

Software Engineering Education: Sharing an Approach, Experiences, Survey and

Lessons Learned

José Carlos Metrôlho
R&D Unit in Digital Services, Applications and Content

Polytechnic Institute of Castelo Branco
Castelo Branco, Portugal

metrolho@ipcb.pt

Fernando Reinaldo Ribeiro
R&D Unit in Digital Services, Applications and Content

Polytechnic Institute of Castelo Branco
Castelo Branco, Portugal

fribeiro@ipcb.pt

Abstract—To provide the best training in software engineering,
several approaches and strategies are carried out. Some of
them are more theoretical, learned through books and
manuals, while others have a practical focus and often done in
collaboration with companies. In this paper, we share an
approach based on a balanced mix to foster the assimilation of
knowledge, the approximation with what is done in software
companies and student motivation. A survey was also carried
out involving students who had successfully completed the
subject in past academic years; some had already graduated,
and others are still students. We analyse the results of the
survey and share some of the experiences and lessons learned.

Keywords- agile methodologies; education; software
engineering; teaching; teamwork.

I. INTRODUCTION
One of the biggest challenges in teaching software

engineering is empowering students with the knowledge and
skills they need to be well prepared to face the labour
market. This includes providing students with technical skills
but also providing them with the non-technical skills
associated to the software engineering process. It is also
known that the teaching of software engineering cannot be
limited to the presentation of concepts and methodologies as
a set of abstract concepts. Wherever possible, it should be
adequately complemented with the practice of software
engineering projects so that the students can assimilate and
understand them successfully [1]–[3] Additionally, it is
important to consider the growing importance of human
factors in the software development process [4] and
consequently the role that some of them play in the software
engineering process, namely: communication, coordination,
collaboration, trust, expert recommendation, program
comprehension, knowledge management and culture.

Several approaches and strategies have been proposed
and used to improve the teaching and learning of software
engineering. They all hold the importance of giving students
hands-on experience. However, the way they propose to do
so differs greatly.

This paper describes an experience in teaching Software
Engineering, of a Computer Engineering program, using a

project-based approach. This project-based approach is
enriched with the collaboration of two software houses
giving the students a real-word experience of software
engineering projects development. We also try to understand
how the main concepts of the course are assimilated by the
students and if they are applied in the professional life of our
past students. Finally, we present some lessons learned
through our experience and challenges faced.

The remainder of this paper will be as follows: Section 2
presents a brief review of related work; Section 3 we present
an overview of our project-based approach for software
engineering; Section 4 provides a brief description of the
survey that was conducted to achieve feedback from former
students; In Section 5 we present the survey results and
analysis; Section 6 presents some lessons learned and
challenges faced and finally, in Section 7, we present some
conclusions and we outline some of the future work.

II. RELATED WORK
To provide the best training in software engineering,

several approaches and strategies have been proposed. Some
of them are more theoretical, more focused on the study of
theory through books and manuals, while others have a more
practical focus and often done in collaboration with
companies. Nowadays, it seems to be a well-accepted fact
that the software engineering training should not be strictly
focused on the theoretical study of concepts and
methodologies. It is important to provide students with
hands-on experience in a software engineering project and
provide them with the non-technical skills in a software
project. It is important to promote hands-on ability training
and the rapprochement between teaching and practice.
Additionally, the recent diffusion of agile methodologies in
software development brings many difficulties and
challenges to software engineering teaching. In this context,
several authors refer that current approaches to teaching
software engineering are outdated and lack authenticity [5],
[6]. However, as referred in [5], it is not clear which should
be the best approach and there are different perspectives with
different proposed approaches. Some authors (e.g., Clear and
Damian [5][7]) suggest that the best approach is to emulate
the workplace through distributed software development

79Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

projects, through cross-university or cross-course courses,
others (e.g., [8]–[10] suggest involving students in a project
where they have the possibility to experience team working
and understanding in the practice of the theoretical concepts
dealt with in the course and others (e.g., [11]–[13]) argue for
using simulations and games to provide students with a
variety of experiences that would not be possible within the
constraints of an academic environment. Next, a brief
analysis of some works that have been proposed for each one
of the perspectives identified before is presented.

The emulation of the workplace through distributed
projects or cross-university courses was approached and
experienced by some authors. The DOSE [7], a Distributed
and Outsourced Software Engineering course, followed an
approach to teaching distributed software engineering
centred in a distributed software development project. They
experienced teaching software engineering using a
geographically distributed software project involving various
countries with different cultures, native languages and time
zones. This approach gives the students the opportunity of
facing the challenges of distributed software development
and helps them understand typical software engineering
issues, such as the importance of software requirements
specifications, or the relevance of adequate system design.
However, they also identify some time scheduling
inconveniences, and difficulties in keeping teams committed
to their peers. The Undergraduate Capstone Open Source
Projects (UCOSP) program [14] ran for ten terms over six
years providing for over 400 Canadian students from more
than 30 schools. After this period, the authors identified
some lessons they had learned: Students work on real
distributed open-source projects as full members of software
development teams; They use the same software
development processes as regular team members and are
provided with explicit mentorship from volunteer mentors
from each project; Students integrate and apply the skills
they have learned in their courses in a real development
setting; Students develop and improve their technical
communication skills in a real development setting.

A project-oriented course is followed in several software
engineering training programmes. Its purpose is to teach
students the theoretical and the practical aspects of
developing software systems in a team environment giving
students a chance to experience a work scenario that is closer
to a real-world experience. A Project-Based learning in
software engineering Lab, teaching through an e-Portfolio
approach is described in [9]. In this approach, the e-Portfolio
allows students to carry out a software project, addressing
each phase collaboratively with other students and obtaining
appropriate feedback from instructors. The e-Portfolio
includes a single problem statement for the development of a
complete software project comprising of a set of
deliverables. To support the implementation, they chose the
Moodle Platform. To assess the students’ e-portfolios,
various rubrics were implemented by scoring and weighting
the sections and categories for every deliverable to be
evaluated. Another project-based learning approach for
teaching software engineering concepts is described in [10].
Their goal is to teach software engineering concepts using

the Scrum framework in real life projects. Usually, projects
have a capacity of about 1000 person-hours. To make the
projects more relevant real customers were incorporated.
They bring in requirements from industry and present their
topics during a kick-off meeting. During the project, students
work together as self- organized teams (5-7 elements). They
chose an appropriate project management and team
coordination process and they are only asked to use some
core tools that are needed to monitor the projects.

A game-based learning methodology of teaching
software engineering is presented in [12]. They suggest a
methodology of two-fold use of learning games for teaching
software engineers. Students, experienced in programming,
develop learning games, and then they use the games that are
developed for teaching the next generation of students.
Students developing games learn the software development
life cycle phases including testing, deployment and
maintenance, they contact with customers (teachers of
corresponding subjects act as customers) and users (students,
learning these subjects). In their approach, they find both
advantages and disadvantages. As advantages, they identify
the increasing students’ motivation and revealing their
creativity. The main problems observed include difficulty of
organization of team work especially for students of early
years and lack of time for coordinating them. Schäfer [13]
describes some lessons learned after two teaching periods in
using scrum with gamification to learn and train the agile
principles. They found that their approach has both
advantages and disadvantages. Gamification is motivating
and helps to bring participants with different backgrounds
together in project teams. The game helps in focusing on the
project management part and learning the Scrum
methodology. As drawbacks, they refer to the importance of
having a real external stakeholder or customer defining a
project goal externally in a Scrum learning project.

There are different approaches and strategies that may be
followed to provide students with the best training in
software engineering. All of them agree that the theoretical
study of concepts and methodologies should be
complemented with hands-on experiences in a software
engineering project. This would allow to provide students
with a better understanding of the theoretical concepts and to
provide them with the non-technical skills in software
projects. However, the way different approaches propose to
provide the students with the practical experience is very
different. Some of them propose to emulate the workplace
through distributed projects, which may involve several
entities and thus provide interesting experiences in software
engineering. Others suggest a project-oriented course where
students can practice requirements analysis, project
management, development methodologies and teamwork.
Another recommendation is using simulations and games to
simulate distinct scenarios in software engineering teaching
and training. However, regardless of the approach or
strategy, it is necessary to understand whether students have
acquired the knowledge and skills they need for the
performance of their duties, and whether they apply them in
their professional activity in software engineering.

80Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

III. OVERVIEW OF OUR PROJECT-BASED APPROACH FOR
SOFTWARE ENGINEERING

In this case a project-based approach was adopted for
teaching Software Engineering. It is part of a second year of
a computer science course (undergraduate course). This is a
discipline that has 5 ECTS and whose semester load is 30
hours for theoretical classes and 45 hours for laboratory
classes. The focus of the adopted approach was to combine
theory and practice. One teacher is responsible for the
course management and theoretical lectures. In these
classes, the teacher presents the concepts and methodologies
and promotes discussion about them. Students are also
provided with an introduction to some software
development methodologies namely waterfall, Extreme
Programming, SCRUM, Spiral, etc. In the assessment, this
theoretical part has a weight of 40% for the final grade; the
remaining 60% is from the practical component. Another
teacher is responsible for the practical classes. In these
classes, students acquire some practice of software
engineering through the specification, design,
implementation and validation of a software application, as
a project for teams of 4-6 students. Scrum is the adopted
agile software development methodology. The teacher acts
as a product owner. Each team member has a specific
function (e.g., Scrum Master, Designer, etc.). Each team
develops a different project. However, all the projects are
focused on the development of a game from a software
engineering perspective. This is important to maintain the
students motivated and engaged with the project. The first
deliverable is revised to accommodate feedback from the
product owner. Trello is used for project management and to
track progress on tasks.

A. Additional Realism
One class of the course has been taught by professionals

from software house companies. In this class, software
development processes like Feature Driven Development
(FDD) and Behaviour Driven Development (BDD) were
approached and some of their practical aspects are
discussed.

Another important initiative to enable students to get in
touch with practice in software engineering is a one-day
visit to the premises of another software house company.
This company (Outsystems) is well-known for the software
development platform they hold and that is used by many
software companies worldwide. Their platform is a low-
code platform for rapid application development. It is
especially designed for developing applications in the
context of agile projects. During this journey, students were
able to have closer contact with some Scrum activities
(namely Daily Scrum, Sprint, Sprint Execution) and contact
with some SCRUM Roles (Scrum Master, Development
Team). Professionals explain to the students what they are
doing, and which technologies and tools are used to support
their activities. Students also had a brief session about
software cost estimation.

These events are very important since they provide
students with the contact and interaction with real software
engineering projects with real stakeholders. They help to
improve the understanding and the assimilation of the
concepts learned in the course.

B. Student evaluation
The student evaluation comprises both theoretical and

practical evaluation. The theoretical evaluation is a written
exam over the course material. The exam consists of 10
questions chosen from the list of 30 questions that were
made available to the students at the beginning of the
course. This is different from the usual practice on other
courses. Most questions are reflexive questions about
software engineering subjects. With this approach, the intent
is to avoid students wanting to memorise the matters learned
along the course period (15 weeks). Also, it is desirable that
students learn and acquire knowledge for a long-life period,
mainly to be used after graduation on their job integration
experience. In section V some gathering data that wants to
evaluate results about the achievement to this goal of our
approach will be presented.

For the practical evaluation, along the semester, during
the 15 working weeks, students´ working teams develop the
product on 6 sprints (sprints here are defined as having 2
weeks each). The teacher (i.e. product owner) meets with
each team at the end of the sprint to evaluate the work in
progress, the achievements and the goals for the next sprint.
The team works in class (3h/week) and out of class. Half
way through the semester, after sprint 4, and at the end of
the semester, after sprint 7, each team has an assessment
session were both teachers are present to evaluate different
parameters. Some of the parameters are: clear goals, state of
the art, requirements (functional and non-functional),
software development process (roles, artefacts, timings, hits
and misses), team member´s description (roles, skills) task
scheduling (monitoring using Trello tool), modelling (user
stories), implementation (code), budget (estimated based on
the lesson learned during the visit to the company referred
to on the previous section of this paper), conclusions (pros
and cons) and future work, used literature and citation on
the final report, and final presentation and discussion.

One of the achievements that sometimes students realize
is learning from mistakes. For instance, if they do not
communicate within the team the achieved results are poor,
when compared with other more cohesive teams. On the
other hand, in collaboration with the “Scrum Master” of the
team, a deeper evaluation to eventually gave different
grades within the members of the team.

IV. KNOWLEDGE ASSIMILATION AND PRACTICE
In order to gauge the post-retention cognitive load, a

survey of former students was conducted in order to obtain
feedback on the importance of the subject to the current
professional activity (of those who finished the course and
work in the area), and also to know if the knowledge

81Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

transmitted in the theoretical classes remains. For this last
component, the survey included questions that had been
already used in the theoretical evaluation of the course. The
answers were evaluated with the same evaluation criteria,
graded in a scale of 0-20. The questions were selected from
the same set of 30 questions referred to in Section III-B.
Respondents were informed that the results were for one
study and would not be disclosed to third parties. They were
asked to respond without recourse to extra help, because
what was at issue was whether the concepts and knowledge
remained present. The survey was also used to gather
insights about the usefulness of the course for the practical
life of each graduate. Thus, questions about aspects that may
be used in the day to day of their professional activities in
the companies where they currently work, were included in
the survey.

A. Survey Description
The survey was designed to be direct to our objectives

and be filled quickly and simply. Some questions were
answered in free text (case of questions of theoretical
knowledge) and others are multiple choice questions (e.g.,
used software methodologies). The survey was organized in
three parts: Questions about the current professional activity
of the respondents; theoretical questions about software
engineering; and space for feedback on the importance of
topics in their current professional life (for those who had
already finished the course).

As examples of questions, we asked if the graduated
students are working. If yes, we asked about that actual
tasks in their companies (planning, requirements, analysis,
design, Code, Quality Control, Tester, Project Management,
other), the used methodologies (waterfall, SCRUM, XP,
Prototyping, Spiral, FDD, Lean, RUP, other, none). About
the theoretical questions we asked about the fundamentals
of Software Engineering, Software Quality, Verifications vs
Validation, traditional vs Agile, team dimensions and roles,
among other questions and feedback.

V. SURVEY RESULTS AND ANALYSIS
This section presents the results gathered in the survey

and highlights some of the main findings.

A. Data Collection/Methodology
As a universe of respondents, surveys were sent to 97

students. Of these, 56 were undergraduate students
(although they had passed in this subject) and 41 graduated.

The survey was done online, using the LimeSurvey
webtool.

The response rate was of 24.4% of the graduated
students and of 21,4% of the undergraduate students.

It is important to note also that some respondents did not
answered to all questions.

B. Results and Analysis
Figure 1 shows the activities the respondents are

involved in in their work. 84% of the respondents are

involved in more than one activity. 50% of them are
involved in planning, analysis and testing but they are not
involved in implementation.

Figure 1. Activities carried out.

Students were also asked to identify the software
development methodologies they use in their activities. They
were able to identify the methodologies they use considering
a list of given methodologies. Results are presented in Figure
2.

Figure 2. Software development methodologies.

More than 70% of the respondents refer that they use the
Scrum methodology. This appears to be in line with the
results presented in the “12th annual State of Agile report”
[15] that refer that 52% of respondents stated that more than
half of the teams in their organizations are using agile
practices. And it is also in accordance with the results
presented in another survey of more than 2,000 active Scrum
and Agile practitioners [16]. This study refers that 94% of
agile users use the Scrum approach in their agile practice
(78% use Scrum with other approaches).

With respect to the importance of the subjects learned in
the course, 87.5 percent, of the 8 graduated students that
respond to this question, said that the content learned in the
course has been considerably useful for their actual
professional activity (see Figure 3).

The second part of the survey was related to theoretical
questions about software engineering. This part was
evaluated in a 0-20 scale and we compare these results with
the results achieved by the same individual during the

82Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

course. We consider the individual “maintained” if (grade
achieved in the course -1.5 £ grade achieved in the survey
£ (grade achieved in the course +1.5).

After evaluating the answers to the questions, we
conclude that there is a majority (58%) that has maintained
or increased the result (41% maintained, 17% increased) (see
Figure 4).

Figure 3. Course content vs profissional activity.

Figure 4. Grades evolution (not graduated respondents).

In the case of students already graduated, the results,
presented in Figure 5, are better (less cases (37,5%) of
lowering grades). Despite the long period of time after they
attend the course, this is probably a consequence of the
practical experience they get in the field of software
development.

Figure 5. Grades evolution (graduated respondents).

VI. LESSONS LEARNED AND CHALLENGES FACED
The contributions of this paper are in the form of the

lessons learnt, which may be seen as guidance for others
looking to approximate the know-how of students to the
methods and techniques used by software companies. In
summary, these are:

• Students should learn by doing and, wherever
possible, software engineering principles should be
assessed in the context of practical work, rather than
by regurgitating material taught or extracted from
text books.

• Students must have well defined and known goals.
The assessment of the theoretical subjects does not
need to be a surprise in the exam.

• Opening classes to external stakeholders (by
promoting talks or visiting companies) during the
last part of the semester helps students to reinforce
knowledge (some of which are not in books) and
motivate them to the subjects.

• It is very important to get feedback from past
students and evaluate if the transmitted concepts and
knowledge are still there, and if it was improved by
the work experience in the labour market.

• It is important to choose projects that are of interest
to the students and that can motivate them and
involve them in their development. Projects that are
related to games development can be very
interesting.

However, during our experience, we faced challenges
like:

• Difficulty to maintain all team members equally
motivated and engaged in the same way throughout
the entire project development period;

• Keeping all students involved in the project. Some
students may drop out, leaving the team during the
semester, and affecting the workflow and scheduling
of the remaining members of the team;

• Allowing students to experience various roles within
the team. It is necessary to find a way to rotate the
roles of each one within the team, to avoid each
student being too focused on just one role. It is
important that everyone experiences a diversity, as
broad as possible, of different roles;

• Allowing students to experience different
methodologies in real environments. More field trips
and contact with companies that use different
methodologies, must be promoted to foster more
diversity of experiences.

VII. CONCLUSIONS AND FUTURE WORK
Our survey was the starting point of a reflexion about the

impact of the approach followed in previous years in the
course of Software Engineering. Based on the results, we
think that allowing students to know the pool of questions in
advance, fosters the students on important knowledge in the
field and to understand these items, that we want students to
maintain over a long period of time.

83Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

In future, the pool of questions will be increased to
improve the effect of randomisation for the next exams. As
for the practical component, based on the results, Scrum is
still used as a case study since it is one of the most used
processes by companies where our graduated students work.
We will work to increase the number of respondents on the
survey. Also, in future we will also extend and analyse data
from a survey done to the employees of our graduated
students and reach more feedback to improve and actualize
the contents of this course.

REFERENCES
[1] R. Chatley and T. Field, “Lean Learning: Applying Lean

Techniques to Improve Software Engineering Education,” in
Proceedings of the 39th International Conference on
Software Engineering: Software Engineering and Education
Track, 2017, pp. 117–126.

[2] S. D. Zorzo, L. de Ponte, and D. Lucrédio, “Using scrum to
teach software engineering: A case study,” in 2013 IEEE
Frontiers in Education Conference (FIE), 2013, pp. 455–
461.

[3] M. Kuhrmann and J. Münch, “Enhancing Software
Engineering Education Through Experimentation: An
Experience Report.” 2018.

[4] C. Amrit, M. Daneva, and D. Damian, “Human factors in
software development: On its underlying theories and the
value of learning from related disciplines; A Guest Editorial
Introduction to the Special Issue,” Inf. Softw. Technol., vol.
56, no. 12, pp. 1537–1542, 2014.

[5] S. Beecham, T. Clear, D. Damian, J. Barr, J. Noll, and W.
Scacchi, “How Best to Teach Global Software Engineering?
Educators Are Divided,” IEEE Softw., vol. 34, no. 1, pp. 16–
19, 2017.

[6] F. Matthes, C. Neubert, C. Schulz, C. Lescher, J. Contreras,
R. Laurini, B. Rumpler, D. Sol, and K. Warendorf,
“Teaching Global Software Engineering and International
Project Management - Experiences and Lessons Learned
from Four Academic Projects,” 3rd Int. Conf. Comput.
Support. Educ. CSEDU 2011, p. 12, 2011.

[7] M. Nordio, C. Ghezzi, B. Meyer, E. Di Nitto, G.
Tamburrelli, J. Tschannen, N. Aguirre, and V. Kulkarni,

“Teaching Software Engineering Using Globally Distributed
Projects: The DOSE Course,” in Proceedings of the 2011
Community Building Workshop on Collaborative Teaching
of Globally Distributed Software Development, 2011, pp.
36–40.

[8] D. Dahiya, “Teaching Software Engineering: A Practical
Approach,” SIGSOFT Softw. Eng. Notes, vol. 35, no. 2, pp.
1–5, 2010.

[9] J. A. Macias, “Enhancing Project-Based Learning in
Software Engineering Lab Teaching Through an E-Portfolio
Approach,” IEEE Trans. Educ., vol. 55, no. 4, pp. 502–507,
2012.

[10] A. Heberle, R. Neumann, I. Stengel, and S. Regier,
“Teaching agile principles and software engineering
concepts through real-life projects,” in 2018 IEEE Global
Engineering Education Conference (EDUCON), 2018, pp.
1723–1728.

[11] M. Yampolsky and W. Scacchi, “Learning Game Design and
Software Engineering Through a Game Prototyping
Experience: A Case Study,” in Proceedings of the 5th
International Workshop on Games and Software
Engineering, 2016, pp. 15–21.

[12] O. Shabalina, N. Sadovnikova, and A. Kravets,
“Methodology of teaching software engineering: Game-
based learning cycle,” Proc. - 2013 IEEE 3rd East. Eur. Reg.
Conf. Eng. Comput. Based Syst. ECBS-EERC 2013, pp. 113–
119, 2013.

[13] U. Schäfer, “Training scrum with gamification: Lessons
learned after two teaching periods,” in 2017 IEEE Global
Engineering Education Conference (EDUCON), 2017, pp.
754–761.

[14] R. Holmes, M. Craig, K. Reid, and E. Stroulia, “Lessons
Learned Managing Distributed Software Engineering
Courses,” in Companion Proceedings of the 36th
International Conference on Software Engineering, 2014,
pp. 321–324.

[15] VersionOne Inc, “12th annual State of Agile report,” 2018.
[16] Scrum Alliance, “STATE OF SCRUM 2017-2018. Scaling

and agile transformation.,” 2017.

84Copyright (c) IARIA, 2018. ISBN: 978-1-61208-668-2

ICSEA 2018 : The Thirteenth International Conference on Software Engineering Advances

