
Modeling and Verification of Car Parking System

Hadiqa Alamdar Bukhari

School of Electrical Engineering and Computer Science

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

hbukhari.bese16seecs@seecs.edu.pk

Dr. Sidra Sultana

School of Electrical Engineering and Computer Science

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

sidra.sultana@seecs.edu.pk

Abstract— Formal modeling and verification help in achieving

safety related concerns in real time systems. Car parking

system is modeled and verified in this paper to ensure the non-

collision and the parking of a car which is both time and space

efficient. A detailed simulation of the model is presented and

described.

Keywords-Uppaal; system verification; system modeling; car

parking.

I. INTRODUCTION

Metropolitan cities are dealing with increasing traffic and
in turn an increase in parking garages. With the increase in
the use of automated systems and the introduction of Internet
of Things, more cities are making use of smart car parking
systems to deal with the common problem of finding a
vacant parking space. Smart car parking systems deal with
directing cars to an empty parking spot all the while keeping
a record of which parking spots are free.

Car parking systems are safety critical and need to be
modeled and verified before they are put into use. A single
mistake may lead to damage of a person’s car and waste of
time due to an inefficient system [1]. These systems are
incredibly complex and make use of expensive hardware.
Therefore, it is essential that such systems are properly
modeled, tested and verified on software before they are
implemented on hardware [2]. System verification is of
paramount importance [3] and advancements in technology
have allowed us to optimize and check the safety of a system
on a computer before it is constructed in the real world.

In this paper we modeled the car parking system using
Uppaal model checker. The verified model with the timed
automata can be used to implement a real time car parking
system. We verified the safety, deadlock freeness,
reachability, liveness, mutual exclusion, utility and fairness,
which Uppaal’s inbuilt verification module allowed us to do
easily [4].

Following the introduction, in Section II a literature
review is given where other similar projects are discussed. In
Section III the system overview consisting of a model for car
and a model for lane is described and the timed automata of
these two models are also shown. The details of the Uppaal
model checker and reasons behind why it is used are also
discussed in this section. In Section IV system is verified and
the verification properties are described. Finally, in Section
V the conclusion and further improvements to the system are
detailed.

II. LITERATURE REVIEW

A number of different car parking systems have been
made in the past. In this section we will be discussing a few
of these systems.

In [5], a car parking system is developed where the
presence of a car causes the gates of a parking lot to open
and the number of cars in the parking lot are displayed on an
LCD. Here the authors focused mainly on the hardware
aspects and the modeling and simulation were done on
hardware rather than software.

In [6], a similar system to [5] is developed but the car is
allotted the closest parking spot by judging the distance of
the car from the entrance or exit of the parking lot. The
authors in [7], aim to use an RFID and an infrared sensor
based parking system. Here hardware modules are used to
verify the correctness of the system which can be more
expensive than using a modeling and verification software.
In our project we significantly cut costs by modeling and
verifying our system on the Uppaal model checker instead.

In [8], a web application based car parking system is
made where a camera is used to check the availability of a
parking spot and if a parking spot is free the user is notified.
In [9], the authors have described a mobile application
system that uses infrared sensors to find and allocate a
parking spot.

In the above mentioned works, modeling and verification
of the system was highly dependent on hardware modules.
Hardware is not as reliable however, and it can be very hard
to check all the verification properties on it. We chose to use
Uppaal model checker in our project to ensure that all
verification properties like reliability or deadlock freeness
etc. are fulfilled.

In [10], the authors used Vienna Development Method-
Specification Language (VDM-SL) to develop and verify a
graph-based model. This model is used to find nearest empty
parking spots. This is the most relevant project however, the
simulator which we have used in our project, Uppaal is more
versatile than VDM-SL and can be used to understand the
traces to further correct the model, or to draw conclusions
[11].

III. SYSTEM MODELING

In this section we give a system overview. Details on the
Uppaal model checker are given and the timed automata of
car parking system is detailed.

223Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

A. System Overview

As shown in Fig. 1, we modeled two automata, one for
the car and one for the street on which the car looks for a
parking space.

The cars can move on a street with two lanes and their
sensors query a parallel automaton that models the street
layout. The car looks for a free parking space and if there is
one present on either lane, it moves into the available
parking space and performs parallel reverse parking. After
40 seconds the cars can move out of the parking space and
move forward to the end of the street. The street is 5 meters
long and it has 2 suitable parking spaces in each lane. Two
cars cannot park in the same parking spot at once.

The parallel automata communicate through shared
channels. The cars can park multiple times in the street so
long as there is a parking space available and the end of
street has not been reached. The car can go back to the start
of the street after it exits the street as well.

Figure 1. System state diagram.

B. Uppaal

We used the Uppaal model checker which is an
integrated tool environment that gives us the ability to model
and verify the behaviour of a system [12]. Uppaal is a very
powerful tool since it can handle real time issues and
transitions. Bounded liveness can be expressed and verified
in Uppaal which is something that many model checkers do
not provide. Also, Uppaal has an easy to use interface which
makes it easier to model and execute a system.

Moreover, Uppaal displays the sequence diagram of the
system as it is being executed so every state can be checked
and the user can see of the states are being changed in the
same sequence as intended. There are also a lot of projects
which have been tested by Uppaal which further provided
me with the confidence to use it as the model checker and
verifier for this project [13].

C. Timed Automata

The Uppaal model checker was used to develop and test
the model of a car which enters the parking system. As

shown in Fig. 2, a car has four possible states, start,
find_parking_spot, park and exit_street. A car can alternate
between these four states.

For a car to transition from one state to another it must
first fulfill the transition condition. As the car transitions
from one state to another the position of the car which is
stored in the car_pos variable is incremented. The car_pos
variable helps detect the end of street.

Figure 2. Model for car.

 We also created a model for the lanes on which the cars
can park. Each lane will have two parking spots as shown in
Fig. 2. There are eight possible states in a lane. Similar to
Fig. 1, the transition condition must first be fulfilled to
transition from one state to another. A street_len variable is
incremented whenever a car moves through the street. The
street length is 5 meters.

Figure 3. Model for lane.

224Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

The sequence diagram displayed in Fig. 4 shows the order
in which states are executed and what triggers them. The
states and transitions of the whole system are also displayed.

The sequence diagram can also be used to check the
correctness of the system. In case of a deadlock, we can track
the point at which deadlock occurs and can therefore, correct
it.

Figure 4. Sequence diagram

IV. SYSTEM VERIFICATION

The system was verified using the Uppaal model checker
to ensure the safety, reachability, liveness, utility, deadlock
freeness and fairness of the system.

A. Deadlock freeness

 There are no deadlocks in the system at all.
 A[] not deadlock

 There are no deadlocks when the cars reach the end
of the street.

 A[](deadlock imply (laneOne.end_of_street and
 laneTwo.end_of_street))

B. Safety

 Car one cannot take up 2 parking spaces in lane one
as it would cause no other car to park in lane one and
if a car tries to park in lane one it would crash into
car one.
A[]((laneOne.parking_spot1 and
carOne.parked==true)imply

not(laneOne.parking_spot2 and
carOne.parked==true))

 Car one cannot take up 2 parking spaces in lane two
as it would cause no other car to park in lane two and
if a car tries to park in lane two it would crash into
car one.
A[]((laneTwo.parking_spot1 and
carOne.parked==true)imply
not(laneTwo.parking_spot2 and
carOne.parked==true))

 Car two cannot take up 2 parking spaces in lane one
as it would cause no other car to park in lane one and
if a car tries to park in lane one it would crash into
car two.
A[]((laneOne.parking_spot1 and
carTwo.parked==true)imply
not(laneOne.parking_spot2 and
carTwo.parked==true))

 Car two cannot take up 2 parking spaces in lane two
as it would cause no other car to park in lane two and
if a car tries to park in lane two it would crash into
car two.
A[]((laneTwo.parking_spot1 and
carTwo.parked==true)imply
not(laneTwo.parking_spot2 and
carTwo.parked==true))

C. Reachability

 Car one exits the street infinitely often.
E<> (carOne.exit_street)

 Car two exits the street eventually.
E<> (carTwo.exit_street)

D. Liveness

 Car one or car two or both must always be looking
for a parking space for the system to stay alive.
E<> ((carOne.find_parking_spot and carTwo.park)
or (carTwo.find_parking_spot and carOne.park) or
(carOne.find_parking_spot and
carTwo.find_parking_spot))

E. Mutual exclusion

 Car one cannot be parked in lane one and lane two at
the same time.
A[]((laneOne.parking_spot1 and
carOne.parked==true)imply
not(laneTwo.parking_spot1 and
carOne.parked==true))

 Car two cannot be parked in lane one and lane two at
the same time.
A[]((laneOne.parking_spot1 and
carTwo.parked==true)imply
not(laneTwo.parking_spot1 and
carTwo.parked==true))

 Car one cannot be at the start and the end of the
street at the same time.
A[]((carOne.start and laneOne.start_of_street)imply
not(carOne.start and laneOne.end_of_street))

225Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

 Car two cannot be at the start and the end of the
street at the same time.
A[]((carTwo.start and laneOne.start_of_street)imply
not(carTwo.start and laneOne.end_of_street))

F. Utility

 If carOne enters the street, it eventually parks on the
street.
E<> (carOne.start imply carOne.park)

 If carTwo enters the street then it eventually parks
on the street.
E<> (carTwo.start imply carOne.park)

G. Fairness

 Neither car one nor car two waits for longer than 40
seconds to unpark.
A<> (carOne.wait<=40 and carTwo.wait<=40)

 Cars cannot drive on the street for longer than the
length of the street.
A[] (laneOne.street_len<6 and
laneTwo.street_len<6)

Some of the verified properties are displayed in Fig. 5.

Figure 5. Results of the uppaal model checker

V. CONCLUSION AND FUTURE WORK

In this paper, an effective methodology for the modeling
and verification of the car parking system was shown. The
safety properties were verified using Uppaal and the stability
of the real time automata was checked through the model
checker as well. The car and lane models communicate
effectively through common channel.

Most of the existing smart car parking systems are tested
using hardware simulations which do not always ensure the
correctness of the system. On the other hand, we have made
use of formal modeling and verification techniques to prove
that our model is correct.

For the time being we have developed a simple car
parking system which is implemented in the real world
scenario using the Uppaal model checker. To further
improve our work, the system can be extended to
accommodate a greater number of cars, lanes and parking
spots. Moreover, a module can be added to find out and
direct the car to the closest parking spot.

REFERENCES

[1] M. Jaffar-ur Rehman, F. Jabeen, A. Bertolino and A. Polini,
"Testing software components for integration: a survey of
issues and techniques", Software Testing, Verification and
Reliability, vol. 17, no. 2, pp. 95-133, 2007.

[2] P. Upadhyay, "The Role of Verification and Validation in
System Development Life Cycle", IOSR Journal of Computer
Engineering, vol. 5, no. 1, pp. 17-20, 2012.

[3] M. Latuszynska, “Problems of verification and validation of
computer simulation models”, STUDIA INFORMATICA, pp.
27-40, 2013.

[4] G. Behrmann, A. David, K. Larsen, P. Pettersson and W. Yi,
"Developing UPPAAL over 15 years", Software: Practice and
Experience, vol. 41, no. 2, pp. 133-142, 2011.

[5] M. Ahmed and W. G. Wei, (2014). “Study on Automated Car
Parking System Based on Microcontroller”, International
Journal of Engineering Research & Technology, vol. 3, no. 3,
pp. 256-258, January 2014.

[6] S. Ghosh, S. Prusty and P. B. Natarajan, “Design and
Implementation of Smart Car Parking System Using
LabVIEW”, International Journal of Pure and Applied
Mathematics, vol. 120, pp. 329-338, October 2018.

[7] M. Sabnam, M. Das, P. A. Kashyap, “Automatic Car Parking
System”, ADBU Journal of Engineering Technology, vol. 4,
no. 1, 2016.

[8] A. Ahad, Z. Khan, and S. Ahmad, “Intelligent Parking
System”, World Journal of Engineering and Technology, vol.
4, no. 2, pp. 160-167, May 2016.

[9] J. D. Bachhav1, Mechkul, “Smart Car Parking System”,
International Research Journal of Engineering and
Technology (IRJET), vol. 4, no. 6, pp. 3036-3038, June 2017.

[10] S. Latif, H. Afzaal and N. A. Zafar, "Modelling of Graph-
Based Smart Parking System Using Internet of Things",
International Conference on Frontiers of Information
Technology (FIT), pp. 7-12, 2018.

[11] “Formal Methods in the Teaching Lab Examples, Cases,
Assignments and Projects Enhancing Formal Methods
Education”, Formal Methods Europe Subgroup on Education,
Hamilton, ON, Canada, 2006, pp. 61-62

[12] M. P. Júnior and G. V. Alves, “A Study Towards the
Application of UPPAAL Model Checker”, 3rd Workshop-
School on Theoretical Computer Science, pp. 5-8, September
2015.

[13] A. Hessel, K. Larsen, M. Mikučionis, B. Nielsen, P.
Pettersson and A. Skou, “Testing real-time systems using
UPPAAL”, Formal Methods and Testing. pp. 77-117, January
2018.

226Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

