
Software Architecture Modeling for Legacy Health Information Systems Using

Polyglot Persistence and Archetypes

André Magno Costa de Araújo1,*, Valéria Cesário Times1

and Marcus Urbano da Silva1
1 Center for Informatics, Federal University of Pernambuco,

Recife, Brazil

e-mail:{amca,vct,mus}@cin.ufpe.br

Carlos Andrew Costa Bezerra2
2 Software Engineering Department, Recife Center for

Advanced Studies and Systems, CESAR

Recife, Brazil

e-mail: andrew@r2asistemas.com.br

Abstract— Electronic Health Record (EHR) data management

in a Health Information System (HIS) has traditionally been

done using a single database model. Due to the heterogeneity of

such data, this practice increases the complexity in HIS

development. This article presents a software architecture for a

legacy HIS, which improves data management by using polyglot

persistence to decentralize data storage into heterogeneous

databases (i.e., relational and NoSQL). In addition, we have

developed a tool to dynamically create NoSQL data schemas

and Graphical User Interfaces (GUI) using a health informatics

standard called archetype. The tool aims to build new

functionalities in a legacy HIS using archetype-based EHR

specifications imported and customized by the health

professionals, thus reducing their dependence on a software

team. We validated the proposed solution in a local institution,

modeling a new software architecture, creating a NoSQL data

schema for heterogeneous data storage and GUIs using

archetypes.

Keywords-Archetypes; Database related software; Software

Architecture; E-health related software.

I. INTRODUCTION

Health information systems (HIS) are normally built

using a single data model to store the various data types (i.e.,

structured and unstructured data) that make up the Electronic

Health Record (EHR) [1]. The variety of data types is

justified by the large number of subsystems in the HIS, such

as the text from a medical prescription, hierarchical data of a

laboratory exam or images used in diagnostic.
 Because data heterogeneity often requires the

development of solutions that go beyond the capability of a
given database model [2], the use of a single data model is
limiting at best. For example, representing hierarchical data
structures in a relational database requires complex data
retrieval sentences that can compromise the performance of
an application. In addition, the creation of programming
routines to ensure data referential integrity in NoSQL models
increases the complexity in HIS development.

Another recurring problem in HIS development is the

lack of uniformity in data modeling for attributes that define

the EHR and terminologies that give a semantic meaning to

clinical data [3][4]. In this context, it is common for software

companies to use their own standards when modeling EHR

requirements, which in turn hinders data exchange between

health applications [5].

To address the issues posed by the use of a single data

model and the heterogeneity of EHR data, the concepts of

polyglot persistence and archetypes are used in this paper.

Polyglot persistence is the use of different data models to deal

with different storage needs [6], such as the use of a relational

database to store structured data and NoSQL for unstructured

and frequently changing data. An archetype is a health

informatics standard proposed by the openEHR foundation to

standardize EHR data attributes, terminologies and

constraints [7]. Among other advantages, it allows health

professionals to specify EHR requirements and seamlessly

share data with other health sectors and organizations [8].
This paper specifies a software architecture for a legacy

HIS applying the concept of polyglot persistence to improve
data management in the healthcare sector. In addition, we
have developed a tool to dynamically create NoSQL data
schemas and Graphical User Interfaces (GUI) using
archetypes. The tool aims to build new functionalities in a
legacy HIS using archetype-based EHR specifications made
by health professionals, thus reducing their dependence on a
software team. To validate the solution proposed herein, we
modeled a new software architecture for a legacy HIS and
evaluated its dynamic generation of NoSQL data schemas and
GUIs.

The sections of this article are organized as follows:
Section II contextualizes the basic concepts used in this work,
while Section III presents and discusses the proposed software
architecture for health applications. Section IV demonstrates
the generation of data schemas and GUI using the proposed
tool, while the final considerations and future work are found
in Section V.

II. BASIC CONCEPTS AND RELATED WORKS

This section contextualizes the basic concepts used in the

development of this work and provides an analysis of main

related works.

A. Archetypes

The openEHR software architecture for HIS aims to

develop an open and interoperable computational platform

for the healthcare sector [9]. It separates generic EHR

structural information and patients’ demographics from the

constraints and standards associated with clinical data. An

archetype consists of a computational expression based on a

reference model and is represented by domain constraints and

terminologies [9] (e.g., data attributes of a blood test).

122Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Templates are structures used to group archetypes and allow

their use in a particular context of application. They are often

associated with a graphical user interface.

Dual modeling is the separation of information and

knowledge in HIS architecture. In the proposed approach, the

components responsible for modeling EHR clinical and

demographic data are specified through data structures

composed of data types, constraints and terminologies.
In an archetype, the specification of data attributes is

achieved through data entry builders named generic data
structures. Such structures allow the representation of EHR
heterogeneous data through the following types:
ITEM_SINGLE, ITEM_LIST, ITEM_TREE and
ITEM_TABLE.

ITEM_SINGLE models a single data attribute, such as a
patient’s weight, height and age. ITEM_LIST groups a set of
attributes in a list, such as a patient’s address. ITEM_TREE
specifies a hierarchical data structure that is logically
represented as a tree. It can be used, for instance, to model a
patient’s physical or neurological evaluations. Finally,
ITEM_TABLE models data elements by using columns for
field definition and rows for field value, respectively. Each
attribute of a structure is characterized by a type of data and
can have a related set of associated domain restrictions and
terminologies. The terminologies give semantic meaning to
clinical data and can be represented as a set of health terms
defined by a professional.

B. Polyglot Persistence

Polyglot Persistence is the use of different data storage

approaches to deal with different storage types and needs [6].

The core idea is to store structured data through a relational

approach, while semi-structured or unstructured data is stored

in NoSQL data models. Figure 1 shows how the different

types of healthcare data can be stored using polyglot

persistence.

Figure 1. Example of multi-model storage in the healthcare sector.

As shown in Figure 1, polyglot persistence offers different

data models such as Relational, Key-value store, Document

store and Graph Store, among others.

A relational database is a set of tables containing data

arranged in predefined categories. Each table contains one or

more data categories in columns. Each row contains a unique

instance of data for the categories defined by the columns

[10].

NoSQL data models differ from more traditional

approaches and offer better support for non-conventional

data storage and flexibility when creating or altering a data

schema [11]. The key-value store saves information in a table

with rows, keys for description and a value field. The

document store creates document sets which are collections

of fields to be displayed as a single element, a list or nested

documents. A graph store uses nodes, relationships and

properties to store information. The node represents the

vertices in a graph, the relationships, its edges and the

properties, the attributes.

C. Related Works and Motivation

Polyglot persistence has been applied in a variety of
applications, such as IBM’s auto scaling PaaS architecture
[12], source-code-based data schema identification tools [13]
and the re-engineering of legacy systems for heterogeneous
databases [6]. To minimize the rigidity caused by relational
data schema and provide support to the continuous data
requirement changes which commonly occur in legacy HIS,
Prasad and Sha [14] specify an architecture and a HIS
prototype that allows polyglot persistence and improves
health data management in a legacy application. Similarly,
Kaur and Rani [6] specify a polyglot storage architecture to
store structured data in a relational database (PostgreSQL),
while two NoSQL databases (MongoDB and Neo4j) store
semi-structured data such as laboratorial exams and medicine
prescriptions. Nevertheless, neither solutions use archetypes
to standardize EHR data attributes and terminologies.

Recent studies based on openEHR specifications include

EHR construction using and customizing archetypes [15],

Computer-Aided Software Engineering (CASE) development

tools for data schema creation [16] and a study on

development patterns for healthcare computing [17].

However, the use openEHR archetypes to build

heterogeneous data schema, store and standardize EHR data

is an open issue found in the state-of-art.

III. PROPOSED SOLUTION

This section discusses the main problems found in legacy
HIS management, describes the proposed software
architecture using polyglot persistence and how GUIs and
data schemas are dynamically generated using archetypes.

A. Legagy Health Information System

Before implementing the proposed solution, we carried

out field observation in a local health institution located in

northeastern Brazil, where patient care activities are registered

in a HIS, including hospitalization, prescription records and

laboratory exams. To maintain and develop new HIS

functionalities, the institution has a team of eight

programmers.

123Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Analyzing HIS implementations carried out in the last 12

months, we found that most requests were related to patient

care functions such as prescription, medical history, test

results, reports, etc. Meanwhile, structured data such as

supply requests, financial and management requirements had

suffered few alterations in the same period.

As shown in Figure 2, the legacy HIS architecture is

known as Three-Tier. The client layer is responsible for

designing the GUI of each feature, while the business logic

layer groups and organizes all the application source code.

The database access layer contains the classes that perform

data persistence in the DBMS. For application development

and maintenance, the following technologies are used: Oracle

11g relational database for data storage and Microsoft

Asp.Net C# for GUI generation and source code

implementation.

Figure 2. Legacy software architecture

The software architecture illustrated in Figure 2

represents the reality of several HISs in Brazil. In this

scenario, two important problems arise: EHR data

heterogeneity is represented in single data model and the

reliance on a team of programmers for development and

maintenance.

B. Modeling a New Software Architecture

The main motivation for the proposed solution is to

improve data management by providing a software

architecture which uses polyglot persistence to store EHR

data in heterogeneous databases and openEHR archetypes to

dynamically build HIS features.

Considering the scenario described in Section III-A, we

used the following approach in designing the proposed

software architecture; structured data which is rarely altered

is stored in a relational database, while constantly changing

data which requires a flexible data schema is stored in a

NoSQL database (Figure 3). We developed a tool capable of

reading archetypes to generate new functionalities because

their very purpose is to enable health professionals to specify

EHR requirements, thus minimizing their dependence on

programmers.

Figure 3. A new software architecture using polyglot Ppersistence and

archetypes

As shown in Figure 3, we maintained the three-tier

architecture (client, business logic and database) but

decentralized EHR storage using two database models

(relational and NoSQL). Through a REST API, we extracted

data attributes, terminologies and constraints from archetypes

and generated GUIs and data schemas at runtime. Because

the GUIs generated by our tool use the same web-based

technology as the legacy HIS, we inserted the GUIs into the

HIS using frames.

Figure 4. Main features of the developed tool

Figure 4 shows the main functionalities of the tool

proposed in this article, while Figure 5 depicts a use case with

124Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

the following features: i) archetype reading, ii) archetype

element selection for GUI and data schema generation, and

iii) GUI integration into the legacy application.

Figure 5. Use case of the developed tool

The developed tool allows one to import and map the

archetypes that will be used to generate GUI and data schema.

When importing an archetype, the tool enable the user to

choose which elements will be part of the data schema and

manage the GUI elements by adding, removing or disabling

fields. Such elements can be modified at a later time. In this

case, the tool will automatically extend the database schema

created.

C. Graphical User Interface and Data Schema Generation

The Generator component shown in Figure 3 extracts

from the imported archetype the attributes that define the

EHR, the health care terminologies and vocabulary that give

a semantic meaning to the clinical data, as well as constraints

specified in the attributes.

Figure 6. A REST API Example

With the extracted elements, the REST API executes the

following tasks: i) transform data attributes (i.e., text, ordinal,

boolean, count, quantity, date and time) into data entry fields

in the GUI, ii) use constraints extracted from archetypes as

data entry validation mechanisms (e.g., range of values, data

type constraints), and iii) provide the terminologies extracted

from archetypes to give a semantic meaning to their

respective GUI fields. As the Slot type does not represent a

data entry attribute in an archetype, the tool did not consider

this data type to generate GUI. Figure 6 shows in JSON

format the elements extracted from archetypes in the REST

API.

Using the extracted elements from archetypes, the NoSQL

data schema generation is performed as follows: A routine

creates a document database and a set of collections to

separately store the data attributes, terminologies and

constraints. It then inserts archetype elements in their

respective collections.

A loop scans the list of archetype elements and adds the

code, description and data type in the attribute collection. To

maintain the relationship between elements, attribute

reference and constraint description codes are stored in the

constraint collection. Finally, in case the data attribute has

one or more terminologies, the attribute reference code is

stored in its collection along with the list of terminologies

found.

IV. RESULTS

In this section, we show GUI and data schema generation

using archetypes. The tool was installed on Microsoft’s

Azure cloud solution and an ArangoDB database was used to

generate the data schema exemplified in this evaluation. Both

archetypes used in this example are shown in Figure 7 and

are available in the openEHR repository [18].

Figure 7. Family history Archetype

125Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

The family history archetype models information about

significant health-related problems in genetic and non-

genetic family members, both alive and deceased. The blood

pressure archetype describes systemic arterial blood pressure

from any measurement method or physical location.

In order to generate the GUIs and data schema, we import

the two archetypes. The GUI generated from the family

history archetype can be seen in Figure 8.

Figure 8. GUI generated from the family history archetype

The tool uses the same elements extracted from the

archetype (i.e., data attributes, terminologies, and

constraints) to generate both the NoSQL data schema and the

GUI. In addition, each generated GUI provides resources for

the end user to insert, update, delete, and query data.

Figure 9. Data schema generated using the family history archetype

Figure 9 shows a data set stored in the database created

by the tool. The data entered in the GUI is stored into the

database by a REST API. GUI components can be enabled

or disabled even when the GUI is in use in the HIS, triggering

the data schema to dynamically change.

V. CONCLUSION AND FUTURE WORKS

In this paper, we presented a software architecture to

improve Electronic Health Record data management in a

legacy Health Information System using polyglot persistence

to decentralize its data storage into two database models (i.e.,

relational and NoSQL). Using a developed tool, we extract

attributes, terminologies and constraints from archetypes and

use them to generate a Graphical User Interface and data

schemas at runtime. The use of archetypes allows users to

create new HIS functionalities without the need of a software

development team.

In this paper, we limited the scope of research to data

schema and GUIs generation. A forthcoming work will

address privacy, performance and security issues by

presenting an algorithm to encrypt EHR data on a cloud

service or local storage. In addition, we intend to implement

a Health Level 7 (HL7) messages system to exchange data

between health applications.

ACKNOWLEDGMENT

This work was partially supported by Fundação de

Amparo à Ciência e Tecnologia do Estado de Pernambuco

(FACEPE), under the grants APQ-0173-1.03/15 and IBPG-

0809-1.03/13.

REFERENCES

[1] V. Dinu and P. Nadkarni, “Guidelines for the Effective Use of
Entity-Attribute-Value Modeling for Biomedical Databases,”
International Journal of Medical Informatics, pp. 769-779,
2007.

[2] C. C. Martínez, T. M. Menárguez, B. J. T. Fernández, and J. A.
Maldonado, “A model-driven approach for representing
clinical archetypes for Semantic Web environments,” Journal
of Biomedical Informatics, pp.150–164, 2009.

[3] S. Garde, E. Hovenga, J. Buck, and P. Knaup, “Expressing
clinical data sets with openEHR archetypes: A solid basis for
ubiquitous computing,” International Journal of Medical
Informatics, pp. 334–341, 2007.

[4] B. Bernd, “Advances and Secure Architectural EHR
Approaches,” International Journal of Medical informatics, pp.
185-190, 2006.

[5] K. Bernstein , R. M. Bruun, S. Vingtoft, S. K. Andersen, and
C. Nøhr, “ Modelling and implementing electronic health
records in Denmark,” International Journal of Medical
Informatic, pp. 213-220, 2005.

[6] K. Kaur and R. Rani, “Managing Data in Healthcare
Information Systems: Many Models, One Solution,” IEEE
Computer Society, pp. 52-59, 2015.

[7] J. Buck, S. Garde, C. D. Kohl, and G. P. Knaup, “Towards a
comprehensive electronic patient record to support an
innovative individual care concept for premature infants using
the openEHR approach,” International Journal of Medical
Informatics, pp. 521-531, 2009.

[8] L. Lezcano, A. S. Miguel, and S. C. Rodríguez, “ Integrating
reasoning and clinical archetypes using OWL ontologies and

126Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

SWRL rules,” Journal of Biomedical Informatics, pp.1-11,
2010.

[9] T. Beale, “Archetypes: Constraint-based domain models for
future-proof information systems, ” Eleventh OOPSLA
Workshop on Behavioral Semantics: Serving the Customer, pp.
16-32, 2002

[10] R. Elmasri and S.B. Navathe, Fundamentals of Database
Systems, Addison-Wesley, 6 ed., 1994.

[11] K. k. Lee, W. Tangb, and K. Choia, “Alternatives to relational
database: Comparison of NoSQL and XML approaches for
clinical data storage,” Computer Methods and Programs in
Biomedicine, pp. 99-109, 2013.

[12] S. R. Seelam, P. Dettori, P. Westerink, and B. B. Yang,
“Polyglot Application Auto Scaling Service for Platform As A
Service Cloud,” IEEE International Conference on Cloud
Engineering, pp. 84-91, 2015.

[13] M. Ellison, R. Calinescu, and R. Paige, “Re-engineering the
Database Layer of Legacy Applications for Scalable Cloud
Deployment,” IEEE/ACM 7th International Conference on
Utility and Cloud Computing, pp. 976-979, 2014.

[14] S. Prasad and N. Sha, “NextGen Data Persistence Pattern in
Healthcare: Polyglot Persistence,” Fourth International
Conference on Computing, Communications and Networking
Technologies, pp. 1-8, 2013.

[15] M. B. Späth and J. Grimson, “Applying the archetype
approach to the database of a biobank information management
system,” International Journal of Medical Informatics, pp. 1-
22, 2010.

[16] D. Georg, C. Judith, and R. Christoph, “Towards plug-and-play
integration of archetypes into legacy electronic health record
systems: the ArchiMed experience,” BMC Medical
Informatics and Decision Making, pp. 1-12, 2013.

[17] E. Marco, A.Thomas, R. Jorg, D. Asuman, and L. Gokce, “A
Survey and Analysis of Electronic Healthcare Record
Standards,” ACM Computing Surveys, pp. 277–315, 2005.

[18] Clinical Knowledge Manager. Available from:
http://openehr.org/ckm/ 2017.08.10.

127Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

http://openehr.org/ckm/

