
A Proposal of Descriptive Pattern for Maintainability Requirements

Yuki Sanomachi

Shibaura Institute of Technology

Tokyo, Japan

e-mail: ma18051@shibaura-it.ac.jp

Tsuyoshi Nakajima

Shibaura Institute of Technology

Tokyo, Japan

e-mail: tsnaka@shibaura-it.ac.jp

Abstract—To clearly define quality requirements is crucially

important for developing high quality systems and software.

Unlike usability and security requirements, maintainability

requirements often come from developers themselves.

Therefore, their descriptive patterns have not been discussed so

much in spite of their importance. This paper proposes a

descriptive pattern for maintainability requirements based on

the quality requirements framework in the ISO/IEC 25030:2019.

The proposed descriptive pattern covers maintainability

requirements using all the measures in ISO/IEC 25023 and

enables machine checking their correctness and unambiguity.

Keywords-quality requirements; maintainability; SQuaRE;

standardization.

I. INTRODUCTION

Information and Communication Technology (ICT)
systems have been used in various places and situations, and

therefore, their failures can have a large impact on the society.

Therefore, it is required not only to fit them to various needs
and usage scenes, but also to ensure their quality through

careful consideration on social impact [1].

Development of a quality ICT system is required to meet its

quality requirements as well as its functional ones. Quality

requirements cover many views of the target system, among

which quality views related to system behavior, such as

usability and Security. These have been discussed thoroughly

in separate communities to standardize manners to write their

quality requirements.

In contrast, quality views related to the internal structure of

the system, such as maintainability and portability, are not

properly discussed with respect to standardization and the
manner in which they are specified.

In the systems and software engineering field, the reality is

that quality requirements are specified in a variety of manners,

most of which are not properly written without being

separated from functional requirements [2].

ISO/IEC 25000 series (SQuaRE: Systems and software

Quality Requirements and Evaluation) are developed to

provide a framework for quality definition and evaluation,

including quality models and measures, which cover an

exhaustive set of quality views. In addition, ISO/IEC 25030:

2019 [3] in the SQuaRE series provides a framework for
defining quality requirements using the quality models and

measures.

In this paper, we propose a descriptive pattern for

specifying maintainability requirements based on the

specification format defined in ISO/IEC 25030:2019. The

proposed descriptive pattern covers various kinds of

maintainability requirements and enables machine checking

their correctness and unambiguity.
In this paper, Section II describes the related work, and then,

Section III proposes a descriptive pattern for maintainability.

Section IV gives a qualitative evaluation of the proposed

pattern. Section V summarizes this paper and gives future

work.

II. RELATED WORK

 ISO/IEC 25010 [5] defines the product quality model with

eight quality characteristics. Maintainability is one of them,

which provides five sub characteristics: modularity,

reusability, analyzability, modifiability, and testability,

whose definitions are shown in TABLE 1.

TABLE Ⅰ DEFINITIONS OF SUB－CHARACTERISTICS OF

MAINTAINABILITY [5]

Sub-

characteristic
Definition

modularity degree to which a system or computer
program is composed of discrete components
such that a change to one component has
minimal impact on other components

reusability degree to which an asset can be used in more

than one system, or in building other assets

analyzability degree of effectiveness and efficiency with
which it is possible to assess the impact on a
product or system of an intended change to
one or more of its parts, or to diagnose a
product for deficiencies or causes of failures,
or to identify parts to be modified

modifiability degree to which a product or system can be
effectively and efficiently modified without
introducing defects or degrading existing
product quality

testability degree of effectiveness and efficiency with
which test criteria can be established for a
system, product or component and tests can

be performed to determine whether those
criteria have been met

ISO/IEC 25023 [6] product quality measures provides 86

quality measures corresponding to quality sub characteristics,
including 13 measures for maintainability characteristic.

Japan Users Association of Information Systems (JUAS)

published a guideline which defines their own quality

measures other than those of ISO/IEC 25023 [4]. These give

206Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

mailto:ma18051@shibaura-it.ac.jp

recommendation on what measures should be used for

maintenance requirements. However, these do not guide how

to define maintenance requirements themselves. Therefore,

there are needs for descriptive patterns to guide it.

ISO / IEC 25030: 2019 [3] provides the following
specification format for specifying quality requirements.

⚫ Target entity: Components of the system

⚫ Selected characteristic: modularity

⚫ Quality goal with conditions:

Reducing the coupling between any two of

components

⚫ Quality measure: (MMo-1-G) coupling of

components

⚫ Target value: 1

⚫ Acceptable range of values: 0,98 – 1,00

It is recommended to use this format for specifying not

only the scope and goal of the quality requirement, but also

quality measures with its target value and acceptable range

of the value.

III. DESCRIPTIVE PATTERN FOR SPECIFYING

MAINTAINABILITY REQUIREMENTS

In this paper, we propose a descriptive pattern for

maintainability requirements with the aim of standardizing
the manner to specify them. We set the following four

requirements for the descriptive pattern:

(1) The descriptive pattern for specifying maintainability

requirements shall cover all types of maintainability

requirements with as few descriptive patterns as

possible.

(2) Maintainability requirement statements conformed to

the pattern shall be natural to readers.

(3) Maintainability requirement statements conformed to

the pattern shall prevent from ambiguities.

(4) The pattern shall enable machine checking

correctness and unambiguity for maintainability
requirement statements.

In order to create the descriptive pattern of the

maintainability requirements, we did the following analysis:

i. Create a table of maintainability measures merging

those from the ISO/IEC 25023 and JUAS guidelines.

ii. Extract what achievement to be measured in the

corresponding quality sub characteristic as the “quality

goal”.

iii. Parameterize the quality measure so that it 2can be
limited to the appropriate level of application. The

parameters include:

・ Scope of the target entity

・ Criteria for the evaluation

・ Context for application (evaluation period,

subjects, etc.)

iv. Create descriptive patterns and try using them to write

requirement statements.

As a result of the above analysis, we propose the following

descriptive pattern for maintainability requirements.

In order to Quality goal, quality measure shall be [greater

| smaller] than Target value.

Quality goal = [improve | increase | suppress | decrease]

Attribute of Target entity] | Outcome of use

The two rows of Quality goal and Quality requirement

statement are added to the original table of quality measures

to be TABLE 2. In TABLE 2, for example, if Quality goal is

“increase the independency of system components,” Quality

measure is “the coupling of components,” and Target value

is “99.0％”,” the quality requirement statement goes to:

In order to increase the independence of system

components, the coupling of components shall be greater

than 99.0％.

IV. EVALUATION

All the maintainability requirements in TABLE 2 can be

specified naturally using the proposed descriptive pattern.

This proves to meet the requirements (1) and (2).

Quality requirement statements conformed to the proposed

descriptive pattern have all the items of the specification

format in ISO/IEC 25030:2019, which is designed to prevent

the quality requirement statements from being ambiguous,

which meets the requirement (3).

SE Suite [7] is a tool for describing, checking, and

evaluating quality in requirement specifications, and consists
of the following three tools:

・ Requirements Quality Analyzer (RQA),

・ Requirements Authoring Tool (RAT)

・ Knowledge Manager (KM)

RQA provides a checking function for general requirement

statements with designated descriptive patterns. We can use

this tool to implement machine checking maintainability
requirements using the proposed description pattern and

vocabularies defined in KM. SE Suite can check the
following points:

・ whether the statement is syntactically correct or not

・ whether terms are defined or not

・ whether relationship between terms are appropriate or

not

・ whether the context of application of the quality

measure is appropriate or not

・ whether the range of the quality measure is appropriate

or not

207Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 Figure 1 shows an example of checking layers of SE Suite

for the maintainability requirement statement using the

proposed pattern.

Figure Ⅰ Checking layers of SE Suite for the maintainability requirement

statement using the proposed description pattern

By implementing the description pattern proposed with SE

suite, it is mechanically possible to detect errors, omissions,
and ambiguities in the requested sentences.

This shows that the proposed description pattern meets

requirements (4).

V. CONCLUSION AND FUTURE TASKS

In this paper, we proposed a descriptive pattern for

maintainability requirements, which proves to cover various

types of them. Using SE Suite, this pattern enables a variety

of checking for maintainability requirement statements.
The proposed descriptive pattern can be applied to all the

maintainability measures defined in ISO/IEC 25023 and

JUAS, but it may not be limited to them. On the contrary, the

single pattern might not be enough to specify some other

maintainability requirement statements. Therefore, we

should consider quantifying quality attributes, such as target

question metrics (GQM). The proposed pattern should be

examined to write more examples of maintainability

requirements, which strengthen our belief on the proposed

pattern to meet the requirements for it.

ACKNOWLEDGMENT

This research was conducted as a project of "International

standardization for quality model and evaluation of system

and software (Japan Standards Association)" as a part of the

industrial standardization promotion business of Ministry of

Economy, Trade and Industry, FY2019.

REFERENCE
[1] Information-technology Promotion Agency Japan,

” Information system failure status”, 2018, pp. 1–3.

[2] J. Eckhardt, A.Vogelsang, and D. Méndez Fernández, “Are non-

functional requirements really non-functional? an investigation of non-
functional requirements in practice”, Proc. International
Conference on Software Engineering(ICE16), ICE Press, Nov.
2016, PP. 832-842, doi:10.1145/2884781.2884788.

[3] ISO/IEC Software Engineering, ISO/IEC25030 Software
Product Quality Requirements and Evaluation (SQuaRE)
Quality requirements framework, 2019.

[4] JUAS ed, “A guideline for specification of non-functional
requirements (UVC project II)”, 2008, pp. 89–100.

[5] ISO/IEC Software Engineering, ISO/IEC25010 Software
Product Quality Requirements and Evaluation (SQuaRE)
System and software quality models, 2011.

[6] ISO/IEC Software Engineering, ISO/IEC25023 Software
Product Quality Requirements and Evaluation (SQuaRE)
Measurement of External Quality, 2016.

[7] The REUSE Company.Systems Engineering Suite,
https://www.reusecompany.com/systems-engineering-suite,
(accessed 2019-11-17).

208Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

https://www.reusecompany.com/systems-engineering-suite

Requirements Quality Analyzer (RQA
Quality sub-

characteristic Quality goal Quality measure Measurement function Quality requirement statement

Modularity Increase the

independence of

system

components.

Coupling of

components

X=A/B

A=Number of components which are implemented with no

impact on others

B = Number of specified components which are required to be

independent

In order to increase the

independence of system

components, the coupling of

components of the system shall be

greater than [target value].

Increase module

cohesion

Cyclomatic

complexity

adequacy

X = 1– A/B

A = Number of software modules which have a cyclomatic

complexity score that exceeds the specified threshold B =

Number of software modules implemented

In order to increase module

cohesion, the cyclomatic complexity

adequacy should be greater than

[target value].

Reusability Increase the

number of

reusable

components (or

modules).

Reusability of

assets

X = A/B

A = Number of assets which are designed and implemented to be

reusable

B = Number of assets in a system

In order to increase the number of

reusable components (or modules),

the reusability of assets
(applicable range, criteria for being

an asset, Criteria for reusability)

shall be greater than [target value].

Improve coding

quality of

modules

Coding rules

conformity

X = A/B

A = Number of software modules conforming to coding rules for

a specific system

B = Number of software modules implemented

In order to improve coding quality

of modules, the coding rules

conformity (scope, coding code)

shall be greater than [target value].

Analyzability Increase the

adequacy of

data used to

trace causes of

the system

failures

System log

completeness

X=A/B

A = Number of logs that are actually recorded in the system

B = Number of logs for which audit trails are required during

operation

In order to increase the adequacy of

data used to trace causes of the

system failures, the system log

completeness shall be greater than

[target value].

Improve the

accuracy and

efficiency of

identifying

causes of the

system failure.

Diagnosis

function

effectiveness

X=A/B

A = Number of diagnostic functions useful for causal analysis

B = Number of diagnostic functions implemented

In order to improve the accuracy

and efficiency of identifying causes

of the system failure, the diagnosis

function effectiveness shall be

smaller than [target value].

Diagnosis

function

sufficiency

X=A/B

A = Number of diagnostic functions implemented

B = Number of diagnostic functions required

In order to improve the accuracy

and the efficiency of identifying

causes of the system failure, the

diagnosis function sufficiency shall

be greater than [target value].

Improve the

readability of

the program.

Program source

comment rate

X=A/B

A = Implemented comment rate

B = Comment rate defined by the organization

To improve the readability of the

program, the program source

comment rate (application range)

shall be more than [target value].

Modifiability Improve the

accuracy and

efficiency of

system

correction.

Modification

correctness

X = 1 – (A/B)

A = Number of modifications that caused an incident or failure

within a defined period after being implemented

B = Number of modifications implemented

In order to increase the accuracy

and efficiency of system correction,

make modification correctness

(target period) less than [target

value].

Modification

capability

X=A/B

A = Number of items actually modified within a specified

duration

B = Number of items required to be modified

In order to improve the accuracy

and efficiency of system correction,

the modification capability shall be

smaller than [target value].

Improve the

appropriateness

of system

modification

management.

Change Content

Documenting

Rate

X=A/B

A = Number of features documented and subject to review

B = Number of functions with program change

In order to improve the

appropriateness of system

modification management, the

change content documentation rate

shall be greater than [target value].

Testability Increase the

sufficiency of

functions to

support test

execution.

Test function

completeness

X=A/B

A = Number of test functions implemented as specified

B = Number of test functions required

In order to increase the sufficiency

of the function to support test

execution, the test function

completeness shall be greater than

[target value].

Increase the

possibility of

independent

testing.

Autonomous

testability

X=A/B

A = Number of tests that can be simulated by stub among the

tests which depend on other systems

B = Number of tests which depend on other systems

In order to increase the possibility

of independent testing, make

autonomous testability more than

[target value].

TABLE Ⅱ PROPOSED DESCRIPTIVE PATTERN FOR MAINTAINABILITY REQUIREMENTS AND ITS APPLICATION TO QUALITY MEASURES

209Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

