
Improving Run-Time Memory Utilization of Component-based Embedded Systems

with Non-Critical Functionality

Gabriel Campeanu and Saad Mubeen
Mälardalen Real-Time Research Center

Mälardalen University, Västerås, Sweden
Email: {gabriel.campeanu, saad.mubeen}@mdh.se

Abstract—Many contemporary embedded systems have to deal
with huge amount of data, coming from the interaction with the
environment, due to their data-intensive applications. However,
due to some inherent properties of these systems, such as limited
energy and resources (compute and storage), it is important that
the resources should be used in an efficient way. For example,
camera sensors of a robot may provide low-resolution frames for
positioning itself in an open environment, and high-resolution
frames to analyze detected objects. Component-based software
development techniques and models have proven to be efficient
for the development of these systems. Many component models
used in the industry (e.g., Rubus, IEC 61131) allocate, at the
system initialization, enough resources to satisfy the demands of
the system’s critical functionality. These resources are retained by
the critical functionality even when they are not fully utilized. In
this paper, we introduce a method that, when possible, distributes
the unused memory of the critical functionality to the non-critical
functionality in order to improve its performance. The method
uses a monitoring solution that checks the memory utilization,
and triggers the memory distribution whenever possible. As a
proof of concept, we realize the proposed method in an industrial
component model. As an evaluation, we use an underwater robot
case study to evaluate the feasibility of the proposed solution.

Keywords–embedded system; component-based software devel-
opment; model-based development; resource utilization; monitor.

I. INTRODUCTION
Embedded systems are found in almost all electronic

products that are available today. These systems find their
applications in a vast range of systems, i.e., from small-
sized devices, such as watches and telephones to large-sized
systems, such as cars and airplanes. Many modern embedded
systems process huge amount of data that is originated from
their interaction with the environment. One example is the
Google autonomous car that processes around 750 MB data
per second [1]. The reduced computation power and sequen-
tial execution of software that characterize many embedded
systems can represent a challenge to deliver the performance
level required by the systems when processing huge amount
of data.

Graphics Processing Units (GPUs) represent a solution
to deliver the required performance level when the system
deals with processing huge amount of data. Characterized by
a parallel execution model, the GPU can process multiple data
in parallel. An aspect of the GPU is that it cannot function
without a CPU; considered as the brain of the system, the
CPU triggers all GPU-related activities (e.g., parallel execution
of functions). The latest technological developments allow
the combination of CPUs and GPUs on the same embedded
boards, resulting in various heterogeneous platforms, such as

NVIDIA Jetson [2] and AMD R-464L [3].
Due to the specifics of embedded systems, such as limited

compute and memory resources, the amount of data captured
from the environment can significantly impact the management
of the system resources while delivering the required perfor-
mance. One way to optimize the resource usage is to collect
variable stream-size of data from the sensors depending upon
different environment situations. For example, camera sensors
(e.g., ProcImage500-Eagle [4]) with configurable resolutions
may provide: i) frames with high resolution, and ii) frames
with low resolution. While the high resolution frames require
larger memory footprints and more computation power (and
energy) to be processed (on GPUs), the low resolution frames
are delivered with faster frame rate, occupy less memory
and require lower computation power for GPU processing.
Depending on the environment circumstances, cameras may
provide high or low quality frames. For example, a robot fitted
with such a camera may use low resolution data frames to
examine its position. On the other hand, the robot may use
high resolution frames to inspect the target objects in a detailed
manner.

The system resources (e.g., memory and computation
power) in many embedded systems are shared between the
critical (with real-time requirements) and non-critical function-
ality. The goal in the case of the critical functionality is to meet
all the timing requirements. Whereas, the best-effort service is
targeted in the case of the non-critical functionality. Hence,
the system needs to ensure that all the required resources
are always available to the critical part of the application.
For example, a vision system of a robot represents critical
functionality. This system is designed in such a way that it
is always guaranteed enough resources to process the high-
resolution frames. Even when the cameras provide lower-
resolution frames, the system still occupies the same amount of
resources as if it were processing the high-resolution frames.
As a result, the system resources are wasted when the critical
functionality does not need them. In our point of view, the non-
critical functionality can benefit from these resources in the
intervals where they are not used by the critical functionality.
For example, when the robot utilizes lower resolution frames,
a logger system (non-critical functionality) would benefit from
extra memory (not being used by the vision system) to save
more information about the system activities.

In order to deal with the complexity, among other chal-
lenges, the software for embedded systems is developed us-
ing the principles of Component-Based Software Engineering
(CBSE) and Model-Based Engineering [5] [6]. Using these
principles, models are used throughout the development pro-
cess and the software is constructed by connecting reusable

139Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

software units, called the software components. CBSE and
MBD have been successfully adopted by the industry through
component models, such as AUTOSAR [7], Rubus Component
Model (RCM) [8] and IEC 61131 [9]. The existing component
models that can be used to build stream-of-event applications
(e.g., RCM, AUTOSAR, IEC 61131 and ProCom[10]), face
a challenge to deal with (streaming) data that can change its
memory footprint on-the-fly. For example, RCM defines that its
components use the same fixed memory footprint throughout
the execution of the application. In order to ensure the required
resources to the critical functionality, resources are assigned to
each RCM software component, with respect to its worst-case
resource demand for the entire system execution. Therefore,
RCM and similar component models (discussed above) do not
support any mechanism to release the resources when they are
not required (by the critical part of the system).

This paper provides an automatic method to compute
the unused resources of the critical part of the system, and
distribute them to the (non-critical) parts of the system. This
is achieved by using a monitoring solution that monitors the
critical part of the system and detects when it changes its
resource requirements. After detection, the monitoring solu-
tion triggers our proposed method that calculates the unused
memory, based on the actual resource usage of the critical
system. This information is passed to the (non-critical) part of
the system that can benefit from utilizing the freed resources.

The rest of the paper is organized as follows. Section II
describes the background and related work. Section III formu-
lates the problem and describes it with the help of a case study.
The overview of our solution is described in Section IV and its
realization is presented in Section V. Section VI discusses the
implementation of the solution. The evaluation of our method
applied to the case study is discussed in Section VII. Finally,
Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK
GPUs were developed in 90s and were employed only in

graphic-based applications. By time, due to the increase in
their computation power and ease of use, GPUs have been
utilized in different type of applications, becoming the general-
purpose processing units referred to as GPGPUs [11]. For
example, cryptography applications [12] and Monte Carlo
simulations [13] have GPU-based solutions. Equipped with
a parallel architecture, the GPU may employ thousands of
computation threads at a time through its multiple cores.
Compared to the traditional CPU, the GPU delivers an im-
proved performance with respect to processing multiple data
in parallel. For example, simulation of bio-molecular systems
have achieved 20 times speed-up on GPU [14].

One of the GPU characteristics is that it cannot function
without the help of a CPU. The CPU is considered as the
brain of the system that triggers all the activities related to
GPU, such as the execution of functionality onto GPU. The
latest technological developments allow various vendors, such
as NVIDIA, Intel, AMD and Samsung to combine CPUs and
GPUs on the same embedded board. For example, there are
boards known as System-on-Chips (SoCs) that merge together
CPUs and GPUs onto the same physical chip, such as NVIDIA
Jetson TK1 [2] and Samsung Exynos 8 [15].

Regarding embedded systems that contain GPUs, there
are model- and component-based software engineering ex-
tensions to facilitate the development of CPU-GPU applica-

tions [16] [17]. Component models follow various interaction
styles that are suitable for different types of applications [18].
We mention the request-response and sender-receiver interac-
tion styles that are utilized in AUTOSAR component model
when developing automotive applications. Another style uti-
lized by e.g., Rubus and IEC 61131 component models, is
the pipe-and-filter interaction style. This particular style is
characteristic to streaming of event-type of applications and
allows an easy mapping between the flow of system actions and
control specifications, characteristic to real-time and safety-
critical applications.

There exist different methods to increase the memory
utilization, which are presented in various surveys [19]. We
mention a solution to reduce the actual allocated space for
temporary arrays by using a mapping of different array parts
into the same physical memory [20]. Another method proposes
scratch pad memories to reduce the power consumption and
improve performance [21]. These solutions are applicable at a
very low level of abstraction and are not suitable to be merged
with our approach, which is applicable at the implementation
abstraction level where the software architecture of the appli-
cation is modeled.

Regarding monitors, many works utilize them for different
purposes, such as data-flow monitoring solutions to simulate
large CPU-GPU systems [22], and GPU monitors for balancing
the bandwidth usage [23]. An interesting work conducted by
Haban et al. [24] introduced software monitors to help schedul-
ing activities. The authors described the low overhead of the
monitoring solutions, which degrade the CPU performance
with less than 0.1%. In our work, we use the same type of
monitors analyzed by Haban (i.e., software monitors) that have
a low impact over the system performance.

III. PROBLEM
One way to reduce resource and energy usage of em-

bedded systems is to decrease the data produced by sensors
with respect to e.g., environment conditions. For example, a
robot may require low-resolution frames to process open-space
environments but may utilize high-resolution frames when
analyzing close ups of detected objects. Therefore, the robot
cameras may be set to provide, on-the-fly, frames with different
resolutions based on e.g., distance to tracked objects.

Due to the rules that existing component models apply
for the construction of software components, the size of
a component’s input data is fixed during the execution of
the system. One way to ensure the guaranteed execution of
the system is to allocate the system resources to software
components, at the design time, to deal with the maximum
footprint of data produced by sensors. For example, if a
camera produces frames with 1280 x 1024 pixels, the software
components that process the camera feedback utilize memory
corresponding to the camera’s frames. Even when the camera
produces lower quality frames (e.g., 640 x 480 pixels) with a
lower memory footprint, the software components are set to
utilize the memory footprint characteristic to 1280 x 1024 pixel
frames, resulting in under-utilization of the system memory.

We use a case study as a running example to discuss
the problem in detail. The case study is centered around an
underwater robot that autonomously navigates under water,
fulfilling various missions (e.g., tracking red buoys) [25]. The
robot contains a CPU-GPU embedded board that is connected
to various sensors (e.g., cameras) and actuators (e.g., thrusters).

140Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Sensor
Camera1

Camera1

Sensor
Camera2

Camera2

Merge
and

Enhance

Sync

Convert
Grayscale

Edge
Detection

Object
Detection

Legend:
Rubus component Data port

Trigger portSync Synchronisation
element

Control flow

Data flow

Vision
Manager

…

Compress Logger

Figure 1. Component-based Rubus vision system of the underwater robot.

Sensors provide a continuous flow of environment data that is
processed by the GPU on-the-fly.

A simplified component-based software architecture of the
robot’s vision system is depicted in Figure 1. The software
architecture, realized using RCM, contains nine software com-
ponents. The Camera1 and Camera2 software components are
connected to the physical sensors and convert the received
data into readable frames. The MergeAndEnhance software
component reduces the noise and merges the two frames using
the GPU. The resulted frame is converted into a gray-scale
frame by ConvertGrayscale software component (on the GPU),
which is forwarded to EdgeDetection software component
that produces a black-and-white frame with detected edges.
The ObjectDetection software component identifies the target
object from the received frame and forwards the result to
the system manager that takes appropriate actions, such as
grabbing the detected objects.

When the robot navigates underwater, the cameras are set to
produce 640 x 480 pixel frames to track points for positioning
itself. Due to the particularities of the water, sometime being
muddy or the underwater vision being influenced by the
weather conditions (e.g., cloudy, sunny), there is no need for
high-resolution frames as the visibility is reduced. Figure 1
presents 640 x 480 pixel frames that contain several objects.
While one of the missions is to track and touch buoys, the
robot navigates to the detected objects. When the robot is close
(e.g., 1 meter away) to the detected object, it requires high-
resolution frames to observe and refine the details needed for
the distinction between similar type of objects. In this case,
cameras produce 1280 x 960 pixel frames.

Following the specifications of RCM, each software com-
ponent is equipped with a constructor and a destructor. The
constructor is executed once, before the system execution,
while the destructor is executed when the system is properly
switched off or reset. The constructor has the role to allocate
resources needed by the component, such as memory required
by the internal behavior and output data ports. As it is executed
only once, the constructor allocates a fixed memory size for

the duration of entire execution life of the component. For the
presented vision system, the constructor of each component
reserves memory to handle e.g., input data of maximum size. In
our running case system, the constructor of Camera1 allocates
memory space that holds 1280 x 960 pixel frames. When
sensors provide frames with lower resolution and memory
footprint, Camera1 has reserved the same amount of memory
(corresponding to 1280 x 960 pixel frames) from which it uses
only a part, resulting in under utilization of the memory.

Another part of the underwater robot is the logger system
that is composed of two software components, i.e., Compress
and Logger. This part of the software architecture has a non-
critical functionality. The purpose of this non-critical part is to
compress and record various information of the robot during
the underwater journey. Due to the limited memory (RAM),
Compress and Logger software components save the resulted
frames (onto RAM) from ObjectDetector software component.
These frames are copied from the RAM to a flash memory by
a specific service of the operating system. If more memory was
available to the logger system, it would have also saved the un-
altered (original) frames from the MergeAndEnhance software
component. This would improve various system activities e.g.,
checking the (correct) functionality of the vision system by
comparing the original and processed frames. Moreover, the
logger system may benefit from extra memory by delivering
other system information (e.g., energy usage and temperature)
that improves the debugging activity of the robot.

IV. GENERIC SOLUTION
In order to improve the resource utilization of non-critical

parts of the embedded systems, we introduce an automatic
method that, during run-time, provides information on the
additional available resources that can be used by the non-
critical parts. Figure 2 presents the overview design of our
proposed method and its interactions with the critical and non-
critical parts of embedded system.

Our method uses a monitoring solution that periodically
checks (e.g., every execution) the memory usage of the critical
system. Step (arrow) 1 from Figure 2 expresses the examina-

141Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Critical
System

EvaluatorMonitor Non-Critical
System

1

2

4

3

exchange data

Figure 2. Overview design of the proposed method.

tion of the critical system by the monitoring solution. During
step 2, the monitor sends the actual memory usage to the
evaluator. Based on the the received information, the evaluator
has two following two options.
• If the critical system uses as much memory as its max-

imum (worst case) requirement, the evaluator informs
the non-critical system to use its default memory
allocated memory (step 3).

• If the critical system uses less memory than its max-
imum requirement, the evaluator computes the size
of the unused memory and distributes it to the non-
critical system (step 4).

V. REALIZATION
This section describes the realization details of our method

using the vision system case study. The first part of the section
introduces groundwork details on the functionality of the
component model, while the second part presents the overall
realization of our method.

A. Component Model Functionality
Each component is characterized by a constructor and a de-

structor. The constructor is executed once, at the initialization
of the system, and allocates as much memory as the component
requires. The destructor, executing once when the system
is properly switched off, has the purpose to deallocate the
memory. Figure 3 shows two connected software component
from the vision system. In order to simplify the figure, we
remove some of the (triggering) connections to the component.
Camera1 sends a frame to MergeAndEnhance component.
Initially, the constructor of Camera1 allocates memory space
to accommodate frames of maximum size (i.e., 1280 x 960
pixels). When the robot changes its mode (e.g., for saving its
energy) and its physical cameras send lower size frame (i.e.,
640 x 480 pixels), Camera1 uses only a part of the memory,
which was allocated by its constructor.

To send large data (i.e., larger than a scalar), components
need to use pointers, as follows. The output port of Camera1
is basically a struct that contains a pointer variable and two
scalars, characteristics to 2D images. The port may cover other
types of data, such as 3D images by including additional
information, such as a third scalar. The pointer indicates to
the memory address that it is at the beginning of the data
to be transferred, and the two scalars (i.e., height and width)
describe the size of the frame. In this way, Camera1 passes the
information (of the pointer and scalars) about the data (from
RAM) to be transferred to the MergeAndEnhance component.
We can see in the figure that the transferred data is a frame
of 640 x 480 pixels, which means that there is some unused
memory. Using this information (i.e., size), the Evaluator

Camera1

Merge
And

Enhance

 *ptr
height
width

*ptr
height
iwidth

Camera2

reserved frame memory
*ptr min_size

RAM

width*height = 1280 x 960 pixels

width*height = 640 x 480 pixels

max_size

Figure 3. Data transferring between two components.

component calculates the total unused memory of the vision
system and inform the Logger system to use it.

B. Vision System Realization
The vision system is composed of four parts and realized

as follows.
a) The Critical System. The critical system contains the

functionality that has the highest priority in the system. In our
case, it produces and processes the frames, and takes decisions
based on the findings. There are seven software components
included in this part of the system as illustrated in Figure 4.

b) The Monitor. We realize the monitor as a service that
is regularly performed by the operating system. The service
checks the settings of the camera sensors and produces a value
that corresponds to the frame sizes produced by the cameras,
i.e., 1024 or 640.

c) The Evaluator. The evaluator is realized as a regular
software component that receives its input information from
the monitoring service. Because it decides the distribution
of the resource memory utilized by the critical system, the
priority of the Evaluator component is set to the highest
level. Based on this value, the Evaluator component decides if
the non-critical system can use more resources and produces
the data that reflects this decision. For simplicity, the output
result is a boolean variable; the output value 1 means that
the non-critical system may use more resources than initially
allocated, and 0 the opposite. The Evaluator component (i.e.,
its constructor, behavior function and destructor) is entirely
automatically generated through our solution.

d) The non-critical system. The part of the system that
handles the logging functionality represents the non-critical
system. It has a lower priority than the critical system and
evaluator software component. It contains two software com-
ponents, i.e., Compress and Logger that communicate with the
Evaluator through an additional port. Based on the (boolean)
data received via the additional port, the two non-critical
components use one or two frames in their computations.

VI. IMPLEMENTATION
The solution presented in this paper does not interfere with

the development and execution of the critical system. It is con-

142Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

Vision
Manager

Sensor
Camera1

Camera1

Sensor
Camera2

Camera2

Merge
And

Enhance

Sync

Convert
Grayscale

Edge
Detection

Object
Detection

Vision
Manager

…

Evaluator

const

Compress Logger

Critical System

Non-Critical System

Evaluator

sync

Figure 4. Realization of the proposed method applied on the vision system.

structed by the developer. For the monitoring solution, we use
a service provided by the OS. The evaluator is implemented
as a regular component with an input and output data port.
Through the input port, it receives data from the monitoring
solution, while the output port provides a boolean data. At this
stage of our solution, the functionality is simple and decides,
based on the input value, if the non-critical system can have
access to more resources or not. Although the functionality is
simple and can be easily merged to the non-critical system, we
opt for the separation-of-concerns principle, which is essential
in the model- and component-based software development.
Moreover, the evaluator functionality can be increased to adapt
for more complex systems.

1 if(<InPort3.Name>==1)
2 {
3 cl_mem frame2_out = clCreateBuffer(context, CL_MEM_READ_WRITE,

3*(<OutPort2.Name>->width)*(<OutPort2.Name>->height) *
sizeof(unsigned char), NULL, NULL);

4
5 /* initialize parameters */
6 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&

<InPort2.Name>->ptr);
7 clSetKernelArg(kernel, 1, sizeof(int), (void *)&<InPort2.Name>->

width);
8 clSetKernelArg(kernel, 2, sizeof(int),(void *)&<InPort2.Name>->

height);
9 clSetKernelArg(kernel, 4, sizeof(cl_mem), (void *)&frame2_out);

10
11 /* execute functionality on the second frame */
12 clEnqueueNDRangeKernel(command_queue, kernel, 2, NULL,

global_size, local_size, 0, NULL, NULL);
13 }

Figure 5. Generated part of the behavior function.

The non-critical system is mostly constructed by the devel-
oper, where our approach introduces some elements that are
automatically generated. Initially, the non-critical system uses
resources to process one frame; the constructors of Compress
and Logger components allocate memory for one frame to be
used in their functionality. In order to enforce a larger memory
usage, the two components need to allocate more memory
to hold the result from processing the second frame. As the
constructor is executed once at the system initialization stage,
we automatically allocate memory inside the components’
behavior function.

Figure 5 illustrates the code generated inside the behavior
function of each software component from the non-critical

system. We assume that each port has a name. For simplicity,
all the components from the non-critical system have an input
port with a boolean value (i.e., 1 and 0) that is connected
to the Evaluator component. Line 1 checks the value sent
from the Evaluator, where 1 means that the component can
use additional memory to process the second frame. In line
3, memory is allocated to hold the result from processing the
second frame. Specific to the GPU functionality implemented
using the OpenCL syntax, parameters that correspond to the
second frame specifications, are set in lines 6-9. Finally, the
same functionality that processes the first frame is applied to
the second frame, in line 12.

VII. EVALUATION
As our approach introduces additional elements to the

system, this section focuses on the evaluation of overhead
incurred due to the proposed solution. There are two parts
that influence the overall overhead, i.e., the memory footprint
and the execution time.

The memory footprint refers to the generated Evaluator
component and the generated part of each behavior function
of the non-critical system (see Figure 5). The Evaluator
component consists of a constructor, behavior function, and
a destructor. Moreover, it has specification of its interface
(i.e., ports) in a separate header file. The memory footprint
of all of its code takes approximately 14 KB. We need to also
add the memory size occupied by the generated parts of the
Compress and Logger components, which result in a total of 15
KB. We consider that the memory footprint overhead resulted
from our approach is manageable for an embedded systems
with GPUs, compared to traditional (CPU-based) embedded
systems. The CPU-GPU embedded systems are characterized
by a reasonable high amount of memory (i.e., order of tens
of Megabyte) due to the computation power that requires high
memory specifications.

Regarding the execution time, the generated Evaluator
component may negatively affect the execution time of the
critical system. In this regard, we conducted an experiment
to compare the performance with and without our approach.
The system on which we executed the experiments contains
an embedded board AMD Accelerated Processing Unit with
a Kabini architecture (i.e., CPU-GPU SoC). We used two
input images, i.e., one with 640 ∗ 480 pixels and the other
with 1280 ∗ 960 pixels. For each set of images, we executed

143Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

two cases, one with and the other without our solution. Each
case was executed 100 times and we calculated its average
execution time.

640 x 480 pixels 1280 x 960 pixels

E
nd

-to
-e

nd
 e

xe
cu

tio
n

tim
e

(m
s)

0
10
0

20
0

30
0

40
0

50
0

60
0

without proposed method
with proposed method

370 376

446 452

Figure 6. Usage of the proposed method in the vision system execution.

The results of the experiments are shown in Figure 6. A
slight increase (1.3 to 1.6%) in the execution time can be
observed when our solution is applied. The results indicate
that the performance of the non-critical part of these systems
can be significantly improved with our method at the very
small execution time overhead.

VIII. CONCLUSION
Modern embedded systems deal with huge amount of

data that is originated from their interaction with the envi-
ronment. GPUs have emerged as a feasible option, from the
performance perspective, for processing the huge data inputs.
However, with GPU-based solutions the resource utilization
remains high, which is an important aspect when dealing
with resource-constrained embedded systems. In this paper,
we have presented a method that improves the resource uti-
lization for non-critical parts of CPU-GPU-based embedded
systems. Whenever the critical part of the system does not
fully utilize its required memory due to various reasons, such
as reducing energy consumption, our method distributes the
unused memory to the non-critical part of the system that
can use the resources to improve its performance. As a proof
of concept, we have realized the method in a state-of-the-
practice model, namely the Rubus Component Model. We
have also demonstrated the usability of the method using the
underwater robot case study. The evaluation results indicate
that the performance of the non-critical part of CPU-GPU-
based embedded systems can be significantly improved with
our method at the very small execution time overhead of
approximately 1.5%.

ACKNOWLEDGMENTS
The work in this paper has been supported by the RALF3

project - (IIS11-0060) through the Swedish Foundation for
Strategic Research (SSF).

REFERENCES
[1] Google. Waymo - Google Self-Driving Car Project. https://waymo.com/.

Retrieved: July, 2016.
[2] NVIDIA, “NVIDIA Jetson TK1,” http://www.nvidia.com/object/

jetson-tk1-embedded-dev-kit.html, retrieved: July, 2017.

[3] AMD, “Embedded R-Series Family of Processors,” http://www.amd.
com/en-us/products/embedded/processors/r-series, retrieved: July, 2017.

[4] See Fast Technologies. High Speed Camera ProcImage500-Eagle. http:
//www.seefastechnologies.com/procimage-eng1-pi500-eagle.html. Re-
trieved: July, 2016.

[5] I. Crnkovic and M. P. H. Larsson, Building reliable component-based
software systems. Artech House, 2002.

[6] T. A. Henzinger and J. Sifakis, “The embedded systems design chal-
lenge,” in International Symposium on Formal Methods. Springer,
2006, pp. 1–15.

[7] “AUTOSAR - Technical Overview,” http://www.autosar.org, retrieved:
July, 2017.

[8] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback, and
K.-L. Lundback, “The rubus component model for resource constrained
real-time systems,” in Industrial Embedded Systems, 2008. SIES 2008.
International Symposium on. IEEE, 2008, pp. 177–183.

[9] I. Application, “Implementation of IEC 61131-3,” Geneva: IEC, 1995.
[10] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A

Component Model for Control-Intensive Distributed Embedded Sys-
tems,” in 11th International Symposium on Component Based Software
Engineering (CBSE), vol. 8. Springer, October 2008, pp. 310–317.

[11] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “GPU computing,” Proceedings of the IEEE, vol. 96, no. 5,
2008, pp. 879–899.

[12] S. A. Manavski, “CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography,” in IEEE International Conference
on Signal Processing and Communications. ICSPC 2007.

[13] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “GPU accelerated
Monte Carlo simulation of the 2D and 3D Ising model,” Journal of
Computational Physics, vol. 228, no. 12, 2009, pp. 4468 – 4477.

[14] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, and L. G.
Trabuco, “Accelerating molecular modeling applications with graphics
processors,” Journal of computational chemistry, 2007.

[15] Samsung, “Exynos 8 Octa,” http://www.samsung.com/semiconductor/
minisite/Exynos/w/solution/mod ap/8890/, retrieved: July, 2017.

[16] G. Campeanu, J. Carlson, and S. Sentilles, “Component allocation
optimization for heterogeneous cpu-gpu embedded systems,” in Soft-
ware Engineering and Advanced Applications (SEAA), 2014 40th
EUROMICRO Conference on. IEEE, 2014, pp. 229–236.

[17] G. Campeanu, J. Carlson, S. Sentilles, and S. Mubeen, “Extending the
Rubus component model with GPU-aware components,” in Component-
Based Software Engineering (CBSE), 2016 19th International ACM
SIGSOFT Symposium on. IEEE, 2016, pp. 59–68.

[18] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, “A classi-
fication framework for software component models,” IEEE Transactions
on Software Engineering, vol. 37, no. 5, 2011, pp. 593–615.

[19] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg, “Data and mem-
ory optimization techniques for embedded systems,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 6, no. 2,
2001, pp. 149–206.

[20] M. A. Miranda, F. V. Catthoor, M. Janssen, and H. J. De Man,
“High-level address optimization and synthesis techniques for data-
transfer-intensive applications,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 6, no. 4, 1998, pp. 677–686.

[21] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” in Proceedings of the tenth international sympo-
sium on Hardware/software codesign. ACM, 2002, pp. 73–78.

[22] B. R. Bilel, N. Navid, and M. S. M. Bouksiaa, “Hybrid CPU-GPU
distributed framework for large scale mobile networks simulation,” in
Proceedings of the 2012 IEEE/ACM 16th International Symposium on
Distributed Simulation and Real Time Applications. IEEE Computer
Society, 2012, pp. 44–53.

[23] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-aware mem-
ory controller for dynamically balancing GPU and CPU bandwidth use
in an MPSoC,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 850–855.

[24] D. Haban and K. G. Shin, “Application of real-time monitoring to
scheduling tasks with random execution times,” IEEE Transactions on
software engineering, vol. 16, no. 12, 1990, pp. 1374–1389.

[25] C. Ahlberg, L. Asplund, G. Campeanu, F. Ciccozzi, F. Ekstrand,
M. Ekstrom, J. Feljan, A. Gustavsson, S. Sentilles, I. Svogor et al.,
“The Black Pearl: An autonomous underwater vehicle,” 2013.

144Copyright (c) IARIA, 2017. ISBN: 978-1-61208-590-6

ICSEA 2017 : The Twelfth International Conference on Software Engineering Advances

