
Evaluating Enterprise Resource Planning Analysis Patterns using Normalized

Systems Theory

Ornchanok Chongsombut and Jan Verelst

Department of Management Information Systems

University of Antwerp

Antwerp, Belgium

e-mail: ornchanok.chongsombut, jan.verelst@uantwerp.be

Abstract— A dramatically increasing competition in business

environment has brought a new characteristic of enterprise

information systems called “evolvability”. Its on-going changes

significantly impact the way information systems are being

analysed and designed in practice. Based on Normalized

Systems theory, information systems should be designed in 1-1

modular structure to be free from so-called combinatorial

effects. Combinatorial effects are one of the biggest obstacles to

implementing evolvability of information systems.

Combinatorial effects actually occur when a change has a

ripple effect on the information system size. Hence,

information systems should be designed to minimize

combinatorial effects in order to enhance the evolvability of

software. Moreover, Normalized Systems theory provides an

important practical way of developing evolvable information

systems, even huge application systems for organizations. The

purpose of the paper is to present an analysis of the analysis

patterns of the well-known Microsoft Dynamics CRM 2016

adhering to the design patterns of Normalized Systems theory.

Additionally, the paper shows the evaluation of the Enterprise

Resource Planning (ERP) analysis patterns from an

evolvability point of view and demonstrate both conformance

with Normalized Systems theory and violations against it.

Keywords- Normalized Systems; Evolvability; ERP; Analysis

Patterns; Microsoft Dynamics CRM

I. INTRODUCTION

At present, one of the most challenging aspects of
designing enterprise information systems is evolvability.
Currently, organizations are faced with rapid changes in
business environments such as markets, stakeholders,
technologies, and so on. Consequently, a high level of
evolvability is becoming a highly important issue for
software engineering [1][2].

In order to sustain its growth, an organization must deal
effectively with all stake-holders. Moreover, the
organization should have an information system that collects
as much data as possible related to the organization and
provides accurate and valuable information about these
stakeholders. The information system should be designed to
retrieve information in a timely manner for effective decision
making and to enhance the overall performance of business
operations. Accordingly, ERP systems have become the most
important part of enterprises’ information systems. Thus, the
ERP is generally considered as an integrated business
process package [3][4]. However, ERP systems are costly

and time-consuming to develop. Moreover, ERP systems
have extremely complicated structures, and therefore, they
are not easy to implement. Due to both the complexity of
ERP systems and organizations' requirement for customized
solutions to serve their business objectives, ERP systems
should be evolvable. Furthermore, organizations need to be
able to respond effectively to their business environment
changes in order to maintain a competitive advantage [2][5].

There are a number of products in the ERP market
available as both open source and commercial packages. In
fact, businesses usually choose standard ERP solutions such
as Microsoft Dynamics, SAP, Oracle, Siebel, and PeopleSoft
[3]. However, the functionalities of all ERP packages can be
changed to meet changing business processes. Therefore, the
evolvability of ERP customized solutions has been becoming
important in developing ERP systems in order to reduce the
cost of maintenance. Here, evolvability means software
should be easy to change over time [2][5]-[9].

Based on the stability concept from system theory, a
bounded input function should result in bounded output

functions, even as T→∞ . Stability has been applied to

Normalized Systems theory, which clarifies how to develop
information systems to maximize evolvability [2][5]-[7][9]-
[11]. Certainly, information systems should be designed to
be able to cope with a set of anticipated changes to increase
the level of evolvability. According to the Law of Increasing
proposed by Lehman [12], information systems change as
time goes by and their structure becomes increasingly
complex. It implies that information systems are also faced
with the ever increasing size and complexity of their
structure and functionality [2][7]. To approach these issues,
modularity has been suggested dividing a complicated
system into subsystems and coping with the evolvability
requirement by allowing the modules to change
independently [2][7][13]. However, coupling between
modules is the biggest obstacle to evolvable information
systems. Coupling relates to the possibility of a change in
one module affecting another module. Regarding
Normalized Systems theory, a practical guideline for
devising evolvable modularity has been provided
[2][7][11][13]. Indeed, Normalized Systems theory aims to
facilitate the development of highly evolvable information
systems [2][5][6][9]-[11][13][14]. To ensure the evolvability
of information systems that adhere to Normalized Systems
theory, it has been argued that information systems should be
developed without combinatorial effects. Combinatorial

128Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

effects occur when the impact of a change depends on the
size of the information system; in other words, they have a
ripple effect on the entire information systems. To increase
the evolvability of information systems, these combinatorial
effects should be minimized. To simplify the way to
eliminate combinatorial effects, four theorems and five
elements have been established in Normalized Systems
theory (this will be discussed fully in Section 2). To date, a
number of studies have already been done on Normalized
Systems theory and implemented in several software projects
[2][5][6][8][9][11][13]-[17]. Nevertheless, the analysis
pattern of ERP packages applying Normalized Systems
theory has a number of limitations applying Normalized
Systems theory.

In the paper, we analysed the partial analysis patterns of
the well-known Microsoft Dynamics CRM 2016 adhering to
the design patterns of Normalized Systems theory.
Additionally, the paper evaluates the ERP analysis patterns
from an evolvability point of view and demonstrates
conformance with Normalized Systems theory and violations
against it.

The remainder of the paper is structured as follows. We
start in Section 2 with some works related to our study. In
Section 3, the Normalized Systems theory is discussed,
emphasizing the design patterns of Normalized Systems
theory. In Section 4, the partial analysis patterns of ERP
package are analysed, by focusing on conformance and
possible violations with respect to Normalized Systems
theory. Finally, we provide the final conclusions, limitations
and suggestions for future research.

II. RELATED WORK

In this section, some related works on creating evolvable
IT artefacts based on Normalized Systems theory and the
evaluation of ERPs’ reference model will be discussed
briefly.

A. Creating Evolvable IT Artefacts Adhering to

Normalized Systems Theory

Normalized Systems theory has recently proposed a
framework for developing evolvable modularity [18]. To
create the evolvability of information systems, they should
not only support current requirements, but also future
requirements [9]. Normalized Systems theory suggested that
evolvable information systems should be free from
combinatorial effects [2][11]. Oorts et al., showed how the
Normalized Systems theory could be applied to develop
evolvable software and presented the practical advantages of
Normalized Systems theory using a case study [16][19].
Additionally, Op’t Land et al., conducted the research to
evaluate the possibilities of developing information systems
based on Normalized Systems theory. This consequence was
consistent with previous findings [2][16][19][20]. They
argued that the total development and maintenance time
were significantly reduced from other application
developments by using NS expander [2][16][19][20].

The conformance and violations to Normalized Systems
principles of IT artefacts such as source code, business
processes workflow and so on have been investigated [18].

Similarly, Vanhoof et al., analysed GAAP Reporting in
Accounting area to list both conformance with Normalized
Systems theory and violations against its principle [8].
Furthermore, Normalized Systems theory has suggested that
its theorems and elements lead to high evolvability of
information systems [2][5][6][8][9][14][16][18]-[20].

B. The Evaluation of ERP Packages

The well-known SAP Reference Model was analysed
adhering to Normalized Systems theory principles. Some
indications were found that seem to reflect Normalized
Systems theorems. Moreover, there were some processes of
the SAP Reference Model seem to be unrelated to the
Normalized Systems theory principles [6]. Mendling et al.,
stated that there are some error probabilities in enterprise
models [21][23]. Additionally, they are usually concealed.
Therefore, they evaluated the SAP Reference Model using a
verification tool based on Petri net to explore the errors in
SAP [21]. The 600 processes of SAP Reference Model were
analysed. Consequently, several errors in SAP Reference
Model were found [21][23].

III. NORMALIZED SYSTEMS THEORY

Normalized Systems theory provides a practical way of
developing evolvable information systems through the so-
called pattern expansion of software elements [19].

A. Normalized Systems Theorems

To guarantee high evolvability of information systems,
Normalized Systems theory proposes four theorems [10].
Furthermore, how the four Normalized Systems theorems are
manifested in a practical way is shown in Table I.

TABLE I. NORMALIZED SYSTEMS FOUR THEOREMS IN PRACTICE [18]

Normalized Systems

Theorems

The practical way of developing

information systems
Separation of Concerns • Multi-tier architectures

separating presentation logic,

application or business logic,

database logic, etcetera

Data Version Transparency • Polymorphism in object-
orientation

• Wrapper functions

Action Version Transparency • XML-based technology (e.g.,

for web services)

• Information hiding in object-

orientation

Separation of States • Asynchronous communication
systems

• Stateful workflow systems

B. Normalized Systems Elements

Five expandable elements were proposed to ensure the
evolvability of Normalized Systems applications. The
internal structure of these five elements is described by
Normalized Systems design patterns such as data elements,
action elements, work-flow elements, connector elements,
trigger elements [6][19][16].

129Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

IV. ANALYSING THE PARTIAL ANALYSIS PATTERNS OF

THE ERP PACKAGE

In this section, we examine the Microsoft Dynamics
CRM 2016 from an evolvability point of view and
demonstrate both conformance with Normalized Systems
theory and violations against it.

A. Indications towards of conformance with Normalized

Systems principles

Here, our aim is to examine conformance between the
model of Microsoft Dynamics CRM and Normalized
Systems principles.

Based on the Normalized Systems theorems, most of the
model of Microsoft Dynamics CRM seem to be related to the
Normalized Systems principles. Firstly, the Microsoft
Dynamics CRM architecture has a Multitier architecture.
Moreover, the Microsoft Dynamics CRM implements cross-
cutting concerns, for example, Reporting (Dashboards,
Charts, Excel and SRS), Security model that focuses on
access rights to the entities in the system [6]-[8]. For first and
second points straightforwardly follow from the Separation
of Concerns theorem.

According to the Data version transparency theorem, data
entities can be modified (insert, delete, update) without
affecting the calling actions [9]. In Microsoft Dynamics
CRM, the information hiding has been applied to develop the
software. Properties cannot be directly accessed, but can be
read or written by using provided method. Additionally,
Microsoft Dynamics CRM has been implemented using
XML based technology that leads to conformance with the
Data Version Transparency theorem.

Following the Action Version Transparency theorem, this
theorem implies an action can be modified without affecting
the calling actions. First, Microsoft Dynamics CRM is
usually implemented through wrapper functions through the
use of polymorphism in C#.NET or VB.NET. Second, the
Microsoft Dynamics CRM implements cross-cutting
concerns as explained above. Therefore, the developing of
Microsoft Dynamics CRM relates the Action version
transparency theorem.

The Microsoft Dynamics CRM relies on asynchronous
service to improve overall system performance and
scalability [10]. Combinatorial effects can be avoided
through asynchronous processing.

B. Indications towards violation of Normalized Systems

principles

When analysing the analysis patterns of Microsoft
Dynamics CRM, some indications towards violation of the
Normalized Systems principles might be noticed. Microsoft
Dynamics CRM addresses challenge of customer
management, therefore, this module was analysed in point of
evolvability. The entities are used to model and manage
business data in this module. In programing, an entity is
represented by a class, such as the Account class generated
from the Account entity.

Figure 1. The partial ER diagram of Microsoft Dynamics CRM

Fig. 1 illustrates an ER diagram consisting of ten entities.

We have noticed the attribute duplication of address details
in many Classes such as Account, Contact, Address, Lead,
LeadAddress, Quote, Invoice, and Order. Attribute
duplication seems contradictory to Normalized Systems
theorem, Separation of Concern. According to the
assumption of unlimited systems evolution, software can be
changed over time. Therefore, the eventual impact might
become related to the overall system size and lead to a
combinatorial effect.

V. CONCLUSION

In this paper, we analyse the analysis patterns of ERP
package, Microsoft Dynamics CRM, to explore conformance
with Normalized Systems theory and violations against it.
While the interpretation of the analysis patterns of ERP
package shows some conformance towards Normalized
Systems theory, it also presents some analysis patterns
towards violations of Normalized Systems principles. The
finding is found the developing well-known commercial
ERP package seem to relate Normalized Systems theory both
four theorems and five elements [2][18]. On the other hand, a
few points seem to contradict Normalized Systems

130Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

principles. Similarly, the finding of Mendling et al., there are
some error probabilities in enterprise models. Moreover, they
are usually concealed [21]-[23]. This paper makes first
contribution towards presenting the possibility of ERP
evaluation adhering to Normalized Systems theory in the
context of evolvability. Second, the paper contributes to the
ERP development applying Normalized Systems theory to
achieve the evolvability.

The limitations of our study need to be acknowledged.
First, we only analysed partial analysis patterns of one ERP
package. We could not perform reverse-engineering and
explore more source code of commercial ERP software
packages to look at combinatorial effects. As part of future
research, we will redesign and rebuild the existing data
model of existing ERP software packages based on NS
theory. In practice, we will rebuild existing ERP packages
using the Normalized Systems expander to obtain high
evolvability [2][16][19].

REFERENCES

[1] S. Kelly and C. Holland, “The ERP Systems Development Approach
to Achieving an Adaptive Enterprise: The Impact of Enterprise
Process Model-ling Tools,” in Systems engineering for business
process change: new directions. Springer London, pp. 241-252, 2002.

[2] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol 42, no. 1, pp. 89-116, 2012.

[3] K. Ganesh et al., “Enterprise Resource Planning: Fundamentals of
Design and Implementation,” Springer, 2014.

[4] E. Shehab, M. Thomassin, and M. Badawy, “Towards a Cost
Modelling Framework for Outsourcing ERP Systems,” in Improving
Complex Systems Today: Proceedings of the 18th ISPE International
Conference on Concur-rent Engineering, D.D. Frey, S. Fukuda, and
G. Rock, Editors, Springer London: London, pp. 401-408, 2011.

[5] P. Huysmans and J. Verelst, “Towards an Engineering-Based
Research Approach for Enterprise Architecture: Lessons Learned
from Normalized Systems theory,” in Advanced Information Systems
Engineering Workshops: CAiSE 2013 International Workshops,
Valencia, Spain, June 17-21, 2013. Proceedings, X. Franch and P.
Soffer, Editors, Springer Berlin Heidel-berg: Berlin, Heidelberg, pp.
58-72, 2013.

[6] P. De Bruyn et al., “Towards Applying Normalized Systems theory
Implications to Enterprise Process Reference Models,” in Advances
in Enterprise Engineering VI: Second Enterprise Engineering
Working Conference, EEWC 2012, Delft, The Netherlands, May 7-8,
2012. Proceedings, A. Albani, D. Aveiro, and J. Barjis, Editors,
Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 31-45, 2012.

[7] P. Huysmans et al., “Positioning the Normalized Systems theory in a
Design Theory Framework,” in Business Modeling and Software
Design: Second International Symposium, BMSD 2012, Geneva,
Switzerland, July 4-6, 2012, Revised Selected Papers, B. Shishkov,
Editor, Springer Berlin Heidel-berg: Berlin, Heidelberg, pp. 43-63,
2013.

[8] E. Vanhoof et al., “Building an Evolvable Prototype for a Multiple
GAAP Accounting Information System,” in Advances in Enterprise
Engineering X: 6th Enterprise Engineering Working Conference,

EEWC 2016, Funchal, Madeira Island, Portugal, May 30-June 3
2016, Proceedings, D. Aveiro, R. Pergl, and D. Gouveia, Editors,
Springer International Publishing: Cham, pp. 71-85, 2016.

[9] J. Verelst et al., “Identifying Combinatorial Effects in Requirements
Engineering,” in Advances in Enterprise Engineering VII: Third
Enterprise Engineering Working Conference, EEWC 2013,
Luxembourg, May 13-14, 2013. Proceedings, H.A. Proper, D. Aveiro,
and K. Gaaloul, Editors, Springer Berlin Heidelberg: Berlin,
Heidelberg, pp. 88-102, 2013.

[10] P. De Bruyn, “Towards Designing Enterprises for Evolvability Based
on Fundamental Engineering Concepts,” in On the Move to
Meaningful Internet Systems: OTM 2011 Workshops: Confederated
International Workshops and Posters: EI2N+NSF ICE,
ICSP+INBAST, ISDE, ORM, OTMA, SWWS+MONET+SeDeS, and
VADER 2011, Hersonissos, Crete, Greece, October 17-21, 2011.
Proceedings, R. Meersman, T. Dillon, and P. Herrero, Ed-itors,
Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 11-20, 2011.

[11] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability based on
systems theoretic stability,” Science of Computer Programming, vol.
76, no. 12, pp. 1210-1222, 2011.

[12] MM. Lehman, “Laws of software evolution revisited,” in European
Workshop on Software Process Technology, Springer, 1996.

[13] D. Van Nuffel, “Towards designing modular and evolvable business
processes,” Universiteit Antwerpen, 2011.

[14] P. Huysmans et al., “Aligning the Normalized Systems theory
Constructs of Enterprise Ontology and Normalized Systems,” in
Advances in Enterprise Engineering IV: 6th International Workshop,
CIAO! 2010, held at DESRIST 2010, St. Gallen, Switzerland, June 4-
5, 2010. Proceedings, A. Albani and J.L.G. Dietz, Editors, Springer
Berlin Heidelberg: Berlin, Heidelberg, pp. 1-15, 2010.

[15] M.R. Krouwel and M. Op’t Land, “Combining DEMO and
Normalized Systems for developing agile enterprise information
systems,” in Enterprise Engineering Working Conference, Springer,
2011.

[16] G. Oorts et al., “Easily evolving software using normalized system
theory-a case study,” Proceedings of ICSEA, pp. 322-327, 2014.

[17] K. Ven et al., “Experiences with the automatic discovery of violations
to the normalized systems design theorems,” International Journal on
Advances in Software, vol. 4, no 1 & 2, 2011, 2011.

[18] P. De Bruyn, D. Geert, and H. Mannaert, “Aligning the Normalized
Systems Theorems with Existing Heuristic Software Engineering
Knowledge,” The Seventh International Conference on Software
Engineering Advances, pp. 84-89, 2012.

[19] G. Oorts et al., “Building evolvable software using Normalized
Systems theory: A case study. in System Sciences (HICSS),” 2014
47th Hawaii International Conference, IEEE, 2014.

[20] Op’t Land et al., “Exploring normalized systems potential for dutch
mod’s agility,” in Working Conference on Practice-Driven Research
on Enterprise Transformation, Springer, 2011.

[21] J Mendling et al., “Faulty EPCs in the SAP reference model,” in
International Conference on Business Process Management, Springer,
2006.

[22] J Mendling et al., “Errors in the SAP reference model,” BPTrends,
vol. 4, no. 6, pp. 1-5, 2006.

[23] J Mendling et al., “Detection and prediction of errors in EPCs of the
SAP reference model,” Data & Knowledge Engineering, vol. 64, no.
1, pp. 312-329, 2008.

131Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

