optimize the ETL process by speeding-
up each part of the pipeline process as more performance
is needed. We propose an approach to enable the automatic
scalability and freshness of any data warehouse and ETL+Q
process, suitable for smallData and bigData business. A general
framework for testing and implementing the system was devel-
oped to provide solutions for each part of the ETL+Q automatic
scalability. The results show that the proposed system is capable
of handling scalability to provide the desired processing speed
for both near-real-time results and offline ETL+Q processing.

Keywords-Algorithms; architecture; Scalability; ETL; fresh-
ness; high-rate; performance; scale; parallel processing.

I. INTRODUCTION

ETL tools are special purpose software used to populate
a data warehouse with up-to-date, clean records from one or
more sources. The majority of current ETL tools organize
such operations as a workflow. At the logical level, the E
(Extract) can be considered as a capture of data-flow from
the sources with more than one high-rate throughput. T
(Transform) represents transforming and cleansing data in
order to be distributed and replicated across many processes
and ultimately, L(Load) convey by loading the data into
data warehouses to be stored and queried. For implementing
these type of systems besides knowing all of these steps,
the acknowledge of user regarding the scalability issues is
essential, which the ETL+Q (queries) might be introduced.

When defining the ETL+Q the user must consider the
existence of data sources, where and how the data is ex-
tracted to be transformed, loading into the data warehouse
and finally the data warehouse schema; each of these steps
requires different processing capacity, resources and data
treatment. Moreover, the ETL is never so linear and it is
more complex than it seems. Most often the data volume
is too large and one single extraction node is not sufficient.
Thus, more nodes must be added to extract the data and
extraction policies from the sources such as round-robin or
on-demand are necessary.

After extraction, data must be re-directed and distributed
across the available transformation nodes, again since trans-

formation involves heavy duty tasks (heavier than extrac-
tion), more than one node should be present to assure ac-
ceptable execution/transformation times. Consequently, once
more new data distribution policies must be added. After the
data transformed and ready to be load, the load period time
and a load time control must be scheduled. Which means
that the data have to be held between the transformation
and loading process in some buffer. Eventually, regarding
the data warehouse schema, the entire data will not fit into
a single node, and if it fits, it will not be possible to execute
queries within acceptable time ranges. Thus, more than one
data warehouse node is necessary with a specific schema
which allows to distribute, replicate, and query the data
within an acceptable time frame.

In this paper, we study how to provide parallel ETL+Q
scalability with ingress high-data-rate in big data and small
data warehouses. We propose a set of mechanisms and
algorithms, to parallelize and scale each part of the entire
ETL+Q process, which later will be included in an auto-
scale (in and out) ETL+Q framework. The presented results
prove that the proposed mechanisms are able to scale when
necessary.

Section II approaches the related work in the field. Section
III describes the proposed architecture. Section IV describes
the experimental setup and obtained results. Finally, Section
V concludes the presented work and introduces some future
research lines.

II. RELATED WORK

Works in the area of ETL scheduling includes efforts
towards the optimization of the entire ETL workflows [6]
and of individual operators in terms of algebraic optimiza-
tion, e.g., joins or data sort operations. However, many
works focus on complex optimization details that only
apply to very specific cases. Munoz et al. [3] focus on
finding approaches for the automatic code generation of ETL
processes which is aligning the modeling of ETL processes
in data warehouse with Model Driven Architecture (MDA)
by formally defining a set of Query, View, Transformation
(QVT) transformations. ETLMR [2] is an academic tool
which builds the ETL processes on top of Map-Reduce
to parallelize the ETL operation on commodity computers.
ETLMR does not have its own data storage (note that the

242Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 1. Automatic ETL+Q scalability

offline dimension store is only for speedup purpose), but
is an ETL tool suitable for processing large scale data in
parallel. ETLMR provides a configuration file to declare
dimensions, facts, User Defined Functions (UDFs), and other
run-time parameters. ETLMR toll has the same problem as
the MapReduce architectures, too much hardware resources
are required to guaranty basic performance.

In [5], the authors consider the problem of data flow
partitioning for achieving real-time ETL. The approach
makes choices based on a variety of trade-offs, such as
freshness, recoverability and fault-tolerance, by considering
various techniques. In this approach, partitioning can be
based on round-robin (RR), hash (HS), range (RG), random,
modulus, copy, and others [7].

In [1] the authors describe Liquid, a data integration stack
that provides low latency data access to support near real-
time in addition to batch applications.

There is a vast related work in ETL field. Although main
related problems studied in the past include the scheduling
of concurrent updates and queries in real-time warehousing
and the scheduling of operators in data streams management
systems. However, we argue that a fresher look is needed
in the context of ETL technology. The issue is no longer
the scalability cost/price, but rather the complexity it adds
to the system. Previews presented recent works in the field
do not address in detail how to scale each part of the
ETL+Q and do not regard the automatic scalability to make
ETL scalability easy and automatic. We focus on offering
scalability for each part of the ETL pipeline process, without
the nightmare of operators relocation and complex execution
plans. Our main focus is automatic scalability to provide
the users desired performance with minimum complexity
and implementations. In addition, we also support queries
execution.

III. ARCHITECTURE

In this section, we describe the main components of the
proposed architecture for ETL+Q scalability. Figure 1 shows
the main components to achieve automatic scalability.

• All components from (1) to (7) are part of the Extract,

Transform, Load and query (ETL+Q) process. All can
auto scale automatically when more performance is
necessary.

• The ”Automatic Scaler” (13), is the node responsible
for performance monitoring and scaling the system
when is necessary.

• The ”Configuration file” (12) represents the location
where all user configurations are defined by the user.

• The ”Universal Data Warehouse Manager” (11), based
on the configurations provided by the user and using
the available ”Configurations API” (10), sets the system
to perform according with the desired parameters and
algorithms. The ”Universal Data Warehouse Manager”
(11), also sets the configuration parameters for auto-
matic scalability at (13) and the policies to be applied
by the ”Scheduler” (14).

• The automatic scaler module (13), based on time
bounds configurations and limit amounts of resources to
use (mainly memory) scales the ETL pipeline modules.

• The ”Configuration API” (10), is an access interface
which allows to configure each part of the proposed
Universal Data Warehouse architecture, automatically
or manually by the user.

• Finally, the ”Scheduler” (14), is responsible for apply-
ing the data transfer policies between components (e.g.,
control the on-demand data transfers).

All these components when set to interact together are
able to provide automatic scalability to the ETL and to the
data warehouses processes without the need for the user to
concern about its scalability or management.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the experimental setup, and
experimental results to show that the proposed system,
AScale, is able to scale and load balance data in small and
big data scenarios for near real-time and offline ETL+Q.

The experimental tests were performed using 30 comput-
ers, denominated as nodes, with the following characteris-
tics: Processor Intel Core i5-5300U Processor (3M Cache, up
to 3.40 GHz); Memory 16GB DDR3; Disk: western digital
1TB 7500rpm; Ethernet connection 1Gbit/sec; Connection
switch: SMC SMCOST16, 16 Ethernet ports, 1Gbit/sec;
Windows 7 enterprise edition 64 bits; Java JDK 8; Net-
beans 8.0.2; Oracle Database 11g Release 1 for Microsoft
Windows (X64) - used in each data warehouse nodes; Post-
greSQL 9.4 - used for look ups during the transformation
process; TPC-H benchmark - representing the operational
log data used at the extraction nodes. This is possible
since TPC-H data is still normalized; SSB (star schema
benchmark) benchmark - representing the data warehouse.
The SSB is the star-schema representation of TPC-H data.
Data transformations consist loading from the data sources
the ”lineitem” and ”order” TPC-H data logs and besides
the transformation applied to achieve the SSB benchmark

243Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 2. Extract and transform without automatic scalability

star schema [4] we added some data quality verification and
cleansing.

A. Performance limitations without automatic scalability
In this Section, we test both ETL and data warehouse

scalability needs when the entire ETL process is deployed
without automatic scalability options. The system is stressed
with increasing data-rates until it is unable to handle the ETL
and query processing in reasonable time. Automatic scala-
bility which we evaluate in following sections, is designed
to handle this problem.

The following deployment is considered: One machine
to extract, transform data and store the data warehouse;
extraction frequency is set to perform every 30 seconds;
desired maximum allowed extraction time, 20 seconds; data
load is performed in offline periods.

Based on this scenario, we show the limit situation in
which performance degrades significantly, justifying the
need to scale the ETL (i.e., parts of it) or data warehouse.

Extraction & transformation: Considering only extrac-
tion and transformation, using a single node, Figure 2 shows:
in the left Y axis is represented the average extraction
and transformation time in seconds; in the right Y axis is
represented the number of discarded rows (data that was not
extracted and not transformed); in the X axis we show the
data-rate in rows per-second; white bars represent extraction
time; gray bars represent the transformation time; lines rep-
resent the average number of discarded rows (corresponding
values in the right axes). For this experiment, we generated
log data (data to be extracted) at a rate λ per second.
Increasing values of λ were tested and the results are shown
in Figure 2.

Extraction is performed every 30 seconds. This means that
in 30 seconds there is 30x more data to extract. Extraction

Figure 3. Loading data, one server vs two servers

must be done in 20 seconds maximum. As the data-rate
increases, a single node is unable to handle so much data. At
a data-rate of 20.000 rows per second, buffer queues become
full and data starts being discarded at sources because the
extraction time is too slow. The transformation process
is slower than transformation, requiring more resources to
perform at the same speed as the extraction.

Loading the data warehouse: Figure 3 shows the load
time as the size of the logs is increased. It also compares
the time taken with single single node versus two nodes.
All times were obtained with the following load method:
destroy all indexes and views, load data, create indexes,
update statistics and update views; data was distributed by
replicating and partition the tables. Differences are notice-
able when loading more than 10GB. When adding two data
warehouse nodes, performance improves and the load time
becomes almost less than half.
- The Y axis represents the average load time in seconds
and the X axis represents the loaded data size in GB.
- The black line represents two servers and the grey line
represents one server.

Query execution: Figure 4 shows the average query
execution time for a set of tested workload (using the SSB
benchmark queries): workload 1, 10 sessions, 5 Queries
(Q1.1, Q1.2, Q2.1, Q3.1, Q4.1); workload 2, 50 sessions,
5 Queries (Q1.1, Q1.2, Q2.1, Q3.1, Q4.1); workload 3,
10 sessions, 13 Queries (All); workload 4, 50 sessions, 13
Queries (All); for all workloads, queries were executed in a
random order; the desired maximum query execution time
was set to 60 seconds.

The Y axis shows the average execution time in seconds.
The X axis shows the data size in GB. Each bar represents
the average execution time per query fro each workload.
Note that, Y axis scale is logarithmic for better results
representation.

244Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 4. Average query time for different data sizes and number of
sessions

Figure 5. AScale for simple scenarios

Depending on the data size, number of queries and num-
ber of simultaneous sessions (e.g., number of simultaneous
users), execution time can vary from a few seconds to a
very significant number of hours or days, especially when
considering large data sizes and simultaneous sessions or
both. In these results, and referring to 10GB and 50GB,
we see that an increase of 5x of the data size resulted in an
increase of approximately 20x in response time. An increase
in the number of 5x resulted in an increase of approximately
2x in query response time.

B. Typical data warehouse scenarios

In this section we evaluate AScale in a scenario where
because of log sizes and limited resources, data load takes
too long to perform without scaling.

We start with only two nodes (two physical machines),
one for handling extraction and transformation, the other to
hold the data warehouse as shown in Figure 5. AScale is
setup to monitor the system and scale when needed.

Data is extracted from sources, transformed and loaded
only during a predefined period (e.g., night), to be available
for analysis the next day. The maximum extraction, trans-
formation and load time, all together cannot take longer
than 9 hours (e.g., from 0am until 9am). AScale was

Figure 6. AScale, 9 hours limit ETL time

configured with an extraction frequency of every 24 hours
and a maximum duration of 4 hours, a transformation queue
with a limit size of 10GB and data warehouse loads were
configured for every 24 hours, with a maximum duration
of 9 hours. Note that, the entire ETL process was set for a
maximum duration of 9 hours.

The experimental results form Figure 6 show the total
AScale ETL time using two nodes (two physical machines),
one for extract, transform, data buffer and data switch,
other for the data warehouse. Up to 10GB the ETL process
can be handled within the desired time windows. However,
when increasing to 50GB, 9 hours are no longer enough
to perform the full ETL process. In this situation, the data
warehouse load process (load, update indexes, update views)
using one node (average load time 873 minutes) and two
nodes (average load time 483 minutes) exceeds the desired
time window. When scaled to 3 nodes, by adding one data
warehouse node, the ETL process returns to the desired time
bound.

The extraction and transformation process were never
scaled, since they were able to perform within the desired
time, the same for the data buffer and data switch that were
able to handle all data within defined bounds.

C. ETL offline scalability with huge data sizes

In this section we create an experimental setup to stress
AScale under extreme data rate conditions. The objective is
to test scaling each part of the pipeline.

For this experiment we did the following configured:
E (extraction) was set to perform every 1 hour with 30
minutes maximum extraction time, T (transformation) queue
maximum size was configured to 500MB, and L (load)
frequency to every 24 hours with a maximum duration of 5
hours.

245Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 7. Extraction (60 minutes frequency and 30 minutes maximum
extraction time)

Figure 8. Offline, transformation scale-out

Extraction: Figure 7 shows the AScale extraction process
when using an extraction frequency of 60 seconds and 30
seconds for the maximum extraction time.

In Figure 7, we show the followings: the left Y axis the
number of rows, the X axis is represented the time in minutes
and the black line represents the total number or rows left
to be extracted at each extraction period. By analyzing the
results from Figure 7 we conclude that the extraction process
is able to scale efficiently when more computational power
is necessary. However, if the data rate increases very fast in
a small time window AScale requires additional extraction
cycles to restore the normal extraction frequency.

Transformation: In Figure 8 are shown the transforma-
tion scale-out tests based on nodes ingress data queue size.

Figure 9. Offline, load scale-out

Every time a queue fills-up until the maximum configured
size AScale automatically scale-out. This monitoring process
allows to scale-out very fast, even if the data rate increases
suddenly. Each scale out took only an average of 2 minutes,
referring to the copy and replication of the staging area.
Experimental results show that AScale transformation can
be scaled-out more than one node in a very short time frame.

Load: AScale load process is done at the end of each
load cycle that did not respected the maximum load time.
The number of nodes to add is calculated linearly based on
previews load time. For instance, if load time using 10 nodes
was 9 hours. To load in 5 hours we need x nodes, estimated
in equation 1.

loadT ime

targetT ime
× n (1)

Where ”loadTime” represents the last load time, ”target-
Time”, represents the desired load time and ”n” represents
the current number of nodes.

Figure 9 shows the data warehouse nodes scalability
time and data (re)balance time. We conclude that the data
warehouse nodes can be scaled efficiently in a relatively
short period of time given the large amounts of data being
considered.

D. Near-Real-time DW scalability and Freshness

In this section we assess the scale-out and scale-in abilities
of the proposed framework in near-real-time scenarios re-
quiring data to be always updated and available to be queried
(i.e., data freshness).

The near-real-time scenario was set-up with: E (extrac-
tion) and L (load) were set to perform every 2 seconds;
T (transformation) was configured with a maximum queue
size of 500MB; the load process was made in batches of

246Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 10. Near-real-time, full ETL system scale-out

Figure 11. Near-real-time, full ETL system scale-in

100MB maximum size. The ETL process is allowed to take
3 seconds.

Figures 10 and 11 show AScale, scaling-out and scaling-
in automatically, respectively, to deliver the configured near-
real-time ETL time bounds, while the data rate increases/de-
creases. The system objective was set to deliver the ETL
process in 3 seconds. The charts show the scale-out and
scale-in of each part of the AScale, obtained by adding
and removing nodes when necessary. A total of 7 data
sources were used/removed gradually, each one delivering a
maximum average of 70.000 rows/sec. AScale used a total
of 12 nodes to deliver the configured time bounds.

Near-real-time scale-out results in Figure 10 show that,
as the data-rate increases and parts of the ETL pipeline be-
come overloaded, by using all proposed monitoring mecha-
nisms in each part of the AScale framework, each individual
module scales to offer more performance where and when
necessary.

Near-real-time scale-in results in Figure 11 show the
instants when the current number of nodes is no longer
necessary to ensure the desired performance, leading to some
nodes removal (i.e., set as ready nodes in stand-by, to be used
in other parts).

V. CONCLUSIONS & FUTURE WORK

In this work we proposed mechanisms to achieve auto-
matic scalability for complex ETL+Q, offering the possibil-
ity to the users to think solely in the conceptual ETL+Q
models and implementations for a single server.

Tests demonstrate that the proposed techniques are able
to scale-out and scale-in when necessary to assure the
necessary efficiency. Future work includes real-time event
processing integration oriented to alarm and fraud detec-
tion. Other future work included making an visual drag
and drop interface, improve monitoring and scale decision
algorithms, and finally provide usability comparisons with
other academic tools. A beta version of the framework is
being prepared for public release.

REFERENCES

[1] N. Ferreira, P. Martins, and P. Furtado. Near real-time with
traditional data warehouse architectures: factors and how-to. In
Proceedings of the 17th International Database Engineering &
Applications Symposium, pages 68–75. ACM, 2013.

[2] X. Liu. Data warehousing technologies for large-scale and
right-time data. PhD thesis, dissertation, Faculty of Engineer-
ing and Science at Aalborg University, Denmark, 2012.

[3] L. Muñoz, J.-N. Mazón, and J. Trujillo. Automatic generation
of etl processes from conceptual models. In Proceedings of
the ACM twelfth international workshop on Data warehousing
and OLAP, pages 33–40. ACM, 2009.

[4] P. E. O’Neil, E. J. O’Neil, and X. Chen. The star schema
benchmark (ssb). Pat, 2007.

[5] A. Simitsis, C. Gupta, S. Wang, and U. Dayal. Partitioning
real-time etl workflows, 2010.

[6] A. Simitsis, P. Vassiliadis, and T. Sellis. Optimizing etl
processes in data warehouses. In Data Engineering, 2005.
ICDE 2005. Proceedings. 21st International Conference on,
pages 564–575. IEEE, 2005.

[7] P. Vassiliadis and A. Simitsis. Near real time etl. In New
Trends in Data Warehousing and Data Analysis, pages 1–31.
Springer, 2009.

247Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

