
Extracting Executable Architecture From Legacy Code Using Static Reverse
Engineering

Rehman Arshad,Kung-Kiu-Lau
School of Computer Science, University of Manchester

Kilburn Building, Oxford Road, Manchester, United Kingdom
e-mail: rehman.arshad, kung-kiu.lau @manchester.ac.uk

Abstract—Static reverse engineering techniques are based on struc-
tural information of the code. They work by building a model of abstrac-
tion that considers control structures in the code in order to extract some
high-level notation. So far, most of these techniques produce abstraction
models or feature locations but not the executable architecture that can
transform the legacy code into modern paradigm of programming. Few
approaches that extract architectural notation either require the code
to be in component based orientation or lack automation. This paper
presents an ongoing research that can extract executable architecture as
X-MAN (component model) components from legacy code. An executable
architecture contains structural and behavioural aspects of the system in
an analysed manner. The extracted components can be integrated with
other systems due to re-usability of the X-MAN component model. This
approach neither requires the source code to be in component based
orientation nor it lacks automation.

Keywords—Reverse Engineering; Static Analysis; Component Based
Development; Abstract Syntax Tree.

I. INTRODUCTION

Reverse Engineering techniques are classified into Static, Tex-
tual, Dynamic and Hybrid [1]. Static techniques are based on
structural information of the code. They work by building a model
of states of the program and then determine all possible routes of
the program at each step. Such model is called static abstraction
model and it requires a fair consideration between preciseness and
granularity [2]. As these techniques consider all control flows, they
provide the maximum recall; this recall comes at the price of false
positive results.

Reverse engineering is mostly used to extract high level abstrac-
tion models or semantics from the source code [1]. Such extraction is
useful for documentation, variability management, etc., but it cannot
provide an executable architecture after extraction. ”An executable
architecture is a dynamic simulation of an architecture model. It
captures both structural and behavioural aspects of the architecture
in a form that can be visualised and analysed in a time dependent
manner” [3]. A reverse engineering approach that can provide ex-
ecutable architecture can transform the source code into a specific
notation that can be used in further implementation. In order to get
an executable architecture from the source code, a technique has
to consider every line of code by following the abstraction model
of analysis. Textual techniques are mostly used for bug localisation
or finding feature locations in the source code [4] and dynamic
techniques can only produce results based on the execution trace
[5]. Extracting an architecture is different form extracting high level
abstraction models because an architecture has to show that every
functionality exists in the original source code. Therefore, due to
some important characteristics like maximum recall and minimum
loss of information, static reverse engineering is the best analysis
technique to consider for extracting an executable architecture from
the legacy systems [2].

This paper presents an ongoing research on the extraction of
executable architecture from legacy systems. The proposed technique
is called Reverse Engineering X-MAN (RX-MAN). RX-MAN uses
static reverse engineering to extract X-MAN components [6] from
the legacy code.

The remainder of this paper is organised as follows: Section
II includes related work in the domain of static reverse engineering.
Section III includes the basics of X-MAN component model. Section
IV explains the proposed research methodology. Section V shows
a simple evaluation and Section VI includes conclusion and future
work.

II. RELATED WORK

Static reverse engineering techniques can be classified by sev-
eral parameters and [1] [7] [8] are some of the detailed surveys in the
domain of static reverse engineering. Most of the static approaches
are used for finding feature locations in the legacy systems. Some
of the most well-known techniques are RecoVar [9], FLPV [10],
Dependency Graph [11], Concern Graph [12], Automatic Generation
[13], Language Independent Approach [14], Concern Identification
[15] and Semi-Automatic Approach [16]. Out of the above-mentioned
techniques, RecoVar [9] produces variability model from the source
code. FLPV [10] generates code as set of optional and mandatory.
Dependency Graph [11], Concern Graph [12] and Concern Identifica-
tion [15] produce high level abstraction of code as graphs. Language
Independent Approach [14] produces feature model from the source
code. Automatic Generation [13] and Semi-Automatic Approach [16]
generate a tool based view that helps in understanding the source
code. All these techniques produce results in the form of high level
abstraction that can help in understanding the legacy systems. Such
outputs can help in analysing the system but cannot reuse the legacy
code to transform it into executable architecture. Such architecture
can be reused to build modern systems or can be extended to existing
systems, e.g., X-MAN components can be re-composed to form
family of systems and same components can be used across many
systems due to modularity and separation of concerns in X-MAN
component model. Such architectural output can also help against
system erosion with time [17].

There are few approaches with aim to extract architecture from
the source code. One of them is JAVACompExt [17] by Anquetil et al.
It is a heuristic based approach that extracts Architecture Description
Language (ADL) components along with the communication and ser-
vices among them. This approach however requires the source code
to be written with ”componentization” in mind. Componentization is
the process of atomizing resources into separate reusable packages
that can be easily recombined [18]. Another approach by Antoun et
al. [19] re-engineers the JAVA code into Arch JAVA [20], though the
process lacks automation. The approach by Chouambe et al. [21]
produces composite components but the source system has to be
implemented in component based notation. The presented approach
in this paper is different from the above approaches because:

• It is automated.
• It does not require the source code to be in component notation.
• Unlike those approaches that are focused on architecture re-

trieval, our approach aims for component creation by source
code transformation.

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

III. X-MAN COMPONENT MODEL

A component is defined by its unit of composition and com-
position mechanism, [22] e.g., in ADL, composition takes place via
ports and unit of composition is an architectural unit defined as a
class with provided and required services. X-MAN is different from
other well-known component models because it separates control and
computation unlike ADL based component models in which control
and data cannot be separated and transmitted via ports together, e.g.,
Koala [23].

X-MAN components are defined by computation units (unit of
composition) and connectors (composition mechanism). There are
two types of components in X-MAN: atomic and composite. Atomic
components have a computation unit and an invocation connector
(composition mechanism) that acts as an interface of that component.
Composite components can consist of set of atomic or composite
components that are connected by composition connectors (composi-
tion mechanism). Composition connector of a composite component
can be: (i) Sequencer, or (ii) Selector. A sequencer provides sequenc-
ing of atomic/composite components in a composite component and
a selector provides conditional branching. All X-MAN components
preserve encapsulation. Atomic components do this by encapsulate
computation unit and composite do so by encapsulate computation
units and composition connectors. It means composite components
also preserve encapsulation of their nested components, which pro-
vides a hierarchy of encapsulated components. That is why X-MAN
component model is hierarchical in nature. Further details of X-MAN
component model have been discussed in [22]. Basic semantics of X-
MAN component model are presented in Figure 1. Each component
can have a set of services. A service is exposed functionality of a
component that is used to send and receive data elements, needed for
execution, e.g., A Bank component can have Deposit, Withdraw and
CheckBalance services with BalanceInformation and AccountNumber
as send/receive data elements.

IC

CU

IC

CU

IC

CU

Atomic Component Composition Connector Composite Component

Fig. 1. X-MAN Component Model.

IV. RX-MAN: A STATIC REVERSE ENGINEERING APPROACH

Figure 2 shows the methodology of RX-MAN. Java has been
selected as the language of source code to be analysed. The source
code to be reverse engineered can be: (i) A single application system
(ii) Just a set of classes, e.g., any library or SDK that cannot be
executed on its own.

In case of single application system, output will be a one
big X-MAN system that will show the whole functionality of the
source code with the benefits of modularity and hierarchy of X-
MAN component model. Control structures in the source code will
be transformed as composition connectors. In case of the source code
which is just a SDK or a set of classes, the output will be X-MAN
atomic components. These components can be deposited to X-MAN
repository and can be recomposed for further implementation. The
brief overview of the whole process is as follows:

1) AST Tree Generation: Abstract Syntax Tree (AST) is a
powerful parser in JAVA. In this step, the source code is transformed
into AST nodes. Each node is mapped to its respective sub nodes,
e.g., each package node is mapped to its class nodes, each class node
is mapped to its method nodes and each method node is mapped to its

parameters, return node, function type node etc. Detailed algorithm
is not given due to its voluminous details.

2) Parsing the Nodes: AST allows the code re-writing in order
to implement small changes in the code. However, AST re-writing
is not powerful and convenient enough to transform the system
into some other complex notation. Therefore, an intermediate data
structure has been used to extract information from the nodes to
preserve it in a meaningful notation. In this step, invocations of all
methods are indexed and mapped against each other.

Algorithm 1 METHOD ALLOCATION
Require: PackageClassList, MethodClassList, utilityComponentList

while i < MethodClassList do
if Mi.Visited← False then

Get Invocations of Mi
if Mi.invocations is NULL then

Mi.getPackageName
if Mi.PackageName already exists then

AddU(PackageName,Mi)
Mi.visited← T RUE

else
Create U(PackageName)
AddU(U,Mi)
Mi.visited← T RUE

end if
else

ExtractEachInvocation(Mi)
end if

end if
end while

Fig. 3. Component-Method Allocation.

3) Static Abstract Model of Abstraction: This step shows the
first cycle of reverse engineering. This step maps the rules to create
X-MAN atomic components and then assign methods to components
based on the rules of allocation. One important parameter that has to
be defined is size of the component. Size of the components should be
realistic. If an approach extracts 10 components from the source code
with only 7 classes then it does not justify the use of components.
Similarly, one big component that represents 50 classes is not ideal
either. There are two ways in which the component size can be
defined in our tool: (i) Package Based Restriction (ii) Number of
methods in each computation unit. Depending on the source code, a
reasonable restriction can be applied to limit the number of methods
in each computation unit. The package based restriction is compatible
with JAVA because packages are usually created and designed to
differentiate specific set of tasks. Package based restriction does not
mean that a method M1 in class C1 of package P1 always belongs to
the component of P1. It means that the maximum number of extracted
components cannot exceed the total number of packages in the code,
where the minimum number of components that can be extracted is
1. Method M1 can belong to any component depending on the rules
of algorithm of allocation.

Algorithm 1 shows the start of allocation. MethodClassList has
all the methods we have extracted from AST nodes and stored in our
data structures. Similarly, PackageClassList has all the classes against
their packages. Additional information like method parameters, return
types and method invocation list can also be retrieved by using a
HashMap against each index of these lists. Invocation list of each
method will be matched and the methods with zero invocations
will be considered as utility components. Such methods are not
invoking any other method, it means they are mostly conducting
simple tasks for other methods but do not require anything from
any other method in the source code. Such methods will be placed

56Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

• USE	CASE	STUDIES	TO	
EMPIRICALLY	EVLAUATE	SOURCE	
CODE	VS	COMPONENTS

• USE	CDO	API	TO	DEPOSIT	
COMPONENTS	IN	CDO	
REPOSITORY

• SEMANTIC	MAPPING	FROM	
ABSTRAT	MODEL	OUTPUT	TO	X-
MAN	METAMODEL	TO	FORM	
ATOMIC	COMPONENTS

• FIRST	CYCLE	OF	REVERSE	
ENGINEERING	FOR	ALLOCATING	
METHOD	INVOCATIONS	BASED	
ON	THEIR	PACKAGE/PRIVACY	

• EXTRACT	ALL	METHOD	
INVOCATIONS

• USE	INTERMEDIATE	DATA	
STRUCTURE	TO	STORE	METHOD	
INVOCATIONS

• TRAVERSE	THROUGH	ALL	
CLASSES	IN	SOURCE	CODE	TO	
EXTRACT	NODES	FOR	ALL	
CLASSES,	METHODS	AND	
VARIABLES

AST	TREE	GENERATION PARSING	THE	NODES
STATIC	ABSTRACT	

MODEL	OF	
EXTRACTION

MAPPING	TO	X-MAN	
META	MODEL

API	TO	DEPOSIT	THE	
COMPONENTS	IN	CDO

EMPIRICAL	
EVALUATION	ON	CASE	

STUDIES

CONTINOUS	REFINEMENT	
OF	ABSTRACTION	MODEL

Source	
Code

• REGEX	TO	PARSE	THORUGH	
CONTROL	STATEMENTS	IN	
ORDER	TO	MAP	CONTROL	TO	
COMPOSITION	CONNECTORS

MODEL	OF	ABSTRACTION	
FOR	COMPOSITE	

COMPONENTS	AND	SINGLE	
SYSTEM	EXTRACTION

Fig. 2. RX-MAN Methodology.

Algorithm 2 Extract Each Invocation
Require: Mi,index

while Mi.invocationList! = Empty do
if Mi.PackageName == Mi.invocationList(index).packageName then

if C.PackageName← FALSE then
CreateComponent(PackageName)

end if
CheckDuplication(Mi,Mi.invocationList(index),PackageName)
if Duplication == FALSE then

ADD (Mi,Mi.invocationList(index),PackageName)
end if
ExtractEachInvocation(Mi.invocationList(index),index)

else
if Mi.invocationList(index).package← FALSE then

CreateComponent(PackageName)
end if
CheckDuplication(Mi,Mi.invocationList(index),PackageName)
if Duplication == FALSE then

CheckPrivateMemberAccess(Mi.invocationList(index))
if CheckPrivateMemberAccess← FASLE then

ADD (Mi,Mi.invocationList(index),PackageName)
else

SetAllocation(Mi.invocationList(index).PackageName)
end if
ExtractEachInvocation(Mi.invocationList(index),index)

end if
end if

end while

Fig. 4. Methods Invocations Extraction.

in utility components. Each X-MAN component will have its own
utility component in which all such methods will be placed. This
approach will help in reducing the coupling in the original source
code. Method createU creates a utility component if a utility function
belongs to a X-MAN component and method AddU adds a utility
function in a utility component if it already exists. All other methods
will be considered to place in X-MAN atomic components and their
invocations will be extracted for further allocations.

In algorithm 2, for each method, its invocation list is extracted
and compared with it. If the method Mi and its invoked method
belongs to same package, then a component with that package name
is created and both methods will be placed in computation unit
along with their imports and class variables they use. If both belong
to different packages, then a privacy check will be conducted by
function CheckPrivateMemberAccess. If the method being invoked
accesses the private variables or calls private functions in that package
in its invocation list, then that method cannot be placed with method
Mi. In that case, the invoked method will be placed in a newly created
component (if does not already exist) along with the private methods
it is accessing (SetAllocation() in Algorithm 2). Same process will be
applied to all the invoked methods in the invocation list of Mi. Several
factors have to be considered before placing a method at appropriate

location, e.g., its access to global variables, usage of its local variables
in other private methods etc. Function Duplication checks whether the
method being invoked is already part of the component. At the end
of this cycle, each method will be placed in appropriate component
in a notation which will be mapped to X-MAN meta model. A user
can select any combination of the public methods in a computation
unit as a service for that component. For Number of methods in each
computation unit approach, rules will be applied based on the number
of methods in each computation unit and not on the package based
allocation.

4) Mapping to X-MAN MetaModel: Extracted results are
mapped to X-MAN meta-model. This step also involves the X-
MAN validation to make sure only valid X-MAN components can
be deposited. Validation involves the semantic checks against X-
MAN meta-model in order to check that there is no violation against
the semantics of X-MAN component model. X-MAN meta-model is
presented here [24].

5) Single System Extraction: For single application systems,
second cycle of reverse engineering is needed in order to extract
composite components and composition mechanism among them. So
far, we have considered if-else, While, For and Switch statements
as candidates of composition connectors. They can appear in any
combination hence each possible scenario should be mapped to X-
MAN semantics. Few examples of such mapping are shown in Figure
5. This part of research is theoretically completed but still under
development in our tool.

A

B

;

A B

1

2 3

4

5

(i)	A;B
Sequencer

B

C?

A B

1

2 3

4

5

(ii)	If	C	then	A	
else	B

Selector

C ~C

C?

A

C ~C

B

C?

A B
2 3

2

3

(iii)	If	C	then	A	else	B;
While	D	do	E

C ~C

C?

A

C ~C

D?

E
D ~D

;

While	D

E

Computation Control	ConnectorControl	Flow

1 4
5

6 7

N

0 N+1

Fig. 5. Control Structures VS X-MAN Equivalent.

6) CDO Repository: CDO is a framework with development
time model repository. It is implemented along with EMF (Eclipse
Modelling Framework) in implementation of X-MAN tool. Every
extracted component can be deposited, retrieved and recomposed
according to needs.

57Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

TABLE I. RX-MAN INITIAL RESULTS

Application Classes X-MAN Com-
ponents

Component To
Class Size %

JabRef 35 8 4.3%
TeamMates 51 4 12.7%
EverNote 27 4 6.75%

V. EVALUATION

So far, we have applied our approach to extract atomic X-
MAN components on the variety of JAVA based projects. These
results are output of the first cycle of reverse engineering, whereas
second cycle implementation is in development. Three most notable
application we have used are Jabref [25], Evernote-sdk and Team-
mates. Jabref is a well-known database management tool and widely
used by researchers along with latex. TeamMates is a free online
tool for managing peer evaluations and Evernote is a famous cross
platform app. All are open source JAVA based projects.

Table I shows the results of R-XMAN. The result is quite
diverse and depends on the nature of the code. In case of Jabref,
we got 8 components out of 35 classes (it means each component
has average size equal to 4.3 classes of the original source code)
and in case of Team-mates, we got 4 components out of 51 classes.
We have only used that part of the code which is related to model
and middle layer of the applications. In case of Evernote-sdk, we
got 4 components out of 27 classes. Figure 6 shows R-XMAN tool
with extracted components of JabRef. The main panel shows two

Fig. 6. RX-MAN Tool.

of the extracted components composed by sequencer. Sequencer will
execute Route 0 before the route 1 hence UTIL component will be
executed before ADAPTER component. registerMacEvents and toList
are services of these components.

An important point to consider here is that the X-MAN is
a model for computation, not a model for resource allocation. Of
course, we can study resource and memory problems for X-MAN
systems but major thing to consider here is that the components will
be stored only once, but reused many times. Therefore, we need less
memory overall.

VI. CONCLUSION AND FUTURE WORK

RX-MAN is a static reverse engineering approach that can
extract executable architecture from source code as X-MAN com-
ponents. So far, we have implemented the first cycle of reverse
engineering. Comprehensive evaluation of the methodology demands
the completion of second cycle of reverse engineering in order
to compare the extracted system with original source code. The
approach has been applied on several small examples, but significant
case studies are needed for further evaluation. We have picked

Qualitus Corpus [26] for evaluation. Qualitus Corpus is a well-
known collection of JAVA systems for empirical studies and three
systems will be selected for evaluation. Further future work includes
the integration of reverse engineering with software product lines in
order to achieve product line architecture from legacy systems.

Overall, there are the following benefits for selecting X-MAN
over other component models as an output notation of reverse
engineering:

• Separation of control (composition connectors) and computation
(computation unit).

• Ability to compose in both design and deployment phase of
component life cycle. One can deposit, retrieve, re-compose and
tailor X-MAN components according to needs where it is not
possible with ADL based component models.

• No required services like ADL based component models due to
exogenous composition.

REFERENCES

[1] K.-K. Lau and R. Arshad, A Concise Classification of Reverse Engi-
neering Approaches for Software Product Lines. 4 2016.

[2] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in
WODA 2003: ICSE Workshop on Dynamic Analysis, pp. 24–27, Citeseer,
2003.

[3] P. Helle and P. Levier, “From integrated architecture to integrated
executable architecture,” in Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE), 2010 19th IEEE International
Workshop on, pp. 148–153, IEEE, 2010.

[4] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in
Program Comprehension, 2007. ICPC’07. 15th IEEE International
Conference on, pp. 37–48, IEEE, 2007.

[5] A. D. Eisenberg and K. De Volder, “Dynamic feature traces: Finding
features in unfamiliar code,” in Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on, pp. 337–346,
IEEE, 2005.

[6] K.-K. Lau, L. Safie, P. Stepan, and C. Tran, “A component model
that is both control-driven and data-driven,” in Proceedings of the 14th
international ACM Sigsoft symposium on Component based software
engineering, pp. 41–50, ACM, 2011.

[7] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[8] M. L. Nelson, “A survey of reverse engineering and program compre-
hension,” arXiv preprint cs/0503068, 2005.

[9] B. Zhang and M. Becker, “Recovar: A solution framework towards
reverse engineering variability,” in Product Line Approaches in Software
Engineering (PLEASE), 2013 4th International Workshop on, pp. 45–48,
IEEE, 2013.

[10] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in a collection of
product variants,” in Reverse Engineering (WCRE), 2012 19th Working
Conference on, pp. 145–154, IEEE, 2012.

[11] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph.,” in IWPC, pp. 241–247, Citeseer, 2000.

[12] M. P. Robillard and G. C. Murphy, “Concern graphs: finding and describ-
ing concerns using structural program dependencies,” in Proceedings of
the 24th international conference on Software engineering, pp. 406–416,
ACM, 2002.

[13] M. P. Robillard, “Automatic generation of suggestions for program
investigation,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 11–20, ACM, 2005.

[14] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. Le Traon, “Towards
a language-independent approach for reverse-engineering of software
product lines,” in Proceedings of the 29th Annual ACM Symposium on
Applied Computing, pp. 1064–1071, ACM, 2014.

[15] M. Trifu, “Improving the dataflow-based concern identification ap-
proach,” in Software Maintenance and Reengineering, 2009. CSMR’09.
13th European Conference on, pp. 109–118, IEEE, 2009.

[16] M. T. Valente, V. Borges, and L. Passos, “A semi-automatic approach
for extracting software product lines,” Software Engineering, IEEE
Transactions on, vol. 38, no. 4, pp. 737–754, 2012.

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

[17] N. Anquetil, J.-C. Royer, P. Andre, G. Ardourel, P. Hnetynka, T. Poch,
D. Petrascu, and V. Petrascu, “Javacompext: Extracting architectural ele-
ments from java source code,” in Reverse Engineering, 2009. WCRE’09.
16th Working Conference on, pp. 317–318, IEEE, 2009.

[18] “What do we mean by componentization (for knowledge)? – open
knowledge international blog,” April 2007. (Accessed on 07/31/2017).

[19] M. Abi-Antoun, J. Aldrich, and W. Coelho, “A case study in re-
engineering to enforce architectural control flow and data sharing,”
Journal of Systems and Software, vol. 80, no. 2, pp. 240–264, 2007.

[20] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: connecting software
architecture to implementation,” in Proceedings of the 24th international
conference on Software engineering, pp. 187–197, ACM, 2002.

[21] L. Chouambe, B. Klatt, and K. Krogmann, “Reverse engineering
software-models of component-based systems,” in Software Maintenance
and Reengineering, 2008. CSMR 2008. 12th European Conference on,
pp. 93–102, IEEE, 2008.

[22] K.-K. Lau, L. Safie, P. ˇ Stˇ epán, and C. Tran, “A component model that
is both control-driven and data-driven,” in Proc. 14th Int. ACM SIGSOFT
Symp. on Component-based Software Engineering, LNCS 6092, pp. 41–
50, ACM, 2011.

[23] T. Asikainen, T. Soininen, and T. Männistö, “A Koala-Based Approach
for Modelling and Deploying Configurable Software Product Families,”
in Software Product-Family Engineering, pp. 225–249, Springer, 2004.

[24] K.-K. Lau and C. M. Tran, “X-man: An mde tool for component-
based system development,” in Software Engineering and Advanced
Applications (SEAA), 2012 38th EUROMICRO Conference on, pp. 158–
165, IEEE, 2012.

[25] M. Alver, N. Batada, M. Baylac, K. Brix, G. Gardey, C. D’Haese,
R. Nagel, C. Oezbeck, E. Reitmayr, A. Rudert, et al., “Jabref reference
manager,” 2003.

[26] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “The qualitas corpus: A curated collection of java code for
empirical studies,” in Software Engineering Conference (APSEC), 2010
17th Asia Pacific, pp. 336–345, IEEE, 2010.

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

