
Predicting Unknown Vulnerabilities using Software
Metrics and Maturity Models

Patrick Kamongi, Krishna Kavi, Mahadevan Gomathisankaran

Department of Computer Science and Engineering
University of North Texas
Denton, TX 76203, USA

Emails: patrickkamongi@my.unt.edu, kavi@cse.unt.edu, mgomathi@unt.edu

Abstract—We face an increasing reliance on software-based ser-
vices, applications, platforms, and infrastructures to accomplish
daily activities. It is possible to introduce vulnerabilities during
any software life cycle and these vulnerabilities could lead to
security attacks. It is known that as the software complexity
increases, discovering a new security vulnerability introduced by
subsequent updates and code changes becomes difficult. This
can be seen from the rate of new vulnerabilities discovered
after a software release. IT Products’ vulnerabilities sometimes
remain undiscovered for many years. In this paper, we report
our study of IT products’ source codes using software maturity
models and the history of vulnerabilities discovered. We use
this data to develop a model to predict the number of security
vulnerabilities contained in a product, including undiscovered
vulnerabilities. Our proposed approach can be used to explore
proactive strategies for mitigating the risks due to zero-day
vulnerabilities.

Keywords–Vulnerabilities; Metrics; Models.

I. INTRODUCTION

Any software product that is in production goes through
a series of changes throughout its lifecycle as a result of
feature changes or bug fixes among other factors. As any
given software product matures, it has been shown that it
is vulnerability-prone and that its security vulnerabilities do
get discovered throughout its maturity. For the last decade or
so, we have seen a rising trend of security vulnerabilities in
software products being disclosed on a regular basis [1]. This
observed trend calls for an increased security awareness and
demands new approaches to stay ahead of this alarming fact.

The type of security vulnerabilities that are discovered and
leveraged by malicious actors before the relevant software
provider becomes aware of and fixes them, are known as
zero-day (0day) vulnerabilities. The worrisome nature of 0day
vulnerabilities is due to the endless number of approaches that
a malicious actor might employ to abuse a given software
product. The security community and software product vendors
sponsor bug bounty initiatives in an attempt to stay ahead of
the large number of vulnerabilities hidden in software products
currently in use. A portion of these hidden vulnerabilities
in software products are being discovered using assessment
techniques targeting some aspects of the software’s design,
implementation and use; such as static code analysis and
dynamic binary analysis but still undisclosed vulnerabilities
remain, and this serves as the motivation for our research.

An estimation of the potential number of undetected or
unreported security vulnerabilities is useful because it may lead

to proactive strategies for protecting IT assets. In this work,
we want to address the following types of questions:

• To what extent do software complexity metrics corre-
late with the number of vulnerabilities disclosed for
any given software product instance?

• Can we extrapolate a list of specific software metrics
that shows a high correlation with regard to the above
question?

• Can we predict the number of undisclosed vulnerabil-
ities for any given software product?

Previous research has attempted to predict software error
(or bug) incidences using software change history [2]. Software
metrics have also been used to predict vulnerability prone
codes in any given software [3]. Various techniques have
been used to study the trend of vulnerabilities in software
products [4] [5]. In this study, we explore the correlation
between software change history and maturity with the num-
ber of vulnerabilities each software release may contain and
subsequently exposed.

The main contributions of our work are:

• Sweep: a toolkit that automates software complexity
metrics generation and analysis.

• A methodology for using the Sweep toolkit to auto-
matically generate a dataset for any given software
product. The produced dataset contains information
on all software releases for the given software product
along with the relevant software metrics and number
of reported vulnerabilities for each release in a time-
line fashion.

• A proof of concept predictive web service endpoint,
based on a machine learning regression classifier
trained on the dataset produced by the Sweep toolkit.
This endpoint is leveraged in an automated fashion to
predict the number of unknown vulnerabilities for any
given software product instance.

The rest of this paper is organized as follows. In Sec-
tion II, we present our proposed methodology towards building
a predictive model for estimating the number of unknown
vulnerabilities. In Section III, we present our experimental
study and its evaluation. Section IV contains related works
pertinent to this study. Finally, Section V contains conclusions
of our work thus far, along with possible extensions and future
direction of our research.

311Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

II. OUR PREDICTIVE METHODOLOGY

In this section, we present our novel model for predicting
the number of unknown vulnerabilities for any given IT
Product. We start by presenting our data collection approach in
Section II-A, then the details of how we designed and validated
our prediction model in Section II-B.

A. Data collections
For this study, we have devised a generic and automated

data collection approach for any software product that has its
various release source codes available and written in known
programming languages. The data of our interest is based on
each studied software product’s release complexity metrics,
and a timeline trend of the number of disclosed vulnerabilities.

For each IT Product (software product), we start by col-
lecting details about the product’s releases (with an identifying
name), the number of releases and the number of vulnerabili-
ties already reported. We also analyze the source code of each
released version of the IT Product and then compute various
software metrics for the given source codes. The collected data
is stored in a dataset file as comma-separated values (CSV).
The following describes the process for collecting data for any
IT product.

1) Select the IT Product to analyze.
2) Download all of this IT Product’s released versions

and source code for these versions.
3) For each release, represent it using a Common Plat-

form Enumeration (CPE) [6] format as its unique
identifier for cataloging the product version and its
data into our datasets.

4) For each of the above releases, use our lookup index
to match and find all reported or known vulnerabili-
ties and store this information using a timeline trend.

5) Perform software source code analysis for each re-
leased version, and store all computed software met-
rics data [7].

Since in most cases the size of the source code for each
release is very large, we leverage the capabilities of the
Understand 4.0 [8] tool for static code analysis and software
metrics generation. To alleviate the complexity involved in
collecting the data of our interest for any given software
product manually, we designed and implemented the Sweep-
toolkit to automate data collection and avoid any human error
during this process.

Sweep-toolkit is designed as a lightweight framework that
implements various plugins to orchestrate the data collection
for this study. The currently implemented plugins offer these
functionalities:

• Use of the Understand [8] command line tool (und) to
automate the metrics generation for each IT Product’s
release source codes by automatically generating and
executing relevant batch files.

• An automated approach to analyze and summarize the
generated metrics for each IT Product release.

• A workflow engine to build and ensure that each IT
Product release is represented in a CPE format.

• A Lookup index of the known vulnerabilities [1] and
affected IT Products in CPE format.

• An orchestration application to automate and march in
all these above functionalities towards data collection
for any given IT Product and returns a dataset file
which is set to be used in the predictive model
experiment (Section II-B).

As described above, by passing relevant details of any given
IT Product to the Sweep-toolkit, a dataset is generated as a
result of the toolkit execution. The generated dataset is made
of a set of 124 features that would represent collected data
on each of the analyzed IT Product instances. In Section III,
we illustrate a case scenario used for this study as a proof of
concept of our proposed predictive model.

Sweep-toolkit [9] is developed for a Linux environment,
with its plugins implemented in Python 3.x, Java and Bash
scripts (approximately 2K lines of code).

B. Predictive model
In this section, we introduce our model for predicting

vulnerabilities and show how we validated our model.

Figure 1. Predictive Model - Framework

In an attempt to address our posed research question of
whether we can predict the number of undisclosed vulnerabil-
ities for any given software product, we base our solution on
the data that can be collected for this software product using
our Sweep-toolkit as discussed in the previous Section II-A.
Once a dataset is generated for the software product of interest,
we proposed to design and train a machine learning regression
classifier to build a model that should be able to predict the
number of vulnerabilities for any other release of this software
product.

For any predictive experiment, the more data you have the
more accurate the trained model becomes. With this in mind,
among all of the data collected around the 124 features found
in any given dataset, we leverage a feature scoring method to
identify which set of features correlate well with the number
of disclosed vulnerabilities for each of the studied software
product releases. Then, we start by exploring different machine
learning regression techniques to find one that best fits our
collected data. For this study, we leverage Microsoft Azure –
Machine Learning Studio [10] to design our predictive model.

312Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

Azure Machine Learning Studio provides many easy to use
building blocks for designing a predictive solution.

We build our predictive model along these easy to follow
steps, which are also illustrated in Fig. 1:

• Create a machine learning workspace within Azure
ML Studio for each relevant IT Product’s dataset.

• Upload the data generated by Sweep-toolkit for the
IT product into Azure Datasets, and design predictive
models within Azure ML Studio.

• Train and Evaluate the models and identify the best
model.

• Score and publish the best model as a web service.
Some specific aspects that drive our predictive model are

our choices for the regression classifier module and feature
scoring method. In Section III, we provide details on these
choices and how they strengthen the prediction experiment for
any given IT Product.

C. Prediction workflow
Our approach to predict the number of unknown vulnera-

bilities for any given software product follow this workflow:
• Start by generating a dataset for the given IT Product

as illustrated in Section II-A.
• Using the above dataset, build and test a predictive

experiment within Azure ML Studio as illustrated in
Section II-B. Once the above predictive experiment
has completed successfully, a trained model and web
service will be produced as a result.

• Using a subset of the dataset that was reserved for
validation, ensure that the trained model is scoring
well against this validation data.

• Then, we expose a middleware application which
leverages the above predictive web service endpoint to
receive input data as illustrated in Fig. 1 and to return
the predicted total number of vulnerabilities along
with other associated metadata (such as the prediction
accuracy and error rates).

• We can now perform dynamic prediction for any
of this IT Product’s releases, by first passing the
release version source code details for data collection.
Then using the generated data as input to the above
middleware application, we get the predicted number
of vulnerabilities for the assessed software product
release.

• The predicted number can then be interpreted with
two views, one for the overall accumulated number
of vulnerabilities and the other view for the unknown
numbers of vulnerabilities (this can be easily com-
puted by subtracting the known vulnerabilities from
the predicted ones by taking into consideration the
prediction error rate). Since predicted vulnerabilities
cannot be classified based on the potential threats that
can result from their exposure, we separate them from
known vulnerabilities such that users can be aware of
the potential risk to their software.

This proposed prediction workflow can be repeated as
needed to update the dataset and trained model, as the assessed
IT Product’s code base changes and new vulnerabilities are
getting disclosed.

III. EXPERIMENTAL STUDY AND EVALUATION

In this section, we take an in-depth look at a case study of
an IT Product that serves as a proof of concept for this work.

A. Use case: OpenSSL – software product

The discovery of the OpenSSL’s Heartbleed bug [11] in
2014 revealed that this vulnerability remained unknown for
two years before it was discovered. Heartbleed and other
similar types of vulnerabilities serve as the motivation for our
research among other facts that are presented in Section I.

For a proof of concept, we looked at different open-source
IT Products and selected the OpenSSL [12] software product
as our first pick for this study. We selected OpenSSL due to
its critical role that it plays in Transport Layer Security (TLS)
and Secure Sockets Layer (SSL) protocols. In addition, many
other software products rely on it (since it is commercial grade
and open source) to build complex softwares and services
(this has a wider reach, since any new discovered software
vulnerability within OpenSSL package impacts other critical
software products that rely on it). Then, we selected OpenSSL
due to its maturity (which enable us to collect enough data
needed for our study and predictive models). Our selection
parameters here, should be applicable in selecting any other
software product to study and validate our proposed prediction
models.

Using our prediction workflow presented in Section II-C,
we apply it to the OpenSSL software product.

1) OpenSSL – dataset generation: We downloaded and
analyzed 154 OpenSSL versions which are released in these
categories: 0.9.x, 1.0.0, 1.0.1, 1.0.2, 1.1.0, and fips [12]. Using
our Sweep-toolkit, we pass as input the directory path to all
of the OpenSSL versions’ uncompressed directories of source
codes. Once Sweep-toolkit completes its execution, it returns
a dataset for OpenSSL.

This OpenSSL dataset has 154 entries (one per each
OpenSSL version), where each entry contains collected data
for all specified 124 features (CPE-Name, Year-1999, ...,
Year-X, ,..., Year-Current, #CVEIDs, Understand-Metric-1, ..,
Understand-Metric-n). With:

• CPE-Name representing each analyzed OpenSSL re-
lease (i.e., cpe:/a:openssl:openssl:1.0.0f).

• Year-1999 representing the number of disclosed vul-
nerabilities in the year 1999 (which is the first year
recorded in NVD data feeds [1]). The other data
for the following years are included as well, up to
the current year (i.e., for the above CPE instance,
in the Year-2014, Sweep-toolkit found 22 disclosed
vulnerabilities).

• #CVEIDs representing the accumulated number of
known vulnerabilities (i.e., 50 is the total number of
disclosed vulnerabilities for the above CPE instance
example).

• Understand-Metric-1, ..., Understand-Metric-n repre-
senting all computed software metrics supported by
the Understand tool [7] (e.g., the above CPE instance
has a SumCyclomatic value of 43479, and the other
metrics data are provided accordingly).

313Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

� of �45 78

#C
VE

ID
s

0

12.5

25

37.5

50

OpenSSL Package’s Versions

00
4

13

19
21

2424

27282928

1617
1920

0

2223

27
2930

323334

8

13
151617171819

2324252625
27

3333

36373837363535

39404041

00
45556677

9

12
1414

34
67777

1010998

0.9.6 0.9.6a 0.9.6b 0.9.6c 0.9.6.d 0.9.6.e 0.9.6.f 0.9.6.g 0.9.6.h 0.9.6.i
0.9.6.j 0.9.6.k 0.9.7 0.9.7a 0.9.7b 0.9.7c 0.9.7d 0.9.7e 0.9.7f 0.9.7g
0.9.7h 0.9.7i 0.9.7j 0.9.7k 0.9.7l 0.9.7m 0.9.8 0.9.8a 0.9.8b 0.9.8c
0.9.8d 0.9.8e 0.9.8f 0.9.8g 0.9.8h 0.9.8i 0.9.8j 0.9.8k 0.9.8l 0.9.8m
0.9.8n 0.9.8o 0.9.8p 0.9.8q 0.9.8r 0.9.8s 0.9.8t 0.9.8u 0.9.8v 0.9.8w
0.9.8x 0.9.8y 0.9.8za 1.0.0 1.0.0a 1.0.0b 1.0.0c 1.0.0d 1.0.0e 1.0.0f
1.0.0g 1.0.0h 1.0.0i 1.0.0j 1.0.0k 1.0.0l 1.0.1 1.0.1a 1.0.1b 1.0.1c
1.0.1d 1.0.1e 1.0.1f 1.0.1g 1.0.1h 1.0.1i 1.0.1j 1.0.2

Figure 2. OpenSSL Releases vs. Disclosed Number of Vulnerabilities

2) OpenSSL – Predictive experiment: Consider tracking
product releases (minor and major) and vulnerabilities detected
for the OpenSSL product as shown in Fig. 2. By slicing one
of the observed trends in Fig. 2, Fig. 3 shows that there is
a decreasing trend in terms of vulnerabilities between major
releases of the OpenSSL product.

We predict a similar behavior with other IT products since
this trend reflects a behavior similar to software maturity or
improved quality over time. Here we see the maturity of
OpenSSL in terms of the number of reported vulnerabilities
over time. We also make the following preliminary observa-
tions from the data collected so far, along with this small
sample illustrated in Fig. 2 and 3.

• The history of reported vulnerabilities have shown a
decreasing trend throughout each IT Product’s minor
releases (i.e., OpenSSL:1.0.1.:a, b, c, ..., j) in terms
of the number of vulnerabilities, with exceptions for
some limited distribution versions (see Fig. 3).

• The average number of reported vulnerabilities spiked
whenever the rate of minor releases was high after
a major release of an IT Product (i.e., for OpenSSL,
this is clearly observed by grouping each of the trends
(release families) shown in Fig. 2).

• The newly discovered vulnerability in a current IT
Product release affects some of the previous releases
due to the fact that the versions share a technology
(with unknown vulnerabilities), such as common li-
brary, framework, design pattern, and so on.

• The straight line in Fig. 3 reflects the evaluated R2

value (coefficient of determination) which appears to
be above 0.5 when using Linear, Polynomial and
Exponential trend estimations. However, while using
logarithmic and power trends, the R2 value was less
than 0.5. This hints that there is value in knowing how
these data can be used to predict the number of vulner-
abilities, although we need a more carefully designed
approach to correlate the data with vulnerabilities.

Nu
m

be
r o

f R
ep

or
te

d
Vu

ln
er

ab
ilit

ie
s

0

10

20

30

40

OpenSSL:1.0.1 — Minor Releases
1.0.1:beta1 1.0.1a 1.0.1b 1.0.1c 1.0.1d 1.0.1e 1.0.1f 1.0.1g 1.0.1h 1.0.1i 1.0.1j

R² = 0.6412

CVEIDs

Figure 3. OpenSSL:1.0.1 – Minor Releases Linear Trend

To improve our model and produce a high coefficient of
determination with the prediction of the number of vulnerabil-
ities, we considered all the features of the vulnerability details
and generated source code metrics to build a predictive model
as presented in previous Sections. Using Azure ML Studio
[10], we built our predictive experiment as illustrated in Fig. 1.

Typically, the first step is to understand the nature of
the training dataset which requires preprocessing to remove
noisy data and selecting the most significant features that
lead to highly confident predictions. Azure ML Studio offers
necessary tools to facilitate this pre-processing task such as:
Project Columns, Filter Based Feature Selection. For the
Filter Based Feature Selection module, we used the pearson
correlation feature scoring method selected for identifying the
best contributing features (about 25). Another important aspect
to decide was on the amount of training data needed for each
machine learning technique and this is defined by the Split
module (using a 50% split to avoid any bias) of Azure ML
Studio.

The goal of our research is to predict the number of
vulnerabilities for any given IT Product version based on the
data we collected. We needed to identify a machine learning
algorithm to train and predict using the generated OpenSSL
dataset. We found that regression based models are well suited
for our purpose. We explored all available Azure ML Studio’s
[10] machine learning regression models, and determined that
a Boosted Decision Tree Regression [13] is the best for our
predictions. Then, by following the easy to use predictive
framework illustrated in Fig. 1, we trained and scored our
chosen model using the generated OpenSSL dataset (from
the previous section) targeting the #CVEIDs feature name (as
presented in Section III-A1) and included its evaluation results
in Table I. We present a detailed discussion of our results in
Section III-B.

Note that the number of OpenSSL releases used to train

314Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

TABLE I. USING OUR LABELED OPENSSL DATASET TO EVALUATE
ITS BOOSTED DECISION TREE REGRESSION MODEL

Number of
Desired Features

Mean
Absolute Error

Relative
Absolute Error

Coefficient of
Determination

5 7.995 0.618 0.597
10 3.341 0.258 0.927
15 3.347 0.258 0.926
25 3.780 0.292 0.917
40 3.985 0.308 0.912
65 3.851 0.297 0.916
80 3.597 0.278 0.918
95 3.597 0.278 0.918

our model is less than the total number available because the
originally produced dataset was divided into sub-datasets for
training, testing and validation.

Table II shows a comparison of the number of reported
vulnerabilities and the number of predicted vulnerabilities for
some OpenSSL releases used for the training experiment (with
the selection of 25 desired features selected by the Filter based
feature selection as described previously). To use any of the
predicted number of vulnerabilities, one has to account for
the estimated Mean Absolute Error. The slight differences in
the known vulnerabilities and the scored number is a result of
the chosen training dataset, and automatically selected number
of features. Since, our interest is to predict the number of
unknown vulnerabilities for any subsequent prediction, we
consider the upper bound predicted value including the error
rate.

TABLE II. SAMPLE OF SCORED OPENSSL INSTANCES

OpenSSL Releases Known
#Vulnerabilities

Predicted
#Vulnerabilities

cpe:/a:openssl:openssl:0.9.8s 22 17.139
cpe:/a:openssl:openssl:1.0.1f 53 41.747
cpe:/a:openssl:openssl:0.9.7g 35 30.823
cpe:/a:openssl:openssl:1.0.1g 52 43.777
cpe:/a:openssl:openssl:0.9.6m 30 37.448

3) OpenSSL – Predictive Model Validation: In Table III, we
present a comparison of the OpenSSL releases sample used
to evaluate and validate the scored predictive model. These
results tell us how well our model was able to score against
our validation dataset.

• Mean Absolute Error : 2.927

• Root Mean Squared Error : 4.068

• Relative Absolute Error : 0.203

• Relative Squared Error :0.059

• Coefficient of Determination :0.940

TABLE III. SAMPLE OF OPENSSL INSTANCES FOR VALIDATION

OpenSSL Releases Known
#Vulnerabilities

Predicted
#Vulnerabilities

cpe:/a:openssl:openssl:1.0.1a 60 52.498
cpe:/a:openssl:openssl:1.0.0h 46 46.815
cpe:/a:openssl:openssl:0.9.8m 34 33.867
cpe:/a:openssl:openssl:1.0.2c 15 15.729
cpe:/a:openssl:openssl:1.0.2d 14 11.526

TABLE IV. OPENSSL’S VERSIONS – PREDICTED NUMBER OF
VULNERABILITIES

OpenSSL
Instances

Known
#Vulnerabilities

Predicted
#Vulnerabilities

openssl-1.0.0:beta1 0 11.054
openssl-1.0.0:beta2 0 11.054
openssl-1.0.2:beta1 0 11.667
openssl-1.0.2:beta2 0 11.667
openssl-1.1.0:pre2 0 8.641
openssl-engine:0.9.6m 0 11.148
openssl-fips:2.0.9 0 11.148
openssl:0.9.8zd 0 5.489
openssl:1.0.0t 0 8.843

4) OpenSSL – Prediction of Unknown Vulnerabilities:
Transforming the previously built predictive model for
OpenSSL into a web service endpoint is straightforward. In
Table IV, we show some examples of the predicted number of
vulnerabilities for some versions of OpenSSL releases using
our published web service. These OpenSSL instances have no
currently known vulnerabilities, therefore the predicted number
reflects the unknown vulnerabilities that may be discovered
using different assessment techniques (to be explored in our
future work).

B. Discussions
In Table I, we presented our model evaluation results

using the ”Boosted Decision Tree Regression” technique for
predicting vulnerabilities for the OpenSSL software product.
The following preliminary observations can be made from
these results and our overall study experience.

• The studied OpenSSL dataset fit well with the selected
machine learning technique, yielding a high coefficient
of determination above 0.5 (which is better than a
random guess prediction).

• The scored OpenSSL predictive model shows a pos-
itive correlation between the known vulnerabilities
(#CVEIDs) and predicted ones (Scored Labels), which
can be viewed via the scatter plot generated within
the Azure ML Studio workspace. This reaffirms one
of our hypotheses that we can predict the number
of vulnerabilities contained in an IT Product using
software metrics and vulnerability disclosure history.

• The coefficient of determination of the scored model
is at the lowest, when the desired number of features
is set to 5. By taking a close look at the automatically
selected 5 features (Year-2010 to Year-2014), it reveals
that they are all about the vulnerability disclose history
timeline per Year-X (this is due to the fact that the
trained model targets the accumulated total number of
vulnerabilities (#CVEIDs) and this targeted feature is
a result of these found vulnerabilities timeline).

• The coefficient of determination is improved and
reaches its highest, when the desired number of fea-
tures is increased from 5 to 10 or a higher value.
This improvement in the prediction accuracy is a
result of our feature selector capabilities used to
identify additional and unique features that are part
of the computed software metrics (to name a few:
CountLineCodeExe, Knots, CountPath, SumEssential,
Cyclomatic, etc.). Depending on the desired prediction

315Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

accuracy, a matching model is scored to build a
predictive web service.

Table IV contains results of our evaluation of the OpenSSL
dataset for new or beta instances (or releases) of the product
with no reported vulnerabilities thus far. It should be noted
that these two OpenSSL instances (openssl-1.0.2:beta1 and
openssl-1.0.2:beta2) have very similar source code bases,
therefore we predict that both versions will likely contain the
same number of vulnerabilities. These vulnerabilities should
be viewed as the potential number of vulnerabilities that will
likely be discovered in these products. This information can
be used to plan for defensive mechanisms to mitigate security
risks due to the unknown vulnerabilities.

C. Recommended Proactive Strategies
Ideally one should be able to implement countermeasures

to patch or mitigate risks due to known vulnerabilities. Some
organizations provide defensive mechanisms for some known
vulnerabilities of popular IT products [14] [15]. However,
the rate at which new vulnerabilities are being detected and
reported is making it difficult to maintain up-to-date lists of
patches. Moreover, as we have shown in this work, IT products
very likely contain unknown or yet to be discovered vulner-
abilities. Thus it is necessary to explore additional (beyond
patching) defensive measures to increase our confidence in IT
products. We include some recommendations in this regard.

• Any unknown pattern or behavior observed for an
IT Product being assessed via security penetration
testing approaches or monitored via deployed security
infrastructures can serve as an indicator that zero day
(or undiscovered) vulnerabilities are present or being
exploited in the IT Product of interest. Therefore,
these unknown behaviors can be categorized in our
predicted number of unknown vulnerabilities which
in turn should raise an awareness to stress test the IT
Product to find them.

• We recommend exploring various software rejuve-
nation techniques in an attempt to mitigate some
malware that may be exploiting hidden or unknown
vulnerabilities before taking a foothold in the product.
It has been shown that software rejuvenation [16] can
minimize security risks due to malware. It has also
been shown how the cost of rejuvenation can be used
to plan the frequency of rejuvenation schedules.

IV. RELATED WORK

Yonghee et al. [17] attempted to understand whether there
is a correlation between software complexity measure and
security, primarily focusing on the JavaScript Engine in the
Mozilla application framework. They show a weak correlation,
primarily because of the small number of features used. In our
study, we expanded on the number of software metrics and
used product releases to obtain higher correlations to reported
vulnerabilities. Our predictive model works well when there
is a large number of product releases and the product has a
mature user base.

Other prior works have explored various software proper-
ties to serve as indicators of vulnerabilities where they used
techniques such as software complexity and developer activity
metrics [18] [19] [3]. Then using these software metrics

coupled with some empirical models, there are works [20] [21]
[22] [23] that have proposed solutions towards representing
and predicting trends in software vulnerabilities. Our research
has some key concepts similar to these works, but we extend
the scope in terms of automatic data analysis and vulnerability
prediction.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented our novel approach for pre-
dicting the number of unknown vulnerabilities in a given IT
Product. We have shown how to generate a dataset that rep-
resents product maturity in terms of source-code base growth
and vulnerability disclosure history. We have shown how to
use such a dataset and develop a model that results in accurate
predictions. We used the Azure cloud based machine learning
framework for this purpose. We validated our approach for the
OpenSSL IT product. We plan to broaden our experimentation
to support any open-source software product and extend the
number of features to include in the relevant dataset.

Our proposed approach for analyzing the source code of
a given IT Product and leveraging its vulnerability disclosure
history toward building a predictive model serves as a basis
for building other solutions. A planned solution that can
leverage our model is to categorize the predicted number of
vulnerabilities into threat types (i.e., STRIDE [24]) using some
inherent IT Product properties along with some actionable
threat intelligences and, in turn, propose relevant mitigation
techniques to counter these vulnerabilities and threats.

The other aspect of our work that we plan to extend is the
ability to design and train our predictive model in a generic
way that would allow IT Products that may need a different
machine learning and training approach. We plan to group IT
products into different categories, identify representative fea-
tures of products that belong to a group and provide suggested
approaches that result in highly accurate prediction of security
vulnerabilities. We plan to expand on the IT product features
to enhance our prediction accuracies using security threat
intelligence reports, inherent vulnerabilities associated with
different programming languages and development platforms.

ACKNOWLEDGMENT

The authors would like to acknowledge Mr. David Struble,
former Senior Software Technologist in Raytheon Company’s
Net-Centric Systems group, for his editorial contributions to
this paper. Our research is supported in part by the NSF Net-
centric and Cloud Software and Systems Industry/University
Cooperative Research Center and its member organizations.

REFERENCES

[1] “National Vulnerability Database,” 2016, URL: https://nvd.nist.gov/
[accessed: 2016-07-12].

[2] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” in IEEE Transactions on
Software Engineering,” IEEE, vol. 26, no. 7, pp. 653–661, 2000.

[3] I. Chowdhury and M. Zulkernine, “Using complexity, coupling, and
cohesion metrics as early indicators of vulnerabilities,” in Journal of
Systems Architecture,” Elsevier, vol. 57, no. 3, pp. 294–313, 2011.

[4] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond
heuristics: learning to classify vulnerabilities and predict exploits,” in
Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining,” ACM, pp. 105–114, 2010.

316Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

[5] S. Zhang, D. Caragea, and X. Ou, “An empirical study on using the
national vulnerability database to predict software vulnerabilities,” in
Database and Expert Systems Applications,” Springer, pp. 217–231,
2011.

[6] “Common Platform Enumeration (CPE),” 2016, URL: http://scap.nist.
gov/specifications/cpe/ [accessed: 2016-07-12].

[7] “What Metrics does Understand have?” 2016, URL: https://scitools.
com/support/metrics list/ [accessed: 2016-07-12].

[8] “Understand Scitools,” 2016, URL: https://scitools.com/ [accessed:
2016-07-12].

[9] “Sweep-Toolkit,” 2016, URL: https://github.com/kamongi/
sweep-toolkit [accessed: 2016-07-12].

[10] “Microsoft Azure Machine Learning,” 2016, URL: https://studio.
azureml.net/ [accessed: 2016-07-12].

[11] “Heartbleed Bug,” 2016, URL: https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2014-0160 [accessed: 2016-07-12].

[12] “OpenSSL,” 2016, URL: https://www.openssl.org/ [accessed: 2016-07-
12].

[13] “Boosted Decision Tree Regression,” 2016, URL: https://msdn.
microsoft.com/en-us/library/azure/dn905801.aspx [accessed: 2016-07-
12].

[14] “Apple security updates,” 2016, URL: https://support.apple.com/en-us/
HT201222 [accessed: 2016-07-12].

[15] “Adobe – Security Bulletins and Advisories,” 2016, URL: https://helpx.
adobe.com/security.html [accessed: 2016-07-12].

[16] C.-Y. Lee, K. M. Kavi, M. Gomathisankaran, and P. Kamongi, “Security
Through Software Rejuvenation,” in The Ninth International Conference
on Software Engineering Advances (ICSEA),” IARIA, pp. 347–353,
2014.

[17] Y. Shin and L. Williams, “Is complexity really the enemy of software
security?” in Proceedings of the 4th ACM workshop on Quality of
protection” ACM, pp. 47–50, 2008.

[18] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities,” in IEEE Transactions on Software Engi-
neering,” IEEE, vol. 37, no. 6, pp. 772–787, 2011.

[19] Y. Shin, “Exploring complexity metrics as indicators of software vulner-
ability,” in Proceedings of the 3rd International Doctoral Symposium on
Empirical Software Engineering, Kaiserslautem, Germany, 2008, URL:
http://www4.ncsu.edu/∼yshin2/papers/esem2008ds shin.pdf [accessed:
2016-07-12].

[20] Y. Shin and L. Williams, “An empirical model to predict security
vulnerabilities using code complexity metrics,” in Proceedings of the
Second ACM-IEEE international symposium on Empirical software
engineering and measurement,” ACM, pp. 315–317, 2008.

[21] O. H. Alhazmi, Y. K. Malaiya, and I. Ray, “Measuring, analyzing and
predicting security vulnerabilities in software systems,” in Computers
& Security,” Elsevier, vol. 26, no. 3, pp. 219–228, 2007.

[22] O. H. Alhazmi and Y. K. Malaiya, “Modeling the vulnerability dis-
covery process,” in 16th IEEE International Symposium on Software
Reliability Engineering, 2005. ISSRE 2005.,” IEEE, pp. 10–pp, 2005.

[23] ——, “Prediction capabilities of vulnerability discovery models,” in
Reliability and Maintainability Symposium, 2006. RAMS’06. Annual,”
IEEE, pp. 86–91, 2006.

[24] “The STRIDE Threat Model,” 2016, URL: http://msdn.microsoft.com/
en-US/library/ee823878(v=cs.20).aspx [accessed: 2016-07-12].

317Copyright (c) IARIA, 2016. ISBN: 978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

