
Developing Architecture in Volatile Environments
Lessons Learned from a Biobank IT Infrastructure Project

Jarkko Hyysalo, Gavin Harper, Jaakko Sauvola, Anja Keskinarkaus, Ilkka Juuso, Miikka Salminen, Juha Partala
Faculty of Information Technology and Electrical Engineering

University of Oulu
Oulu, Finland

e-mail: jarkko.hyysalo@oulu.fi, gavin.harper@oulu.fi, jaakko.sauvola@oulu.fi, anjakes@ee.oulu.fi, ilkka.juuso@ee.oulu.fi,
miikka.salminen@ee.oulu.fi, juha.partala@ee.oulu.fi

Abstract—The architecture specifies how the system should be
designed and built. Several architecture frameworks exist for
implementing the architectural design process. However,
shortcomings are identified in current architectural design
processes, especially concerning volatile domains like
healthcare. We claim that an iterative architectural design
process is required, where the technical concerns are separated
from the non-technical ones. Furthermore, a strong guiding
vision is required. Based on our experiences from a biobank IT
infrastructure process, we present a Continuous Renewability
architectural design process that is modular, interoperable,
controlled and abstracted, thus being capable of handling
complex systems with severe uncertainties.

Keywords- Architecture; design; lessons learned; post-
mortem; process.

I. INTRODUCTION
Software systems are becoming ever more complex.

Consequently, software and systems development has
become increasingly challenging and intellectually
demanding [1][2]. Therefore, it has been proposed that
coherent and comprehensive modelling approaches be
applied. Subsequently many approaches are developed in the
field of systems architecture modelling [3].

Defining the architecture is an activity that specifies how
a system is to be designed and implemented. Several
architectural frameworks are available providing guidance
on how to enact the architectural design process. However,
in domains that are not established or stable, there exist
variables that may cause changes and unexpected events that
require non-routine solutions. The wider the scope of the
project and the more stakeholders that are involved, the more
difficult the architecture definition is [3].

Moreover, if the development problem is not well
structured, it becomes increasingly more challenging to
address and communicate [4]. Healthcare is one such domain
that is constantly evolving. There exist several stakeholders
from different domains, various laws and regulations are in
effect, some of which are still emerging, e.g., General Data
Protection Regulation [5], services and service models are
still being refined. It is then easy to see the inherent volatility
within this particular domain. Hence, we claim that an
incremental and iterative process is necessary, where the

outcome is built gradually. These facilitates observations of
the evolution of the design and implementation over time,
and to better understand its requirements and potential–
gradually gathering feedback and incorporating it into the
development. However, not only design and implementation,
but also system use and renewability has to be acknowledged
in the architecture.

Furthermore, there is a need to have a strong guiding
vision towards which the architecture development efforts
can be compared to. In order to define such a process, we
propose the following research question: What form of
architectural design process is suitable for volatile
environments? To address our research question, we used a
post-mortem analysis to study the process of building a
biobank IT infrastructure. As a result, we propose a
Continuous Renewability approach to architectural design
process.

The remainder of the paper is organised as follows.
Section II studies the background. Section III presents the
research approach. Section IV presents the architectural
design process and the empirical experiences from healthcare
domain. Section V evaluates our approach. Section VI
discusses the results and implications. Section VII
summarises this work.

This paper is an extended version of [6] including, e.g.,
more detailed literature study, extended description of the
proposed approach, and evaluation of the approach.

II. BACKGROUND AND RELATED WORK
The healthcare domain is one example of domains that

are constantly evolving by means of new technological
innovations, new requirements for efficiency and cost and
new regulations being introduced. There also exists the
continued interaction and dependency on legacy systems and
data formats. The design reality of healthcare IT architecture
is sketched in Figure 1.

Figure 1. Design reality of healthcare IT architecture.

95Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Legacy systems and data formats that are widely utilised
in the medical domain create challenges by means of
potentially isolated and non-interoperable systems. In
particular, legacy issues arising from the use of existing data
formats, processes, applications and service-level agreements
(SLA) increase the level of complexity involved in designing
a unified technical solution. Thus, there exists a need for
migration and renewal strategies in addition to strategies that
enable complying with the legacy systems.

Architectural design is heavily guided by requirements
regarding efficiency and cost. Emerging technologies may
provide better and more efficient solutions to current
challenges, public-private partnerships (PPP) funded by a
partnership of government and a number of private sector
companies and new principles like 4P medicine, referring to
preventive, predictive, personalised, and participatory
medicine [7]. 4P medicine is also sometimes referred to as
personalised or precision medicine. It can be seen as the
tailoring of medical treatment to the individual
characteristics, needs, and preferences of a patient during all
stages of care, including prevention, diagnosis, treatment,
and follow-up. It will also include enhancing the awareness
about lifestyles and preventive lifestyle changes. The goal is
to enhance the health outcomes with integration of evidence-
based medicine and precision diagnostics into clinical
practice.

Through this holistic approach, in combination with
several divergent stakeholders and new technologies, it is
easy to see that the design environment may become
fragmented and volatile. Furthermore, the healthcare sector
is examining new strategies and business models, such as
PPP, where the strategic and business drivers are diverse.
The gradual evolution of legacy systems towards new
solutions must enable the continuing use of existing systems
integrated into the current environment. This may potentially
result in a complex environment with combination of both
legacy systems and applications with brand new solutions
[8]. The ongoing evolution through changing legislation,
regulations and improvements in medical practices creates an
environment that is constantly changing.

Various architectural frameworks have been proposed to
address the different design realities, including standards,
such as ISO/IEC/IEEE 42010. In addition a general model
for architectural design is presented in [9]. Architectural
frameworks have been analysed extensively [1][10][11], and
a recurring theme across the frameworks is that each
describes the role of the architecture in the product
development process as a “systematic analysis and design of
related information to provide model for guiding the actual
development of information systems” [10]. The architectural
design process is a one that guides the definition of a given
system architecture, however, there is no general solution for
the representation of a system’s architecture [10]. Many
architecture frameworks discuss the architecture creation
process yet few focus on the process [11]. The value of the
processes is shown in the literature and it has been suggested
that processes ensure that activities in an organisation are
performed consistently and reliably [12]. The architectural
design process should provide a structured approach to

architecture activities in the product development process
[10]. Furthermore, it is also important to acknowledge the
phases of system in use and renewability. Thus, architecture
should cover: 1) design, 2) implementation, 3) deployment,
4) usage, and 5) renewability. The lack of proper planning
for items usage and renewability can often lead to problems
for customers, because evolution and renewability is
expensive or impossible, system use may be restricted, and
new processes are not supported. Maintenance can also
suffer if developers only do design, implementation, and
deployment.

Several frameworks exist for modelling architecture.
While different frameworks have different content and target
a different audience [11], they aim to provide structure and
systematic processes for systems design [10]. Examples of
well known and established architecture frameworks are the
Zachman Framework for Enterprise Architecture [13], 4+1
View Model of Architecture [14], Federal Enterprise
Architecture Framework (FEAF) [15], Reference Model for
Open Distributed Computing (RM-ODP) [16], The Open
Group Architectural Framework (TOGAF) [17], DoD
Architecture Framework by the US Department of Defense
(DoDAF) [18], and a general model of software architectural
design by Hofmeister et al [9].

While each architecture framework is suitable for
different environments, they may result in similar outcomes
based on their architecture goals and viewpoints. Viewpoints
are an important feature of architecture frameworks as they
represent the goals and focal points that the architecture
framework emphasises like business, information, software
and technical architectures. The analysis revealed that only
three of the frameworks, FEAF, TOGAF and DoDAF,
provided explicit support for the architectural design process,
RM-ODP provided partial support, ZF and 4+1 View
provided no support. ZF and TOGAF have a focus on
enterprise architecture, 4+1 View and RM-ODP on software
systems (typically distributed), FEAF is primarily a
framework for architecture planning and DoDAF focuses on
enterprise architecture related to defence operations and
business operations and processes. It is thus typically quite
domain specific. The general model by Hofmeister et al. is
based on synthesis of several existing approaches.
[3][9][10][11]

Evaluations of architecture frameworks are presented,
e.g., in [3][9][11]. While there are pros and cons for each
method, common deficiencies in the architecture frameworks
can be identified [10]: 1) The level of details required in
models is not specified enough, 2) Rationales are not
considered in models, thus no verification is possible, 3)
Non-functional requirements are not considered in all
frameworks, 4) Software configuration is not considered in
all frameworks.

There are also more recent approaches to systems design
that aim at tackling the challenges of modern development
environments. Palladio Component Model (PCM) is one
such approach; among other benefits it enables the analysis
of different architectural design alternatives (i.e.,
optimisation) and aims to address the challenges during the
early development stages, thus avoiding costly redesigns

96Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

[19]. Software architecture optimisation has also been
studied to help the search for optimal architectural design,
e.g., Aleti et al. [20] performed an extensive systematic
literature review focusing on software architecture
optimisation.

Even with software architecture optimisation efforts,
architectural design still involves complex trade-off analyses
that may require expertise in several domains or the
environment may be more variable and dynamic than current
process can support. It is even possible that not all
stakeholders are known or they may not already know what
the intent for the product to accomplish. Thus, such
uncertainty may exist that the guiding vision for the product
is impossible to be fully defined during the early stages of
development. Instead, it is suggested that it is built
incrementally.

In conclusion, there is a need for an architectural design
process that addresses the identified shortcomings, including:
volatile environments, the availability of specific details,
design rationales, non-functional requirements, and software
configurations.

III. RESEARCH APPROACH
The results are based on experiences gathered during a

biobank IT infrastructure development project. The research
consisted of studying several organisations related to
biobank activities. The purpose of this was to define
architecture for a biobank and implement a functional
infrastructure. Managing the large number of stakeholders
and constantly changing environment requires carefully
considered architecture approach, thus creating the need and
basis for this work.

During the project several challenges were identified. A
post-mortem analysis was conducted to analyse these
findings and to identify the shortcomings and improvements
for the architectural design process. A post-mortem analysis
is a study method that may be used to gather empirical
knowledge. The benefits of a post-mortem analysis include
revealing findings more frequently than other methods, such
as project completion reports. It is beneficial to conduct post-
mortem analyses after important milestones and events in
addition to the end of a project. Post-mortem analysis can be
used as a project-based learning technique [21][22]. In
addition to finding the impediments of the development
process, post-mortem analyses may be used to improve
methods and practises [23]. During this research project, a
post-mortem analysis was used to study our development
process to facilitate identifying potential sources for
improvement or optimisation.

Our post-mortem analysis follows the general iterative
post-mortem analysis proposed by Birk et al. [21], as shown
in Figure 2.

Figure 2. General post-mortem analysis process [21].

TABLE I. VARIOUS STAKEHOLDERS IN BIOBANK DOMAIN

Stakeholder Input
Valvira (National Supervisory
Authority for Welfare and Health)

- Biobank permission
- Supervision

Sample donor, person - Consent
- Samples

KELA (The Social Insurance
Institution of Finland)

- Information systems service

THL (National Institute for Health
and Welfare in Finland)

- Architecture
- BBMRI-ERIC: Obligations

BBMRI (Biobanking and
BioMolecular resources Research
Infrastructure)

- Common methods

Registry - Source data
Service provider - Service
Health care units - Sample and data

- Support services
Research - Sample and data
National ethical board (TUKIJA) - Reports
STM (The Ministry of Health and
Social Affairs)

- National biobank overall
 architecture

Our research started with an initial preparation stage

where we carefully identified the key participants involved
with our effort and selected viable methods and procedures.

Project history was examined with the key participants
involved in the project (primarily project managers and
system architects) and project documents were studied. Then
our goal for the post-mortem analysis was determined–to
understand the needs for the architectural design process as
well as identify potential sources for improvement and
optimisation.

Data collection involved gathering relevant project
experiences from team members and key stakeholders (Table
I). Participants of our data collection as well as data analysis
session were project managers (1), system architects (2) and
developers (2). A decision was made to conduct a
lightweight post-mortem analysis. KJ sessions [24] with
thematic analysis [25][26] were utilised to gather and
organise ideas and data.

In the analysis phase, findings and ideas were organised
into groups based on their relationships. Post-It notes were
used to record the ideas and findings and related notes were
then grouped together. Based on our results, we present
Continuous Renewability architectural design process. Table
I presents the key stakeholders that participated in the
definition of the biobank. The organisations were chosen as
they could each provide potential data related to the research
question. Experts and managers from different organisational
levels were involved. Examples of input by the sources are
also presented.

IV. EXAMINING THE ARCHITECTURAL DESIGN PROCESS

A. Preparation
In the planning phase, project results were studied. These

results included meeting memorandums, requirements,
company materials and the results produced. The focus of
the post-mortem analysis was decided to be to understand
and improve the current processes, to find out what
challenges regarding to architectural design process exist and
where we succeeded. Post-mortem analysis participants were

97Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

informed of the procedures and schedules were agreed upon
and the goal of the post-mortem analysis was determined. A
lightweight post-mortem analysis was selected as it fits the
project size best [27].

B. Data Collection and Data Analysis
In this step, a summary of project history was explored

with key members of the project to better understand the
history of the project. Then we gathered the relevant project
experience, and participants were asked to provide their
views on the development process and practises. The views
were documented using KJ sessions.

Participants were given a set of Post-It notes and they
were asked to write down one issue on each note including
both challenges and successes. Each note was then attached
to a whiteboard and the person was asked to explain why the
issue is important. When all the notes were on the
whiteboard, they were discussed thoroughly and then they
were organised into thematic groups and each group was
named, see Table II. Grouping the findings revealed nine
themes. These groups indicate the main challenges or needs
that were encountered in the development of the biobank IT-
infrastructure. These challenges are issues that may often be
met in the architecture development in volatile environments.

Data analysis was done in the same session as data
collection.

TABLE II. SUMMARY OF THE MOST IMPORTANT FINDINGS

Theme Finding
Abstraction + Abstracting the system design is useful
Change and
uncertainty

- Changing requirements, components and
environment
- Unclear responsibilities
- Ongoing efforts that affect the work disruptively

Communication - Understanding stakeholders from other domains is
challenging
- Various general communication issues are met
- Unclear stakeholders complicates the
communication
- Critical information not available
+ Constant communication within the development
team was useful
+ Common vision and shared understanding within
the development team was helpful
+ Building trust between the stakeholders enabled
the communication channels to be build

Controlled + Planning and decision-making built within the
process

Guiding vision + First architecture draft providing a guideline
+ Defining the basic data flows before trying to
integrate with the hospital systems

Interoperability - Numerous interfaces to existing systems
- Vast number of systems and applications,
including legacy systems

Iterative
approach

+ Iterative process builds the outcome gradually

Modularity + Following system architecture principles allowing
for modular system

Separation of
concerns

- Non-technological issues complicating
technological issues (politics, rigid processes, etc.)
- Complex operational environment requires
examination of the system from different views
+ Identifying new separation opportunities in
existing architecture enabled development of isolated
domains

After the views and ideas were recorded, they were
discussed in detail. A root-cause analysis was conducted to
find out why those items occurred. Identifying root causes of
the identified issues included consideration of how general
these issues are and whom they concern.

Analysis suggests that the most important issue affecting
the architectural design was change and uncertainty in
addition to communication issues and complexity in the
system and environment. Together these hindered
development efforts and may potentially affect quite severely
the quality of the product. However, we also found ways to
tackle these issues. For example, applying good
communication practices, iterative development and having a
guiding vision are all suggested.

In summary, our architectural design process was
iterative in nature. This allowed us to build a shared
understanding of the work to be done, to shape the goals, and
to react to numerous changes and uncertainties as well as the
knowledge gaps between different stakeholders. The work
started with a stakeholder analysis to find the relevant
stakeholders and their viewpoints regarding biobank IT
infrastructure. The key problem in gathering stakeholder
views was their wide array of potential wishes and then
implementing them on a technical level. Several stakeholders
were not technically oriented in their background, thus they
did not know the technical restrictions that may exist in such
an environment.

Similarly from both a legal perspective and a
technological perspective, the various stakeholders had
difficulty grasping adequately other domains than their own.
Especially challenging were the legal issues regarding
sensitive and personally identifiable information. Getting the
stakeholder views and mapping them to a technical level in
addition to ensuring compliance with laws and regulations is
time consuming since there needs to be a consensus amongst
the stakeholders. Multiple requirements were identified
ranging from very abstract to very concrete. Based on this
analysis we were able to come up with an architectural
design process for volatile environments.

C. Experiences
Here we summarise our experiences from the

architectural design process conducted in order to build a
biobank IT infrastructure. The aim is to provide hands-on
experience on architectural design process and to provide
guidance on how to define architectures for systems that
exist in volatile environments, and as with many other
frameworks to control the complexity of development by
abstracting the system design and modelling the intended
system at different abstraction levels.

We suggest an iterative approach in the form of
Continuous Renewability, where the work is done iteratively
and incrementally with feedback loops throughout the
process improving communication. At each level, there are
discussions about what is required, and what is already
available. Frequently, comparisons to previous levels are
done. As the process progresses, the need for changes and
their associated effects grows smaller.

98Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Figure 3. Four levels of abstraction for describing software architectures.

Different approaches can be used, as there are different
needs, requirements, environments, etc. In our case,
Continuous Renewability approach was required. Biobank
data does not become old or obsolete. Instead, the amount of
data grows over time. Similarly, the architectural design
must be continuous to account for changes and new events
and to have scalability and potential for upgrade while still
keeping the whole system interoperable.

In the Continuous Renewability model, four levels of
abstraction are identified each representing a distinctive view
of the architecture from enterprise level to technical details
of the system/software architecture, see Figure 3. Each level
implements the level above with more detailed technologies
and descriptions. Each level is also a phase in our
architectural design process. Moreover, each level
corresponds to a set of stakeholders, and together the
different views form the complete architecture specification.

1) Strategic architecture is the starting point providing
the overall description of the development problem, defining
business views, business processes and rules, and
performance goals. It also defines the conceptual architecture
that connects the architecture effort with the visions,
organisational strategies, business drivers and goals in
addition to processes and functional perspectives.

One of the main contributions is to communicate the
vision and define the rationale–why things are required.
External input can come from multiple sources including but
not limited to various communities, laws and regulations.

At this level, a strategic architecture is defined with the
following output: A semantic model defining the
relationships of business entities and business processes.
Most of the external requirements and customer feedback
come through this level as this level is typically closest to the
customer interface of an organisation. It must have a solid
understanding of customer requirements and it should
communicate these requirements in addition to their rationale
to internal stakeholders. A strategic architecture is also
influenced by the business strategies and other high-level
visions. Furthermore, it also receives feedback in an iterative
manner from the whole architecture development cycle. It
was noted that frequently this strategy consumes a
disproportionate amount of time and effort, as it must be
strictly representative of reality in order to provide a good
basis for further actions.

2) Logical architecture defines the functions and
various resources or components of the system including
their relations and how information flows throughout the
system. Furthermore, this level defines the qualities of the
system, i.e., gives the measurements on how to achieve the

business goals specified at the strategic level. External input
is the inventories of available building blocks for the system.

The results from level 1 are further examined and
developed in level 2, where the logical architecture is
defined. The output of level 2 provides a logical data model
that defines the relationships of data entities.

3) Technical architecture implements the logical level
and provides a foundation by defining the technical
architecture including technology platforms, information
system environments, hardware, software, network
components, interfaces, platforms, etc. External input comes
from sources including standards, non-functional
requirements (NFR) (like redundancy, security, availability,
scalability and interoperability). The output of level 3 is to
provide a technical architecture that defines the physical data
model and a technological architecture.

4) Implementation architecture focuses on details, such
as hardware and software, operating systems and middleware
in addition to interoperability and data definitions. External
input comes from sources including configuration
documents, technical constraints and application
requirements. The output of level 4 is an implementation
architecture that defines the implementation details, such as
components, applications and software and hardware
configurations. This implementation architecture takes into
account all the technical constraints. Furthermore, it also has
to communicate back to level 1, e.g., the weight of legacy
(like data formats and applications), which will affect
planning, system interoperability, business decisions, etc.
The weight of legacy is a critical factor in system design in
the healthcare domain where there may not exist alternatives
that are readily available to replace existing systems.

If changes are made at any level, it may have an effect on
any other level. The Master Architecture is defined to guide
the development effort, structure and scope of the process.
This is illustrated in Figure 4.

The Master Architecture maintains the up-to-date
specification in addition to a specification document
produced for each level. Defining the Master Architecture
can start from the current architecture or current standards
and infrastructures.

Figure 4. Continuous Renewability architectural design process.

99Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

First, a high level architecture is used which will then be
further specified as the architectural design process
progresses. The Master Architecture may also illustrate a set
of use-case scenarios that can be referred to at each level to
understand requirements of the system to be designed.

The model has to account for 1) reality, 2)
methodologies, 3) design models, and 4) design
functionalities.

Each phase has to correspond to the Master Architecture
to verify the feasibility and progress of the development
towards the set criteria. For example, phase 1 relates to
synchronisation of costs and trade-offs, phase 2 to quality
aspects, phase 3 to NFR’s and phase 4 to Functional
Requirements (FR). Similarly, the produced documents and
items are verified against the Master Architecture.

The resulting architecture from this process is available at
[28].

V. EVALUATION
Our Continuous Renewability approach is an

amalgamation of several best practices found in other
approaches and design methods. Table III presents a
comparison of several commonly used approaches with our
approach, and consider how they address the challenges and
needs encountered in the architecture development in volatile
environments. The themes captured in post-mortem analysis
provide a good starting point for identifying requirements for
architecture development in volatile environments. These
themes are also recognised in the literature. The approaches
are evaluated towards the identified requirements. The
evaluation is literature based. Each approach is checked if
they fulfil the requirement fully, partially or not at all. The
Continuous Renewability approach (CR in the Table III) is
built to address the identified requirements fully.

It should be noted, however, that DoDAF is limited in
scope and it does not address the relevant views for
implementing the system as a software architecture as well
as the other approaches [29].

Abstraction is one of the requirements for architecture
description languages [30], furthermore, abstraction is
necessary to enable the examination of architecture from
different perspectives. Zachman, FEAF and DoDAF address
the abstraction requirement, while TOGAF has very limited
views [31]. Abstraction is addressed in 4+1 at least partially
with different views.

Changes and uncertainty. In real life, work has many
variables, changes and unexpected events are met, vast

amounts of data must be handled, and innovative solutions
are needed [12][32][33]. Readiness for changes is necessary
to adapt to future situations [9], furthermore, uncertainty and
changes are also often met during the development work.
Flexibility minimise the impact of changes. Change and
uncertainty is addressed in Zachman, DoDAF and
Hofmeister. FEAF accommodates changes at least partially
through flexibility of methods, work products and tools [30].
TOGAF has a flexible process and accommodates changes
and promotes change management [10][34]. RM-ODP does
not consider the future needs or evolution of the architecture
[10]. 4+1 does not address system evolution [10].

Communication is a mediating factor in coordinating
and controlling the collaborative work. Software
development requires a vast amount of communication,
especially when dealing with complex infrastructures. These
issues have been reported to decrease both the frequency and
quality of communication, and ultimately, productivity. To
mitigate these issues, tools, processes, and methodologies are
required. [35][36]

Communication is addressed in Zachman (through
abstraction, simplification and common vocabulary) and
Hofmeister, but not explicitly. FEAF provides a common
language and facilitates communication [34]. DoDAF
address communication at least partially through extensive
documentation [10]. 4+1 address communication
requirement fully. RM-ODP provides a framework for
defining the languages for the viewpoints to be used as a
dictionary for architecture description [29].

Controlled refers to rigid processes and best practices
that the architectural design process is based on. It also
overlaps with the guiding vision, as control also comes from
the ability to evaluate constantly the results towards set
targets, ensuring the correct architectural decisions [9].

FEAF (partially) and TOGAF (fully) provides process
support [10][31][34]. FEAF measures success [34], while
TOGAF lacks the continuous evaluation or validation. 4+1
provides partial support through the validation of the
architectural design, while DoDAF defines the process and
evaluation [10][31][34] and Hofmeister provide full support
for controllability. RM-ODP does not describe the
architectural design process [10].

Guiding vision provides a common goal to guide the
development and harmonise the practices. Guiding vision
also acts as a baseline towards which the development can be
verified.

TABLE III. COMPARISON OF APPROACHES (0=NO SUPPORT, 1=PARTIAL SUPPORT, 2=FULL SUPPORT)

Requirement Zachman FEAF RM-ODP TOGAF DoDAF 4+1 Hofmeister CR
Abstraction 2 2 1 2 2 1 1 2
Change & Uncertainty 2 1 0 2 2 0 2 2
Communication 1 2 1 0 1 2 1 2
Controlled 0 1 0 1 2 1 2 2
Guiding vision 0 1 0 2 2 2 2 2
Interoperable 0 2 2 2 2 0 0 2
Iterative 0 1 0 1 2 2 2 2
Modular 0 1 1 0 0 2 0 2
Separation of concerns 1 2 1 0 1 1 2 2

100Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Evaluation is ensuring that the architectural decisions are
the correct ones [9]. DoDAF provides description of the
intended product, with guidance and rules for consistency
[18]. TOGAF and 4+1 guides the organisation with an
architectural vision. In FEAF each segment has a guiding
vision [34].

Interoperability is one of the drivers that contribute to
the success of the product and it is necessary to address
interoperability already in the architectural design [39].

FEAF, RM-ODP, TOGAF and DoDAF explicitly
promote interoperability [10].

Iterative development is emphasised in [9], it was also
revealed as one of the success factors in our post-mortem
analysis. FEAF, TOGAF and 4+1 are iterative, however,
FEAF and TOGAF do not explicitly propose iterations after
each phase, but only after the whole process [9][34]. DoDAF
is iterative [18].

Modularity is recognised as a crucial attribute in
software architecture [40][41]. FEAF uses autonomous
partitions to manage complexity [34]. 4+1 supports
modularity to promote ease of development, software
management and reuse as well as addressing environmental
constraints [10].

Separation of concerns provides several benefits, such
as reduced complexity, improved reusability and simpler
evolution [37][38]. Zachman, RM-ODP, DoDAF and 4+1
partially address this requirement through views. Hofmeister
address the complexity and separation of concerns. FEAF
address this, as it is built on segments and enterprise
services, which can be seen as views to development [34].

VI. DISCUSSION
Volatile environments present many non-trivial

challenges for architectural design and specification. A post-
mortem analysis was conducted on a biobank IT
infrastructure project to understand the architecture based on
real problems and attempted solutions. A post-mortem
analysis is a tool that can be used to learn from the
experiences of previous iterations or completed projects. It
can also be used to improve and adapt current software
development processes [22]. Here, our aim was to learn from
our experiences and then suggest improvements for
architectural design processes, especially for volatile
environments.

Our Continuous Renewability approach to architecture is
a) modular, b) interoperable, c) controlled and d) abstracted.
This way we can handle complex systems with significant
inherent uncertainties. The design philosophy is that when
designing the architecture, the requirements were separated
into technical and non-technical requirements whereby the
non-technical requirements included requirements
specialised to the biobank domain, like sample management
and identification and table structures. These are
requirements that do not affect the design of data flow, as we
only need to know that the data exists and will be in some
form that can be trivially read from, written to and
transmitted securely over an encrypted socket-based
connection directly to the next stage. The specific content of
the data is largely irrelevant in most cases.

Incremental and iterative development is suggested as it
allows observing the outcome and improving it as new
information becomes available. Our proposal is a Continuous
Renewability architecture model, which is intended to be
general, such that it does not mandate how each level should
be modelled. This allows several architectural styles and
notations to be utilised. More important is that all the
necessary views to a development are addressed.
Furthermore, our architecture is modular to allow flexibility
and extendibility. Modularity allows the reconstruction of
any part of the system, such that an area-of-effect can
potentially be localised to just those components directly
connected to the modified region. In the case of the biobank,
the system has been designed such that successive system
component regions typically form a directional data flow
through standardised and well-defined interfaces.
Interoperability is similarly achieved through the
specification of interfaces defining various domains with
utilisation of open-standard communication protocols.
Controllability comes from the rigorous process and from the
Master Architecture that guides the development and verifies
the outputs against the set targets. Architecture should also
be highly abstracted. For example, there exist requirements
that are irrelevant when designing a data flow because we
only require knowledge that a given data exists and will be in
some form that we can work with. The specific content of
the data is largely irrelevant in most cases. This is highly
beneficial in an evolving healthcare environment whereby
the specific content of a data set in addition may frequently
be in a state of flux while the laws and regulations
surrounding the data set are interpreted. Increasing or
decreasing the level of abstraction as required allows the
examination of the system from different perspectives. The
separation of technical concerns from non-technical concerns
allows us to adapt to future needs, as the design is not relying
on specific technologies or solutions.

In volatile environments, constant comparison to the
Master Architecture is required. It allows for the verification
of compliance for all the relevant inputs and design choices,
even if those vary during development. The Master
Architecture provides the goals towards which the effort is
pushed as well as the guidelines that determine how those
goals should be reached. Structure for the process is also
provided. Design rationales guide the overall work and are
kept up-to-date by continuous communication with the
stakeholders who see the system being defined
incrementally. Continuous communication also helps
building trust between the stakeholders. This allows them to
understand the rationale for design and implementation
decisions better throughout the process as a consequence of
context being more localised. Input is verified at each level
and every iteration. Additionally, the Master architecture is
updated accordingly. Comparing the results to the Master
Architecture enables a constant feasibility analysis, and
enables corrective actions if necessary.

We suggest an approach to architecture whereby domains
are the fundamental units and the communication pathways
between the domains indicate connectivity between domains.
The internal structure of a given domain remains unspecified

101Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

in the highest level of abstraction. It is only specialised once
the requirements for that domain are exhibiting some form of
stability. For example, we can consider the anonymising
encoding service of the biobank not as a part of the
architecture, but as a specialisation of a domain for a specific
task. Thus, if for example, the law changes or it turns out it
was misinterpreted, the specialised components of the
domain may be updated or replaced with minimal impact to
the architecture assuming the new specialisation utilises the
existing connection path and communicates using
compatible data storage and communication formats. It then
follows that any connected domains from which it receives
from or transmits to must be able to accept that
communication readily.

This is accomplished by initially designing the system at
a high of abstraction, modelling the transformations that
occur in a domain as a function with an argument type T that
maps to some other type U where T, U may have some
structure or may represent a collection of different data
types. It is also important to note that type identifiers, such as
T or U are arbitrarily chosen and the label communicates
only the preservation, or lack thereof, of the structure of the
input data. The labelling of an input and output type is
defined such that if the input and output types of a domain
are identical as is the case in a mapping from T to T then the
transformation that occurs is said to be structure preserving
such that the output contains an identical structure to the
input type. An example of this could be structured tabular
data with given column headings. If the transformation does
not modify this table structure, instead only reading the
contents or modifying the table contents then it is said to be
structure preserving. It is then possible once a directed graph
of each transformation is obtained to perform algebra upon
this graph. Such operations may include the simplification of
the structure through composing transformations or
identifying potential incompatibilities between domains
through type mismatches. Each domain in the architecture is
constructed from many transformations composed in such a
manner that the functionality of a domain may be mapped as
the composition of many functions.

In practise, many concepts may not map naturally to this
model. Examples include data storage on disc and databases.
In such cases, it is possible to map these as either state
machines or simply as entities in the data flow that label a
particular complex process. As requirements stabilise and
become readily available, the intent is for an architecture
defined in this abstract manner to reduce down to a
traditional architecture specification.

Designing the system this way allows us to largely
disregard the shifting external environment and design a
system around the modelled data flow rather than the
specific form of the transformations until such time that
information exhibits stability. It is only required that
information regarding what transformations are required
exists. This way, the architecture is largely resilient against
variation in both non-functional and many non-technical
requirements as each domain is intended to be entirely self-
contained with all state being local to that domain and any
information that enters the domain is passed directly to it and

the given output from a domain depends only upon
information contained within that domain.

We propose that architecture specifies the interfaces to
the various domains and utilise open standard protocols for
communication. It is specified that all data be retained so any
variation in requirements downstream can be trivially
propagated through the signal chain or the entire data set can
be rebuilt at any time if a failure occurs somewhere.
Similarly, by defining the interfaces between domains, it is
possible to enforce properties, such as strong and guaranteed
cryptography on communications and storage in addition to
simple topology modifications due to a standardised
interface between domains. While this requires additional
work in the implementation stage, by communicating
through a unified routing system, it ensures that future
software replacing legacy or unsuitable components may
develop against a known, open communication protocol
removing the possibility that proprietary vendor
communication methods hamper third-party inclusion into
the architecture. There are many benefits of this approach, as
shown in Table IV.

With this in mind, we believe that this approach is not
limited to a single field (pathology, genetics or similar) and
does not depend on a single company. This is a general
model that can apply to any domain of any size.

TABLE IV. BENEFITS

- Since the creation of abstract domains is largely trivial and the
communication between those domains follows open standards, each
domain is fully knowable and may be audited. The system may then
easily adapt by localising changes to only the affected domains.
- Adapting to future needs is made viable using this architecture, as it
doesn't matter whether the software used to power a particular domain is
open source or proprietary as long as it conforms to the open standard
data storage formats and communication protocols, it can be replaced or
upgraded.
- There is much less chance of a given software company creating a
monopoly in the business domain by providing a large monolithic
system that is proprietary and does not allow (or limits) the ability for
third-parties to build upon or interface with it.
- There is opportunity for innovation because anyone can develop
candidate solutions for domain specialisation without needing to invest
effort in satisfying criteria regarding licensing other vendor APIs. It also
allows for larger scale international collaboration.
- The organisation is free to choose any software, open source or
proprietary to specialise each domain. We specify in our prototype
biobank implementation architecture open source software because for
our purposes existing solutions exist for many of the domain
specialisations and it is possible to implement new functionality upon
the existing code bases with relative ease. However, the client remains
free to choose the software solutions they deem adequate. The only
requirement is that the communication between domains follows open
protocols with implementations provided either by an existing library or
directly as part of the core infrastructure.
- It has a potential to be cheaper to maintain. For example, if there is a
decision to go for an entirely open source system, not only does there
not typically exist a license cost, there may exist multiple potential
options regarding which organisation to hire for supporting and
maintaining the system. That way they can receive quotes and optimise
expenditure based on the value each quote offers.
- Since rigid software design processes may stagnate and impede
innovation. By having a modular system, any organisation may be
required to innovate whether it is by feature set or cost as there may not
exist a possibility to implant a system at the project's inception and rely
on the difficulty of switching to a competing product as a source of
longevity in the deployed infrastructure.

102Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

This is where the novelty and innovativeness of this
approach lies. We suggest a system design method that is
resilient to changing requirements and constraints and is
dependent only upon technological requirements, one that
can adapt and grow to any scale and is both modular and
knowable.

There do, however exist limitations to this approach. In
this case, there is limited access to end-users as only a
limited number of healthcare professionals were directly
participating in the process.

We had to rely on application and service providers, who
served as an intermediary between the researchers and the
end-users. However, the application and service providers
are established and well known in their domain and have a
strong knowledge of the needs and requirements. We can
thus rely on their experience for making informed decisions.

The results should interest both academics and
practitioners as they provide an experience report on a
generalised architectural design process for volatile
environments. This is a method for designing a system in
such a way that it bypasses many non-technical issues by
separating the technical concerns from the non-technical
concerns through modular design. The study also lays the
groundwork for further scholarly inquiry, including
validating the findings in practice.

VII. CONCLUSION AND FUTURE WORK
This paper presented lessons learned from a biobank IT

infrastructure project. A post-mortem analysis was
conducted for biobank IT infrastructure process, where
several challenges are encountered. Further challenges were
presented by the strict requirements for privacy and
anonymity as well as rigid processes involved with the
patient data. We have identified several challenges and
solution proposals.

Table V shows the overview of proposed solutions and
summarises how the challenges may be addressed.

By following these proposals the resulting architecture
will be a) modular, b) interoperable, c) controlled and d)
abstracted. It is also suitable for volatile environments, thus
addressing our research question.

Continuous Renewability approach is general by
definition and should be easily adapted to other domains.
However, the practical generalisability of our results is
limited until the process is used in other domains. It is
important to note that the viability of this approach will need
to be verified through controlled experiment and observation.
Though, the generalisability is one of our main design
philosophies guiding the development, hence we believe that
generalisability issues are likely to be negligible. This model
should be refined as feedback from applications is received.

TABLE V. OVERVIEW OF PROPOSED SOLUTIONS

- Changing requirements, components and environments are tackled
with iterative process that builds shared understanding, shape the goals
and allow reacting to changes. Furthermore, Continuous Renewability
approach enables constant feedback and mitigates the effects of changes
as the process progresses.
- Several communications related issues are tackled with iterative
process, as it allow stakeholders to see the system grow, and their
understanding improves along with the system. Improved
communication practices also are necessary, starting from the planning
to create a common vision on what to build and continuing through the
whole development cycle. Constant communication also builds trust
between the stakeholders.
- The Master Architecture provides the scope and guidance for the
development work. First architecture draft is defined to provide a
guideline for development. Then the basic data flows are defined.
Master Architecture provides a checkpoint towards which the design can
be verified, while designing the system around data flows mitigates the
complexity as well as the effects of changing external environment.
- An iterative approach was adopted to build the outcome gradually.
With the modular system architecture and abstracted systems design it
allows for updating the design with minimal effort and minimal impact
to other parts of the system. Abstraction and separation of concerns
allows for adaptable design that accommodates the future needs and is
scalable. It also is not reliant on certain technologies or solutions.
- Separation of non-technological issues from technological issues
simplifies the design, as it isolates, e.g., the effects of politics and rigid
processes from the technological concerns.
- The separation of the architecture into isolated domains connected
through a common interface can serve to restrict the propagation of
errors through the system in the event of component failure or
modification. This in turn has the potential to offer greater flexibility and
expansion of the system to meet future needs.
- Interfaces between the domains and to existing systems utilise the
open-standard communication protocols. This ensures interoperability,
as the components can be changed according to future needs.

REFERENCES
[1] P. Robillard, “The Role of Knowledge in Software

Development,” Communications of the ACM 42(1), pp. 87-92,
1999.

[2] F. O. Bjørnson and T. Dingsøyr, “Knowledge Management in
Software Engineering: a Systematic Review of Studied
Concepts, Findings, and Research Methods Used,”
Information and Software Technology, vol. 50, pp. 1055-
1068, 2008.

[3] S. Leist and G. Zellner, “Evaluation of current architecture
frameworks.” In Proceedings of the 2006 ACM symposium on
applied computing, pp. 1546-1553, 2006.

[4] J. C. Brancheau, L Schuster, and S. T. March, “Building and
implementing an information architecture,” ACM SIGMIS
Database 20(2), pp. 9-17, 1989.

[5] European Union, “General Data Protection Regulation
2016/679.” 2016 URL http://eur-
lex.europa.eu/eli/reg/2016/679/oj, 2017.07.19

[6] J. Hyysalo et al., “Defining an Architecture for Evolving
Environments.” In Proceedings of SAC 2017. In Press.

[7] C. Auffray, D. Charron, and L. Hood, “Predictive, preventive,
personalized and participatory medicine: back to the future,”
Genome Med 2(8), p. 57, 2010.

[8] F. M. Ferrara, “The standard ‘healthcare information systems
architecture and the DHE middleware,” International Journal
of Medical Informatics 52(1), pp. 39-51, 1998.

[9] C. Hofmeister et al., “A general model of software
architecture design derived from five industrial approaches”
Journal of Systems and Software, 80(1), pp. 106-126, 2007.

103Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

[10] A. Tang, J. Han, and P. Chen, “A comparative analysis of
architecture frameworks.” In 11th Asia-Pacific Software
Engineering Conference, 2004, pp. 640-647, 2004.

[11] U. Franke et al., “EAF2-a framework for categorizing
enterprise architecture frameworks.” In 10th ACIS
International Conference on Software Engineering, Artificial
Intelligences, Networking and Parallel/Distributed
Computing, 2009, pp. 327-332, 2009.

[12] P. Mangan and S. Sadiq, “On Building Workflow Models for
Flexible Processes.” In Proceedings of the 13th Australasian
Database Conference, pp. 103-109, 2002.

[13] J. Zachman, “A framework for Information Architecture,”
IBM Systems Journal 38(2&3), pp. 454-470, 1987.

[14] P. Kruchten, “The 4+1 View Model of Architecture,” IEEE
Software 12(6), pp. 42-50, 1995.

[15] FEA, “Federal Enterprise Architecture Framework version 2.”
2013 URL
https://obamawhitehouse.archives.gov/sites/default/files/omb/
assets/egov_docs/fea_v2.pdf, 2017.05.04

[16] J. Putman, “Architecting with RM-ODP,” Prentice Hall, NJ,
2001.

[17] The Open Group, “The Open Group Architecture Framework
(Version 9.1 “Enterprise Edition”).” 2003 URL
http://www.opengroup.org/architecture/togaf/#download,
2017.05.04

[18] Department of Defense, “Department of Defense Architecture
Framework Version 2.02 - Vol 1 Definition & Guideline and
Vol 2 Product Descriptions.” 2010 URL
http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoD
AF_v2-02_web.pdf, 2017.05.04

[19] R. Reussner et al., The Palladio component model. Technical
report, Karlsruhe Institute of Technology, 2007

[20] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I.
Meedeniya, “Software architecture optimization methods: A
systematic literature review,” IEEE Transactions on Software
Engineering, 39(5), pp. 658-683, 2013.

[21] A. Birk, T. Dingsoyr, and T. Stalhane, “Postmortem: Never
leave a project without it,” IEEE Software 19(3), pp. 43-45,
2002.

[22] M. Myllyaho, O. Salo, J. Kääriäinen, J. Hyysalo, and J.
Koskela, “A review of small and large post-mortem analysis
methods.” In Proceedings of the ICSSEA, pp. 1-8, 2004.

[23] B. Collier, T. DeMarco, and P. Fearey, “A defined process for
project postmortem review,” IEEE Software 13(4), pp. 65-72,
1996.

[24] R. Scupin, “The KJ Method: a technique for analyzing data
derived from Japanese ethnology,” Human Organization, vol.
56, pp. 233-237, 1997.

[25] V. Braun and V. Clarke, “Using thematic analysis in
psychology,” Qualitative research in psychology 3(2), pp. 77-
101, 2006.

[26] D. S. Cruzes and T. Dyba, “Recommended steps for thematic
synthesis in software engineering.” In International
Symposium on Empirical Software Engineering and
Measurement, 2011, pp. 275-284, 2011.

[27] T. Dingsøyr and N. B. Moe, “Augmenting experience reports
with lightweight postmortem reviews.” In Product Focused
Software Process Improvement, pp. 167-181, 2001.

[28] J. Hyysalo, A. Keskinarkaus, G. Harper, and J. Sauvola,
“Architecture Enabling Service-oriented Digital Biobanks.” In
Proceedings of the 50th Hawaii International Conference on
System Sciences (HICSS-50), January 4-7, 2017, Hawaii, pp.
3469-3478, 2017.

[29] N. May, “A survey of software architecture viewpoint
models.” In Proceedings of the Sixth Australasian Workshop
on Software and System Architectures, pp. 13-24, 2005.

[30] N. Medvidovic and R. N. Taylor, “A classification and
comparison framework for software architecture description
languages,” IEEE Transactions on software engineering,
26(1), pp, 70-93, 2000.

[31] L. Urbaczewski and S. Mrdalj, “A comparison of enterprise
architecture frameworks,” Issues in Information Systems,
7(2), pp. 18-23, 2006.

[32] M. M. Kwan and P. R. Balasubramanian, “Dynamic
Workflow Management: A Framework for Modeling
Workflows.” In Proceedings of the 30th Hawaii International
Conference on System Sciences (HICSS-30), pp. 367-376,
1997.

[33] M. Klein and C. Dellarocas, “A Knowledge-Based Approach
to Handling Exceptions in Workflow Systems,” Computer
Supported Cooperative Work 9, pp. 399-412, 2000.

[34] R. Sessions, “Comparison of the top four enterprise
architecture methodologies.” 2007 URL
https://msdn.microsoft.com/en-us/library/bb466232.aspx,
2017.05.04.

[35] M. Jiménez, M. Piattini, and A. Vizcaíno, “Challenges and
improvements in distributed software development: A
systematic review,” Advances in Software Engineering, 2009
(3), pp 1-16, 2009.

[36] E. Carmel and R. Agarwal, “Tactical approaches for
alleviating distance in global software development,” IEEE
Software 18(2), pp. 22–29, 2001.

[37] D. Soni, R. L. Nord, and C. Hofmeister, “Software
architecture in industrial applications.” In Proceedings of the
17th International Conference on Software Engineering
(ICSE 1995), pp. 196-196, 1995.

[38] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr, “N
degrees of separation: multi-dimensional separation of
concerns.” In Proceedings of the 21st international
conference on Software engineering, pp. 107-119, 1999.

[39] D. Garlan and D. E. Perry, “Introduction to the special issue
on software architecture,” IEEE Transactions on Software
Engineering 21(4), pp. 269-274, 1995.

[40] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The
structure and value of modularity in software design.” In
ACM SIGSOFT Software Engineering Notes 26(5), pp. 99-
108, 2001.

[41] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant'Anna,
“From retrospect to prospect: Assessing modularity and
stability from software architecture.” In Proceedings of the
Joint Working Conference on Software Architecture &
European Conference on Software Architecture
(WICSA/ECSA 2009), pp. 269-272, 2009.

104Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

