
iMobile: A Framework to Implement Software Agents for the iOS Platform

Pedro Augusto da Silva e Souza Miranda, Andrew Diniz da Costa, Carlos José Pereira de Lucena

Laboratório de Engenharia de Software – LES
Pontifícia Universidade Católica do Rio de Janeiro

Rio de Janeiro, Brazil
email: pedro.augusto@les.inf.puc-rio.br, email: andrew@les.inf.puc-rio.br, email: lucena@inf.puc-rio.br

Abstract—Appropriate implementation of software agents
for the iOS platform able to represent their main features, such
as distribution, autonomy and pro-activity, is still an open issue.
Therefore, this paper proposes the iMobile Framework that
allows the creation of software agents for applications (apps)
made for iPhone and iPad devices. A developed scenario
demonstrates the applicability of the proposed framework,
where an app allows registration of issues identified in some
company. The main goal of the software agents is to speed up
the process of contacting people, as quickly as possible, to solve
critical issues.

Keywords-mobile computing; software agent; framework; iOS
platform.

I. INTRODUCTION

Currently, the development of complex apps for mobile
platforms (e.g., iOS and Android), which have autonomous,
pro-active and distributed entities, is common. Taking this
scenario into consideration, the use of software agents
[2][3][4][16][39][40] is expected.

In the literature, there are several proposals
[1][5][6][15][17][18][29][30] that help the development of
software agents. However, few solutions are directed to
mobile environments, such as agents being executed in
smartphones and tablets. Even with the exponential evolution
of hardware used for manufacturing, mobile device memory,
processing and disk drive space are still concerns. In most
cases, an important reason is that a mobile operating system
(OS) has very restricted policies regarding what an application
may or may not do with its memory, processor and disk drive.
This situation is different from desktop applications, where
services may run in the background until the user stops the
application, or when the OS is shut down.

One of the best-known mobile-oriented frameworks is
JADE-Leap [5]. It is an extension of the Java Agent
Development Framework (JADE) framework [6], but with a
limited feature set. JADE already offers support to the
implementation of autonomous and pro-active agents. Such
limitation of features by JADE-Leap was defined to avoid
performance issues when ran on tablets or smartphones.
Furthermore, JADE-Leap was developed in Java [9] and it
may not be used on the iOS platform.

In 2014, Apple presented a new programming language
for the iOS platform, called Swift. It came to replace the
Objective-C, the language used for many years to develop the
iOS apps. Thereafter, in 2015, a library called GameplayKit
[35] was presented to offer the collection of foundational tools
and technologies for building games. One of the facilities
provided was to simulate characters of a game to react based

on high-level goals and to react to their surroundings.
GameplayKit used the agent term to represent these
characters, however, it did not reproduce all characteristics
that represent software agents [2][3][4], such as sociability.

According to [31], Swift is a programming language that
quickly became one of the fastest growing languages in
history. Swift has been an open source since 2015. It was
widely adopted by developers and now is one of the top 10
most-searched languages on the internet [32].

Considering the growth of this language and the
complexity of developing iOS apps, approaches that help to
improve software agents for the iOS platform are expected.
Then, based on this context, this paper presents the iMobile, a
practical development framework. It allows the creation of
software agents for the iOS platform using native resources,
such as the Bonjour API [20], which helps the discovery of
devices and services published on networks. Consequently,
the agents’ development for the iOS environment will be
easier and faster with iMobile.

This paper is organized as follows: Section II describes the
related works that helped to identify which information could
and should be represented in an agent framework for the iOS
platform. In Section III, the proposed iMobile framework is
explained in detail. In Section IV, a use case scenario that
extends the iMobile framework and uses agents to speed up
the process of contacting people, as quickly as possible, in
order to solve critical issues in a company, is presented.
Finally, in Section V, the conclusions and future works are
presented.

II. RELATED WORKS

In order to propose a framework that could help to create
software agents to the iOS platform, several frameworks
offered in the literature, that allow the agents’ development,
were studied. The main works that greatly influenced our
proposal are presented below.

As mentioned in Section I, JADE-Leap [5] is an extension
of the JADE Framework [6]. It allows the use of software
agents in a variety of mobile platforms, such as Android and
MIDP (Mobile Information Device Profile) [12]. In the JADE
framework, agents inhabit containers and every JADE agent
application must have a main container, in which all
secondary agents on the system are registered. Containers are
Java processes that provide the JADE run-time and all the
necessary services for hosting and executing agents [13].

From the JADE framework, you may create software
agents that are able to trade messages with each other, change
behaviors and migrate to another container. JADE agents are

114Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Foundation for Intelligent Physical Agents (FIPA) compliant
[14], which means that they obey certain structures when they
are trading messages. These messages, called Agent
Communication Language (ACL), meet FIPA’s ACL
standards. The ACL message standard considers a protocol
that allows message exchanges between agents, even if they
are in different systems. Each ACL message has, at least, one
receiver, one language and one ontology, which are the
message context and the message content itself. More details
about that standard can be seen at [28].

JADE LEAP extends all these JADE features for a mobile
environment using the same concept of containers. In other
words, JADE LEAP, just as JADE, forces the user to have a
fixed IP server in order to make its agents communicate with
each other. Then, for years, JADE and JADE LEAP were
useful and mature agents’ frameworks, besides being excellent
standards to begin understanding how to work with software
agents. However, they were created from the Java language
and cannot be used for the iOS platform.

Another known solution analyzed was the Jadex
framework [15]. The JADE framework was developed from
the Java language and it implements the Belief, Desire and
Intent (BDI) concept [16] for the software agents. BDI stands
for:(i) Belief, (ii) Desire and (iii) Intention. Belief represents
the group of information that an agent has concerning its
environment and itself. Desire represents the agent’s wishes
and directly influences its actions to achieve its goals.
Intention represents the selected desire to be achieved by the
agent. Therefore, the intention is the momentary state of the
agent until the plan has been executed and its results analyzed.

It was very important to learn about JADE, Jadex and
implementing examples of both frameworks (for instance,
examples with until 30 agents simultaneously executing) to
better understand how a multi-agent software works and how
agents communicate between themselves.

BDI4JADE [18] is another framework that, as the name
implies, extends the JADE framework. BDI4JADE allows
JADE developers to design multi-agents systems with agents
that implement BDI architecture. The main motivation for the
BDI4JADE creation is because the JADE framework is not
Domain Specific Language (DSL), in other words, it is not
dependent like JADEX and JACK [17] on another agent
framework. The work in [18] informs that BDI4JADE, even
though based on general purpose programming languages,
limits the integration with up-to-date, available technologies
and the use of advanced features of the underlying
programming language. Therefore, BDI4JADE agents are
called BDI agents. These agents have a reasoning cycle. The
algorithm used for the implementation of BDI4JADE
reasoning cycle is presented by the work in [18]. The
reasoning cycle contains six main procedures, that involve
revising agent’s beliefs and desire management and
generation, removing agent’s undesired desires and agents’
intentions generation (selected desires within all desires and
the unselected ones are still desires, but not intentions) and

updating intentions status (working, finished, fail, etc.). For
more details of the framework, please see [16] and [18].

All the proposals mentioned are known frameworks in the
community and they allow the development of software
agents. However, none of these approaches allow the creation
of agents for the iOS platform. Moreover, considering such a
platform, to have a framework that could use native resources
would bring a set of advantages that have not been properly
exploited, such as better performance, easier understanding to
develop from the language used, in order to create new iOS
apps, and the reuse of known libraries that help to represent
agents’ concepts (e.g., communication among agents,
distribution, etc.).

In Table I, the main features of the iMobile Framework, in
comparison with other known software agent frameworks, are
presented. It is important to notice that iMobile was created to
offer support to the iOS platform and, in addition, the
framework followed recommendations offered by FIPA, such
as providing services of yellow pages to meet agents. It is also
relevant to mention that since the iMobile framework uses
Bonjour Networking services to solve network
communication between agents, there is no need for a main
container like the JADE framework. Agent services are
published in the same DNS-Zone [42]. For local network
communication, a DNS-Zone is not necessary.

TABLE I. COMPARISON OF IMOBILE WITH OTHER AGENT

FRAMEWORKS

Features
Agent Frameworks

iMob
ile

JADE/JA
DE Leap

JA
DEX

Offering multiple agent’s
behaviors

Yes Yes
Ye

s
Offering distributed

agents
Yes Yes

Ye
s

Allowing the
communication between one
or more agents

Yes Yes
Ye

s

Representing the BDI
concept

No No
Ye

s

Offering iOS support Yes No No

Offering services of
yellow pages

Yes Yes
Ye

s

III. IMOBILE FRAMEWORK

This section presents the iMobile Framework that allows
the development of software agents for the iOS platform. The
iMobile agents are able to manage the gathering and to
exchange and display information from a given iOS app.
Furthermore, the framework helps to discover agents that are
on the same network to identify rendered services and to
exchange messages.

115Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Figure 1. Use case scenario to apply the iMobile framework.

Figure 1 shows an example that illustrates the main idea
behind how iMobile may be used. In this image, there are
three iPhones connected to some network (Network X or
Y). Each iPhone has an iMobile agent that may exchange
messages with agents on the same or a different network.
For each network, there is a database with all services
offered for agents connected on the same network. Then, to
discover such available services, it is not necessary to
directly exchange messages with other agents. To discover
and publish services and exchange messages among agents,
iMobile uses an API [21] offered by Apple and which is
explained in detail on the next subsection. Therefore, the
overall communication is performed and it is not necessary
to create containers and platforms as it is to other
frameworks, such as JADE, JADE-Leap and JADEX.

In order to present how the iMobile framework was
created, an overview of the architecture is demonstrated in
subsection A. Then, in subsection B, the hot-spots and
frozen-spots [36] are explained in detail. In subsection C, a
guiding step to instantiate the framework is described.

A. Architecture Overview

Figure 2 presents the framework’s class diagram. It is
possible to realize that a software agent (Agent class) may
execute a set of behaviors (Behavior class). Two different
types of behaviors are offered by the framework: Cyclic
Behavior (CyclicBehavior class) and One-Shot Behavior
(OneShotBehavior class). The first one is a type of action
that executes in loop. On the other hand, the second
executes an action only once.

At any time, an agent may send or receive some
message (AgentMessage class) from some agent.
AgentMessage implements the NSCoding protocol [24],
which is already offered by Apple, to allow the serialization
of messages to be sent to other agents.

iMobile allows that agents, on the same network, may
exchange messages among themselves faster, aiming to
offer a polite communication solution. The technology that
helps this improved communication is the Bonjour API. It
is a solution created by Apple for the iOS platform and
which is a zero-configuration network solution [21], that
has a very important role on the design of this framework.
Zero-configuration means that you may publish services on
a network without the need of any network troubleshooting.

In order to use the Bonjour API, iMobile offers the
BonjourServer class, which is used by the agent to look for
services offered by agents (from the NSNetServiceBrowser
class) to publish its services (from the NSNetService class)
and to send and receive messages to/from other agents
(from the NSNetService class). BonjourServer applies the
Façade design pattern [37][40] to offer all the necessary
methods to agents to perform these actions. In addition,
iMobile offers a protection against object substitution
attacks, because AgentMessage class implement the
NSSecureCoding protocol [42]. If developers desire to
provide some additional treatment of the data (e.g.,
performing cryptography), they may use some native
library that is available at [43].

116Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

B. Hot-spots and Frozen-spots

Below, the hot-spots defined by iMobile and registered
by using the stereotype <<hot-spot>>, in Figure 2, are
explained in detail.

Representing a software agent (Agent Class): There

are two ways of developing an agent: (i) creating an
instance of the Agent class, and (ii) defining a new class that
extends the Agent class to represent the desired agent. Each
agent has a name, may offer a set of services and may
execute a set of behaviors.

Figure 2. Class diagram of the iMobile framework.

Behaviors executed by agents (Behavior Class): Such

class represents the behavior of an agent. Behaviors are
actions that agents may execute on an application. This class
has a method called action that, when executed, initiates the
agent's behavior. Their subclasses should have it
implemented.

Behavior executed once (OneShotBehavior Class): It

represents a generic behavior offered by the framework that
is executed only once. When its execution is finished, such
behavior is removed from the agent’s behaviors list.

Behavior executed in cycle (CyclicBehavior Class):

Another generic behavior offered by the framework. This
behavior is executed in a loop with a predetermined timer
to wait between the loops.

Next, iMobile’s frozen-spots are explained below.

Manager to use the Bonjour API (BonjourServer

Class): This class was created to access a set of features
offered by Bonjour API: (i) publication of services provided
by agents, (ii) search of services offered by other agents,
(iii) message sending and receiving to/from agents.

BonjourServer uses BSD Sockets [23] to create a listening
socket for the agent, which allows the agent to receive
messages from other agents and filter out unwanted
messages.

Messages that are sent and received by agents

(AgentMessage Class): Such class represents the
communication protocol between agents. Most properties
of the AgentMessage class are basic agent information as
name, current service, service type, sender, receiver, data
and content. The content property accepts any type of object
to be sent to another agent. These objects, that are stored in
luggage, should be instances of classes that implement the
NSCoding protocol in order to send it through the network.

C. Using iMobile

These are the main steps that should be performed to use
the iMobile framework:

1. Defining which agents will be used in the solution
to be developed. Agents may be either created
from instantiated objects using the Agent class, or
from other classes that extend such class;

2. Creating behaviors that will be executed by the
agent. For instance, such behaviors may request
services and send messages to other agents;

3. Defining which services each agent will be able to
offer;

4. Defining which type of service the agent will
search. It is necessary for the creation of each
agent to inform these service types.

IV. USE SCENARIO: ISSUE TRACK

Daily, it is common for companies to raise issues and
some of them have high priority. When such issues are
quickly solved, a lot of damage may be avoided, such as
losing money. According to [33][34], one of the top reasons
for closing companies is the bad management of how issues
are handled.

Taking this context into consideration, we implemented
an iOS app with software agents that help speed up the
process of contacting people, as quickly as possible, to solve
critical issues. First, we explain the main solution idea.
Secondly, we present in detail how the proposed app
extended the iMobile framework.

A. Main Idea

The implemented multi-agent app allows users to
register issues that occur within a company. When a
registered issue is critical and the deadline is short (e.g.,
maximum of two more days), a software agent verifies if
another user connected on the same network may solve it.
Considering that all employees use the app (iPhone was the
device used) and each one informs his/her data (e.g., name
and services that perform), a software agent is created for
them.

117Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Figure 3. Issue track scenario.

The afore mentioned scenario is illustrated in Figure 3.
Notice that six agents are registered. At a given time, two
agents are not connected to the company network. Probably,
the reason is that these registered employees are not in the
company.

As the iMobile framework was extended to create this
app, Bonjour API was inherited. Therefore, it is possible to
verify which services are registered and which agents offer
them. For instance, it considers that a Robert agent (see
Figure 3) needs someone to solve a critical issue related to
infrastructure with deadline for tomorrow. Hence, it is
important to locate a person that may solve it as soon as
possible.

In order to identify an infrastructure employee, the
Robert agent uses Bonjour to look for such employee (step
1 illustrated in Figure 3). Thereafter, Robert sends a
message to the Tony agent, which offers infrastructure
services and is connected to the same network (step 2).
When Tony receives that message, a notification is created
on his smartphone for the employee (user app) confirm that
he/she will take it. Upon performing such confirmation,
Tony sends a message to Robert (step 3). When Robert
receives this message, a notification is presented to Robert’s
user. Subsequently, when the issue is solved, Tony informs
Robert about its resolution (step 4).

When no agent is found (from the step 1), an email is
sent to those that could solve the registered issue
(considering that they are not in the company). In addition,

to allow the messages receiving from agents, at any time,
when a person arrives at the company, he/she receives a
notification requesting them to open the app. Then, even if
the app is not in use, at a given time, but has been opened in
the background, the agent will be able to receive messages
and perform some executions.

B. Extending the iMobile Framework

In Figure 4, a class diagram, with the main classes made
to extend the iMobile framework and to create the issue
track app, is presented. The yellow classes are the new
developed entities, while the others are offered from
iMobile. Below, these new classes are explained in detail.

App User (User class): When an employee of the company
uses the app for the first time, a set of data should be
informed to him/her: name, date of birth, email and
cellphone. Part of these data is taken to create a software
agent that will represent the employee.

Agent app (IssueAgent class): This class represents the
responsible agent for executing the following activities: (i)
publishing which services are offered in its creation, based
on the data informed by app user, (ii) requesting the
resolution of critical issues to other agents, and (iii) taking
or not taking it to solve these issues. Each iPhone has one
IssueAgent created to represent the app user.

118Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Figure 4. Class diagram of the Issue track scenario.

Registered issue (Issue class): It represents a registered
issue that needs to be solved. An issue has the following
data: an identification represented by an integer number,
title, its description, priority (critical, high, medium, low),
deadline that such issue needs to be solved and the service
type related to the problem.

Service offered in the company (Service class): This class
represents all the service types performed in the considered
company. Some examples of services are the following:
infrastructure, back-end development, front-end
development, prototyping and user experience. Then, each
instance of Service has a name and a description giving an
overview of its goal.

Management to persist data (DAO class): This class is
responsible for taking and saving data in a database used by
the app. In Figure 4, the main methods offered by class are
presented.

Company information (Company class): It applies the
Singleton pattern [37] and takes into consideration all of the
company’s data. Thus, it is possible to access the company
name and description, besides its issues, app user and
registered services.

Behavior which informs that an issue needs to be solved
(InformIssueToSolveBehavior class): This class
represents the behavior executed by an IssueAgent, that
requests the treatment of some issue by other agents. In
order to decide if such a request will be sent, the agent
verifies the priority of the registered issue and its deadline.
The criteria adopted by the agent to send a request is when
an issue has: (i) critical priority, or (ii) high priority with
deadline of two more days. Hence, according to the
company, critical scenarios were taken into consideration to
include an additional way to contact employees that may
solve these issues.

Behavior to inform that an agent took an issue to be
solved (NotifyIssueWasTakenBehavior class): This
behavior is executed by agents that received a request to
solve a given issue. Such agent informs the requester if it
could or could not take that issue. The reasons why an agent
may or may not accept to solve a problem are presented
below.

119Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Reasons to accept an issue:

• Employee is free to take an issue;

• Employee is working to solve an issue with
medium or low priority.

Reasons to not accept an issue:

• Employee is solving an issue with critical or
high priority and a short deadline (maximum of
two more days);

• Employee is not connected to the company
network.

When no agent accepts the requested issue, an email is

sent to all employees that offer the necessary service to
solve it.

Behavior that informs the result of an issue

resolution (NotifyResultResolutionIssueBehavior class):
Behavior executed by an agent that accepted to solve a
given issue. From this behavior, the agent notifies the result
of its resolution to the requester: solved or not with
additional information reported by the employee.

V. CONCLUSION

This paper presents the iMobile framework created from
the Swift language for the iOS platform. With iMobile,
developers will be able to speed up the creation of software
agents for the iOS. This framework used the Bonjour API
in order to help identifying which agents are or are not on
the same network and to allow the communication between
them. Bonjour is a solution that does not require the
creation of containers to enable agents to exchange
messages, as do JADE and JADEX. Before proposing
iMobile, known frameworks, that help in the development
of software agents, were studied to identify how a mobile
framework for the iOS platform could be created and
offered.

In order to demonstrate the use of the proposed
framework, we have used it to help solving issues that
occur in companies. Agents are responsible for identifying
these issues’ priorities and deadlines, in order to contact
employees that are in the company, and to quickly solve
them. This scenario illustrates the use of iMobile agents
exchanging messages from Bonjour and executing a set of
defined behaviors.

Nowadays, we have two master students of Informatics
at PUC-Rio who used the proposed framework. Moreover,
a set of ten people, with previous experience developing
multi-agent systems, watched a presentation of the iMobile
related to its idea, architecture and examples of case
studies. From this, we have decided to organize an
interview with such people to receive feedbacks of the
framework. One of them was that the framework was easy
to be extended to create iOS apps. In addition, they gave a
set of information that allowed us to achieve the version
presented in this paper, such as (i) offering better names for
some created classes and methods, and (ii) continuing to

offer a short number of classes to create a multi-agent
system to the iOS platform.

Currently, we are in the process of analyzing how we
may include other important concepts related to the multi-
agent paradigm in the framework, such as: offering ways
to develop self-adaptive agents, including the concept of
Belief-Desire-Intention (BDI) in the framework, bringing
more cognition to the agents and providing ways to test the
created agents. These three ideas are known research lines
investigated in other works. However, considering the
mobile scenario, several issues are open and deserve more
attention.

REFERENCES

[1] G. Butler, Object-Oriented Frameworks, Available at:
http://users.encs.concordia.ca/~gregb/home/PDF/ecoop-tutorial.pdf,
[retrieved: June, 2017].

[2] N. R. Jennings and M. Wooldridge, “A Methodology for
Agent-Oriented Analysis and Design”, In Proc. Of the third annual
conference on Autonomous Agents (AAMAS 1999), Seattle, WA, USA,
pp. 69-76, 1999.

[3] M. Wooldridge and N. R. Jennings and D. Kinny “The Gaia
Methodology for Agent-Oriented Analysis and Design”, Autonomous
Agents and Multi-Agent Systems, vol. 3, issue 3, Sep. 2000, pp. 285-312,
doi: 10.1023/A:1010071910869.

[4] G. Boella, L. Sauro, and L. van der Torre. “Power and
Dependence Relations In Groups of Agents”, In Proceedings of the
conference on intelligent agent technology, (IAT 2004), Beijing, China,
China, Sep. 2004, doi: 10.1109/IAT.2004.1342951.

[5] JADE Leap. Available at: http://jade.tilab.com//, [retrieved:
June, 2017].

[6] JADE Framework. Available at: http://jade.tilab.com//,
[retrieved: June, 2017].

[7] Android. Available at: www.android.com/, [retrieved: June,
2017].

[8] IOS, Available at: https://www.apple.com/ios/, [retrieved:
June, 2017].

[9] Java. Available at: http://www.java.com/pt_BR/, [retrieved:
June, 2017].

[10] Mobile Application Lifecycle. Available at:
https://developer.apple.com/library/content/documentation/iPhone/Conc
eptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCyc
le.html, [retrieved: June, 2017].

[11] I. Podnar, M. Hauswirth, and M. Jazayeri. Mobile Push:
“Delivering content to mobile users”, In Proceedings of International
Conference on Distributed Computing Systems Workshops, (ICDCS
2002), IEEE, Nov. 2002, pp. 563-568, doi:
10.1109/ICDCSW.2002.1030826.

[12] G. Eric. What is Java 2 Micro Edition, Available at:
http://www.developer.com/ws/j2me/article.php/1378921/What-is-Java-
2-Micro-Edition.htm, [retrieved: July, 2017].

[13] Y. Weihong and Y. Chen, “The Development of Jade Agent
for the Android Mobile Phones”, Proceedings of the 2012 International
Conference on Information Technology and Software Engineering,
(ICITSE 2012), Springer Press, Nov. 2012, pp. 215-222, doi:
10.1007/978-3-642-34531-9_23.

[14] FIPA. Available at: www.fipa.org/, [retrieved: June, 2017].

[15] JADEX. Available at: https://www.activecomponents.org/,
[retrieved: June, 2017].

[16] M. Wooldridge and N. R. Jennings, “Intelligent agents: theory
and practice”, The Knowledge Engineering Review (KER 1995),
Cambridge Press, July 2009, pp. 115–152, doi:
10.1017/S0269888900008122.

120Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

http://users.encs.concordia.ca/~gregb/home/PDF/ecoop-tutorial.pdf
http://jade.tilab.com/
http://jade.tilab.com/
http://www.android.com/
https://www.apple.com/ios/
http://www.java.com/pt_BR/
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/TheAppLifeCycle/TheAppLifeCycle.html
http://www.developer.com/ws/j2me/article.php/1378921/What-is-Java-2-Micro-Edition.htm
http://www.developer.com/ws/j2me/article.php/1378921/What-is-Java-2-Micro-Edition.htm
http://www.fipa.org/
https://www.activecomponents.org/

[17] JACK. Available at: http://aosgrp.com/products/jack/,
[retrieved: June, 2017].

[18] I. Nunes, C. J. P. Lucena, and M. Luck, “BDI4JADE: a BDI
layer on top of JADE, Monografias em Ciência da Computação”, PUC-
Rio, No. 15/10, Nov. 2010.

[19] R. P. Bonasso, R. J. Firby, E. Gat and et. al, “Experiences with
an architecture for intelligent reactive agents”, Journal of Experimental &
Theoretical Artificial Intelligence (TAI 1997), Taylor&Francis, Nov.
2010, vol. 9, issue 2-3, pp. 237-256, doi: 10.1080/095281397147103.

[20] Bonjour API. Available at:
https://www.apple.com/support/bonjour/, [retrieved: June, 2017].

[21] D. H. Steinberg and S. Cheshire. Zero Configuration
Networking: The Definitive Guide, O’Reilly Media, p. 53, 2005.

[22] NSThread. Available at:
https://developer.apple.com/reference/foundation/thread, [retrieved:
June, 2017].

[23] GCD. Available at: https://developer.apple.com/reference/dispatch,
[retrieved: June, 2017].

[23] J. Frost. BSD Sockets: A Quick And Dirty Primer, 1991.

[25] NSCoding. Available at:
https://developer.apple.com/reference/foundation/nscoding, [retrieved:
June, 2017].

[26] NSObject. Available at:
https://developer.apple.com/reference/objectivec/nsobject, [retrieved:
June, 2017].

[27] UIApplication. Available at:
https://developer.apple.com/reference/uikit/uiapplication, [retrieved:
June, 2017].

[28] UIDevice. Available at:
https://developer.apple.com/reference/uikit/uidevice, [retrieved: June,
2017].

[29] ACL Message. Available at:
http://www.fipa.org/specs/fipa00061/, [retrieved: June, 2017].

[30] A. S. Tanenbaum and V. S. Maarten, Distributed systems:
principles and paradigms. New Jersey: Pearson Education. Inc, 2007.
p.669

[31] B. A. De Maria, V. T. Silva, C. J. P. Lucena, and R. Choren,
"VisualAgent: A Software Development Environment for Multi-Agent
Systems", In Proc. of the 19th Brazilian Symposium on Software
Engineering (SBES 2005), Tool Track, Uberlândia, MG, Brazil, 2005.

[32] Swift Language. Svailable at: https://swift.org, [retrieved:
June, 2017].

[33] PYPL PopularitY of Programming Language. Available at:
https://pypl.github.io/PYPL.html, [retrieved: June, 2017].

[34] Top Reasons Businesses Close Down. Available at:
http://smallbusiness.chron.com/top-reasons-businesses-close-down-
20466.html, [retrieved: June, 2017].

[35] Common Reasons for Closing a Company. Available at:
http://www.closeaeuropeancompany.com/common-reasons-for-closing-
a-company.html, [retrieved: June, 2017].

[36] GameplayKit. Available at:
https://developer.apple.com/library/content/documentation/General/Con
ceptual/GameplayKit_Guide/, [retrieved: June, 2017].

[37] M. E. Fayad, D. C. Schmidt and R. E. Johnson, Building
Application Frameworks: Object-Oriented Foundations of Framework
Design (Hardcover),Wiley publisher, first edition ISBN-10: 0471248754,
1999.

[38] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software, 1994.

[39] M. Ivanovic and Z. Budimac, “Software Agents: state-of-the-
art and possible applications”, In Proceedigns of the 13th International
Conference on Computer Systems and Technologies, (CompSysTech
2012), ACM Digital Library, June 2012, pp. 11-22, doi:
10.1145/2383276.2383279.

[40] M. Żytniewski and A. Sołtysik, A., Sołtysik-Piorunkiewicz
and B. Kopka, “Modelling of Software Agents in Knowledge-Based
Organisations. Analysis of Proposed Research Tools”, Springer, Sep.
2015, pp. 91-108, 2015.

[41] J. T. C. Tan and T. Inamura, “Extending chatterbot system into
multimodal interaction framework with embodied contextual
understanding”, In International Conference on Human-Robot Interaction
(HRI) (ACM/IEEE 2012), IEEE Press, Mar. 2012, pp. 251-252, doi:
10.1145/2157689.2157780.

[42] DNS Zone, Available at: http://www.dns-sd.org/, [retrieved:
July 2017].

[42] NSSecureCoding, Available at:
https://developer.apple.com/documentation/foundation/nssecurecoding,
[retrieved: July 2017].

[43] Crypto Swift, Available at:
http://cocoadocs.org/docsets/CryptoSwift/0.5.2, [retrieved: July 2017].

121Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

http://aosgrp.com/products/jack/
https://www.apple.com/support/bonjour/
https://developer.apple.com/reference/foundation/thread
https://developer.apple.com/reference/dispatch
https://developer.apple.com/reference/foundation/nscoding
https://developer.apple.com/reference/objectivec/nsobject
https://developer.apple.com/reference/uikit/uiapplication
https://developer.apple.com/reference/uikit/uidevice
http://www.fipa.org/specs/fipa00061/
https://swift.org/
https://pypl.github.io/PYPL.html
http://smallbusiness.chron.com/top-reasons-businesses-close-down-20466.html
http://smallbusiness.chron.com/top-reasons-businesses-close-down-20466.html
http://www.closeaeuropeancompany.com/common-reasons-for-closing-a-company.html
http://www.closeaeuropeancompany.com/common-reasons-for-closing-a-company.html

