
Metaphor Models in Software Education: An Empirical Study

Evgeny Pyshkin
University of Aizu

Tsuruga, Ikki-Machi, Aizu-Wakamatsu, Fukushima, 965-8580, Japan
Email: pyshe@u-aizu.ac.jp

Abstract—This research contributes to the literature on using
metaphors in computing and software education. We examine the
major theories of metaphors focusing on linguistic, cognitive and
communicational aspects of contemporary discourse on metaphor
and the applicability of these theories to the domain of computing,
software engineering and education. We investigate the specific
characteristics of metaphors used in computer science and soft-
ware systems and introduce a number of use cases demonstrating
how metaphors are used in programming classes while discussing
such topics as code organization, code readability, code aesthetics,
and software project workflow.

Keywords–Metaphor; software engineering; education;
empirical; readability.

I. INTRODUCTION

Exploring metaphors and their use in education received
significant attention in research works in various fields of
knowledge from philosophy and linguistics on one side of the
spectrum to technology and engineering on the other. Conver-
gence of models and approaches used in different subject do-
mains becomes a noticeable trend in present-day technology-
related cross-disciplinary research. In the last decade, we
can cite a number of efforts to put software engineering
and computing discourse into the context of human-centric
paradigm [1], humanities [2], social and cognitive sciences [3].
Investigations on crossings between natural, social and tech-
nology disciplines [4], centricity of computer science in con-
temporary liberal arts education [5], digital disruption chal-
lenges [6], relationsips between digital humanities, digital
society and software study [7] are of much interest for both
humanity and engineering researchers.

In linguistics, metaphors are language constructs refer-
ring to (or reasoning about) the concepts using words and
phrases with the meanings appropriate to different kinds of
concepts [8]. Consider the famous William Shakespeare’s
fragment from the play “As You Like It” [9]: “All the world’s
a stage, And all the men and women merely players: They
have their exits and their entrances.” We find here a direct
metaphor: “world as theater stage” using the connected con-
cepts “players”, “actor’s exit (from the stage)” and “actor’s
entrance (to the stage)”. Persy Bysshe Shelly uses a metaphor
of family to describe the cloud, which is itself a metaphor of
his romantic hero in the poem “The cloud” [10]: “I am the
daughter of Earth and Water, And the nursling of the Sky.”

In poetry, the metaphors of empathy are very common;
here is one more good example from Paul Verlaine’s “L’heure
exquise” (1820), where the lune has voice, the willow has a
silhouette, and the wind (not a willow!) weeps [11] (Table I
shows the original text together with the English direct trans-
lation).

TABLE I. VERLAINE’S METAPHORS

Original French Text English Direct Translation
De chaque branche From every branch
Part une voix A voice goes
Sous la ramé. . . To under the ridge
La silhouette The silhouette
Du saule noir Of the black willow
Où le vent pleure. . . Where the wind weeps. . .

Metaphors are mental phenomena that could be manifested
not only in language, but also in gesture or graphic form;
thus, in every form connected to the metaphor’s (and human
being’s) cognitive nature and the metaphor’s socio-cultural
dimensions [12]. Metaphors do not only assert object sim-
ilarities; paradoxically, they point up the dissimilarities and
contrasts between the objects, and this is equally important
for understanding how metaphors work [13].

Apart from linguistics and philosophy, there are numer-
ous metaphor connotations in technology and engineering.
Carbonelli, Sánchez-Esguevillas, and Carro pointed out the
role of metaphors in understanding the emerging technologies:
“Technologies are not only changing our world in a mate-
rialistic and pragmatic way but they are a primary factor
in defining our conceptual models, influencing the way we
understand and perceive our experience” [14]. Being a new
reality, the technologies are often based on new concepts
requiring metaphors for their understanding, such as:

• “Data as resources” metaphor in Data Science (de-
rived from the earlier resource-based metaphors for
electricity, time, transportation systems, etc.);

• “Software as a construction material” in Software-
defined Anything (connected to the earlier metaphor
of software design as architecture);

• “Home as device container” in Smart Home tech-
nology (closely related to the IoT metaphors).

Kendall mentioned that successful user metaphors have an
impact on the development of successful information systems
and their interfaces: “Invoking a metaphor means opening the
door for a listener to use all previous associations in entering
the subject in different way” [15].

In software engineering, requirement elicitation and initial
system design need good metaphors in order to facilitate
establishing communication between the development team
and project stakeholders, to allow both parties interpreting and
understanding their languages (see Figure 1). We use the term
“languages” in a broader sense, to designate the process of
mapping the conceptual core connected to the subject domain
to the model used on developer’s side.

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Figure 1. Mapping the customer’s domain language to the development
team’s language.

The remaining text is organized as follows. In Section II,
the existing theories of metaphor are introduced at a glance
with respect to their mutual dependencies. Section III is
focused on using the theories of metaphor in education, with
particular emphasis on their applicability to technology disci-
plines. Section III presents our own experience on introducing
metaphors to students attending a programming class.

II. METAPHOR PARADIGMS IN HISTORICAL PERSPECTIVE

It is no exaggeration in saying that modern theories of
metaphor appeal to a number of ancient views, where the
works of Aristotle and Quintilian are the most discussed.
Multiple hypotheses of contemporary linguistics are built on
revealing the insights and finesse of the analysis of ancient
authors [16]. Traditionally, the sources of so-called Compar-
ison Theory are attributed to Aristotle, who introduced a
metaphor as the application (έπιφoρά) of an alien name
by transference either from genus ()γένoς) to species (είδoς),
or from species to genus, or from species to species, or by
analogy [17]. In contrast to many modern studies of metaphor
insisting that Aristotle undervalued metaphor and believed it to
be a solely ornamental language feature, Mahon argued that
Aristotle held a position on the ubiquity of metaphor which
supports current views about the omnipresence of metaphors
in everyday discourse [18]. Wood claimed that the Aristotle’s
definition contributes to the relationships between concepts
and the processes of metaphor application (thus, from the
perspective of software engineering, it is in direction of entity-
relationship modeling) [19].

Quintilian, in turn, used a “process-oriented” approach,
but emphasized the alteration, or mutation, rather than trans-
ferring [20]. Quintilian stated that the alterations arise from
the words used metaphorically, and the involved changes
“concern not merely individual words, but also our thoughts
and the structure of our sentences” [21]. Thus, the Quintilian’s
approach may be considered as a precursor of Cognitive
Theory of Metaphor by Lakoff and Johnson [22].

Richards introduced, and then Black developed the Inter-
action Theory of Metaphor. In contrast to ancient authors
who worked with the transitional concepts of source and
target, Richards introduced the technical concepts of tenor
and vehicle, where the former is the thought being described
in terms of another (metaphorically), while the latter is the
thought, in terms of which the tenor is described [23]. Black
described it in his conceptual book “Models and Metaphors”:
“A memorable metaphor has the power to bring two sepa-
rate domains into cognitive and emotional relation by using
language directly appropriate to the one as a lens to seeing
the other; the implications, suggestions, and supporting values
entwined with the literal use of the metaphorical expression
enable us to see a new subject matter in a new way. [. . .]

the metaphor itself neither needs nor invites explanations
and paraphrase. Metaphorical thought is a distinctive mode
of achieving insight, not to be construed as an ornamental
substitute for plain thought” [24]. Thus, metaphors are linked
to ontological models connected to the tenor and vehicle.

Lakoff created a Contemporary Theory of Metaphor fo-
cused on examination of metaphors as not solely language enti-
ties, but matters of thought and reason: “the locus of metaphor
is not in language at all, but in the way we conceptualize
one mental domain in terms of another. The general theory
of metaphor is given by characterizing such cross-domain
mappings” [25]. Such a conceptualization is delivered via
finding and creating the ontological correspondences between
the target and source domains. There are subject matters that
cannot be comprehended, without using metaphors, even in
everyday conversational language. Many conceptual metaphors
are cross-language metaphors. The famous metaphor “Love as
Journey” can be described in different languages without los-
ing much of its metaphoric contents. This makes this example
extremely successful. Vocabulary related to a journey serves as
a frequent source for metaphors used in different knowledge
areas. In project management, for example, we use milestones
to designate the important project stages, tickets – to name
the tasks assigned to engineers that should be completed by
the deadline, project roadmaps – to name an overview of
the project’s goals and deliverable artifacts presented within
a project timeline, etc.

Steen extended the preceding theories by adding a
third, communicative, dimension. He pointed out that though
Lakoff’s cross-domain mappings may have been required in
the history of language and its understanding, “these map-
ping have become irrelevant to the thought processes of the
contemporary language user, precisely because the metaphor-
ical senses of the words have become equally conventional,
and sometimes even more frequent that the non-metaphorical
ones” [26]. Specifically, in technology disciplines, there are
frequent cases, when the professional language becomes non-
metaphorical, even if many concepts were originally defined
using the metaphor constructions, but which are not presently
considered as a deliberate use of metaphors. There is also
a kind of ontology deformation: when metaphors of files,
folders and directories were used to name the interface
elements in computer systems (first, command-line, and later
– graphical), many people were able to understand the cross-
domain mapping between the abstractions of computer storage
organization and the concrete example of stationery items.
Nowadays, for younger generations, these interface names are
not abstract anymore; some have never seen physical files or
folders. Thus, they use these words without thinking of their
initial metaphorical connotations.

In terms of comparative theory, the source and the target
may change roles. In the early years of Internet technology,
the concept of electronic mail was explained by mapping the
electronic message domain to a traditional letter mail. At that
time, people had to explicitly emphasize the fact of sending an
electronic message, not a traditional one: “e-mail me”, “check
your e-mail”, etc. Nowadays, when most of communications
have been transferred to the domain of computer (e.g., (still)
electronic) systems, this “e” prefix became unnecessary and al-
most disappeared. By saying “mail me”, we rather mean send-
ing an electronic message, not a traditional mail. Colburn and

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Shute give the following explanation of the above-mentioned
phenomena: “when the target domain becomes so dissimilar to
the source through information enrichment that a metaphorical
name for the target concept ceases to be metaphorical and
becomes a historical artifact” [27]. Because of technology,
there could be even more unobvious cases, when at attempt to
use a particular metaphor in its literal sense may generate a
metaphorical connection “in opposite direction”: nice example
is the 2006 American romantic drama by Alejandro Agresti
“Lake House”, where the heroes used a physical mail box for
operations shifted in time. Such operations are possible and
even normal for electronic communications (nicely working for
the heroes), but seems surrealistic while moved to the physical
(neither electronic or virtual) reality.

III. USING METAPHORS IN EDUCATION

A. From Language Learning to Education in Broad Sense
In language learning, using metaphors is natural part of

introducing new lexical material to learners. Metaphors provide
a convenient approach to enhance and organize the learner’s
vocabulary, as well as to group together the words and syn-
thetic concepts having a metaphorical meaning. Researching a
metaphorical use of language constructions within a particular
topic may enhance the vocabulary related to the mapped topics.
In [28], Lazar gives a number of examples such as using body
vocabulary to describe the locations (in the heart of the city, on
the foot of a mountain) or weather vocabulary to describe the
human relations (a warm welcome, to freeze somebody out).

Even the teaching process itself can be described metaphor-
ically with respect to the teacher’s roles and responsibili-
ties. Clarken introduced 5 (perhaps, not exhaustive) teaching
metaphors: teachers as parents, teachers as gardeners, teach-
ers as prophets, teachers as pearl oysters, and teacher as
physicians [29]. A teacher may operate differently by using
different metaphors in different time; finding an appropriate
teaching model is an important aspect of making the teaching
process efficient and learner-friendly.

B. Metaphors in Computing and Software
Computer science and software metaphors are diverse

and multi-faceted, they actively exploit different theories of
metaphors (including linguistic, cognitive and communication
approaches): they all may be concurrently used and cooperate.

Research on the particularities of technology language
does not concern the corresponding technological or industrial
applications only, but society at large. The aspects of techno-
logical and engineering literacy are important for improving
educational practices in many areas of knowledge: “informed
citizens need an understanding of what technology is, how it
works, how it is created, how it shapes society, and how society
influences technological development” [30]. The language of a
particular technology-sensitive domain (such as software engi-
neering) is not only for the domain professionals anymore: all
members of contemporary society need a better understanding
of this language and its metaphors. What makes software
metaphors particularly complex is that they have connotations
to abstract entities that we could not physically touch or point
to. Johnson describes computer abstractions as “based not on
nature but rather on artificial world created by humans” [31].

Software architecture exploits the construction metaphor
with the list of relevant terms such as process building,

architectural pattern, etc. In turn, an appropriate metaphor
may improve the process of designing and describing software
architectures. The architectures could not be designed only
by a group of software engineers, they need more experts.
That is why Smolander defined four metaphors referring to
the different meanings of architecture, its description and
stakeholder environment [32]:

• Architecture as blueprint describing the high-level
implementation of the system;

• Architecture as literature describing the project doc-
umentation;

• Architecture as language describing the common
understanding about the system structure and commu-
nication between different stakeholders;

• Architecture as decision describing the decisions
about the system structure, the required resources and
development strategies.

In education, metaphors help to introduce the unknown
by using concrete examples explaining abstract things [29].
However, understanding of what is concrete and what is
abstract differs between disciplines. Abstraction in computer
science is not the same as in mathematics and linguistics [27]:
computer scientists (rightfully) believe that an application
control stack is a concrete entity, and its complexity can be
explained better with using the inferential structures of abstract
domains (like queuing). However, for others, the concept of
memory stack seems to be a complete abstraction.

Software works with many abstract concepts, which are
largely metaphorical. According to Boyd, software can be
considered as a special case of fiction literature, that is why
it is essentially metaphorical [33]. The approaches we use
to describe the data entities and control structures, memory
organization and program workflow, structural patterns and
architecture designs actively exploit various metaphors. Some
of such metaphors are listed in Table II.

Interestingly, introducing a metaphor to a software domain
may lead to further extension of these metaphor within the
bag of concepts specific for software design. Figure 2 provides
an illustration: a design pattern, describing the object-oriented
structure of instance creators, used a metaphor of factory
borrowed from the domain of industrial technology.

Figure 2. Synthesis of extended metaphor.

A Factory Method is for creation instances. It doesn’t have
compile-time dependencies on the object’s type. In turn, for a
given set of related interfaces, an Abstract Factory provides
a way to create objects that implement those interfaces for a
matched set of concrete classes (for example, while supporting
changing platform’s look and feel by selecting an alternative
set of widgets as shown in Figure 3).

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

TABLE II. EXAMPLES OF SOFTWARE METAPHORS

Domain Examples

Program objects

Scope
Assignment
Lifetime
Location

Control structures and program workflow

Selection
Loop
Thread
Lazy computation

Modular structure
Library
Package

Interface design

Menu
Palette
Folder
File

Storage containers

Array
Map
List
Queue
Tree

Structural and design patterns

Factory method
Bridge
Observer
Visitor

Design process
Waterfall
Evolution
Agile

Software analysis
Bad smell
Refactoring
Test mutation

Project flow
Maturing
Degradation
Evolving

Figure 3. Abstract factory and “Look and Feel” Metaphor.

Indeed, “Abstract factory” could hardly be imagined in real
world, however, in computer architectures, it provides a con-
crete (not abstract!) model of class structure representing the
object creation subsystem of extensible and interchangeable
sets of multiple object types that should function in a way that
is independent on the specific types they are working with.

IV. USING METAPHORS IN THE PROGRAMMING CLASS:
STUDY OF EXPERIENCE

Metaphors in education are helpful for many reasons. First,
to link students’ knowledge to newly introduced concepts and
models [34] (experience-based metaphors). Second, to name
new concepts in a way we can understand them by using
similarity between the source and target domains (comparative
metaphors). Finally, they can exploit the ontology mapping
(ontological and interactive metaphors).

A. Software Code Organization Metaphors
Tomi and Mikko Difva introduced a number of metaphors

used in the programming class for beginners that help to
understand the different views on code structuring [35]. They
defined nine metaphors: machine, organism, brain, flux and
transformation, culture, political system, psychic prison,
instrument of domination, and carnival. For example, the
Machine metaphor is used to introduce a code as a sequence
of commands, thus, referring an imperative programming
paradigm; the Organism metaphor is used to introduce a code
as a collection of interacting objects, thus, referring to object-
oriented models, etc. Such metaphors may be very helpful in
discussion on why the different views on system organization
are required, and how a particular development process reflects
a particular software development approach. Their suggestions
are very interesting, but probably need further adjustments.
For example, a sequential process probably needs another
metaphor, not “Machine”, since the contemporary understand-
ing of this concept is more complex: Frank, Roerhrig and
Pring define a machine as a system of intelligence combining
software, hardware and user input. Such a machine is aimed
not only at performing a series of control commands, but at
improving on its own over time [36].

B. Form and Contents as a Readability Metaphor
In my programming class, I sometimes organize an exercise

entitled “The Form inside the Work”, which is about discussing
visual metaphors for introducing multi-faceted software con-
cepts. In particular, we discuss how the code readability
concept may be metaphorically expressed and analyzed using
the famous artwork masterpieces (see the example of using
Van Eyck’s “Annunciation” for such an exercise in [37]).

As pointed out by Oosterman et al. in [38], artworks
(compared to the photography or textual artifacts) provide less
and often inconsistent visual information being an abstract,
symbolic or allegorical (often metaphorical) interpretation
of reality; therefore, their exact reading and annotation is
a challenging problem. Nonetheless, the artworks are still
readable, though such readings might naturally give various
interpretations. Similarly to literary works, manner and matter
are mutually dependent in visual works [39]: structures used
by a creator in an artwork (the form) provide the ways making
possible the reproduction of creator’s intentions, metaphors and
messages (the contents) in the beholder’s mind. This repro-
duction implements the artist’s program approximately, thus,
giving space for many interpretations that can be considered
as co-creation acts [40].

Let me illustrate this idea by using the iconic Rembrandt’s
chez-d-oeuvre “The Night Watch”. Rembrandt Harmenszoon
van Rijn’s “The Night Watch” (“Militia Company of District II
under the Command of Captain Frans Banninck Cocq”, 1642,

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Amsterdam Museum on permanent loan to the Rijksmuseum,
Amsterdam, Netherlands) is an exceptional example of huge
multi-layer composition portraying a military group. Full of
metaphoric symbolism, this masterpiece provides an excellent
case to learn “painting reading”. Figure 4 graphically demon-
strates a possible interpretation.

Figure 4. Possible reading links inside “The Night Watch” by Rembrandt.

As noted by Oliveira in [41], the canvas has visible mul-
tilayer structure. “Departing” from the two central characters
(representing a cooperation between Protestant and Catholic
parties), an eye may follow different ways, but the most
likely directions are implicitly embedded inside the picture:
a trained soldier close to the captain in the second layer
(Figure 4, link 2) demonstrating his shooting skills by cutting
the strip of a spear (link 3). The strip virtually points to the
drummer (link 4) calling of arms. Close to the drummer, just
behind the Catholic lieutenant, we see an aged volunteer and
a distressed dog (links 4). From the “drummer’s group” the
eye moves to the left part of the composition (links 6) with
an experienced soldier, making a compositional balance with
the less experienced volunteer on the right side. Moving up to
the back stage layer, a beholder’s attention is caught by the
figure of the man (link 7) holding the national flag (link 8).
The flag colors call up the similar colors of the military baton
held by the Catholic lieutenant (dashed line). In turn, the light-
colored figure of the lieutenant is symbolically linked to the
bright woman’s figure (link 9), being one of the most discussed
character of this painting work (Oliveira suggests she is a
symbolic interpretation of the motherland).

Of course, the above presented rendition is not the only
possible way to rediscover rich symbolism of Rembrandt’s
masterpiece, which has much more symbolic allusions and
enigmatic elements (their detailed analysis is naturally out of
scope of this paper). Nevertheless, it clearly shows that the
possibilities are somehow “programmed” by the author, though
the exact links are not represented. This consideration needs
to go back to Aristotle’s Poetics, where the cognitive mean-
ingfulness of metaphor was emphasized: metaphors require an
act of recognition and interpretation from the recipient [17].

In the case of software programs, it is commonly agreed

that the code graphics, organization and legibility can be
considered as essential aesthetic properties [42]. Meanwhile,
the aesthetic values are connected to the quality properties, as
it is nicely pointed out by Edmonds: “if the resulting code is
like spaghetti [. . .], it is not highly rated even if it performs its
functions perfectly” [43]. That is why the exercise described
here can be considered as a small effort to compensate for
relatively minor attention to the problems of understanding
programming style and readability in software engineering
curricula. Learning parallels between software engineering and
art education give interesting insights to improving developers’
culture (where, by the way, “culture” can be understood both
literally and metaphorically).

In the research presented in [44], the authors describe the
empirical code annotation study. They come to a conclusion,
which is in partial contradiction to common practices in
programming teaching: the source code comments (being an
explicit way to explain the meaning of commented solution)
affect the notion of code readability only moderately. Although
the comments provide the very direct way of communication
between the software writer and its reader, the code readability
may be increased mostly because of improving the code
organization and the used models (i. e., the code properties
which do not provide a direct communication intent), and not
because of increasing the number of detailed comments.

V. CONCLUSION

On the basis of analysis of linguistics and cognitive science
original sources, this study examines the diversity and multi-
facetedness of the metaphor concept and its important role in
technology and engineering areas. Since the particular focus of
this research is on software education, we address a number of
practical cases of using metaphors in the programming class by
including a brief review of architectural software metaphors,
metaphors of code organization, code readability and code
aesthetics metaphors.

The above-mentioned cases do not exhaust the rich pos-
sibilities of using and exploring metaphors in class-time
teaching scenarios. Hence, I expect that further extension of
this study in cooperation with the experts from both liberal
arts and technology domains might be of significant interest
for teaching and research communities. Based on the wide
contemporary discourse, we need more systematic analysis of
metaphors used in software engineering, in order to classify
the published approaches and to make them better visible
and shareable among the members of academic community.
Learning metaphors is connected to the development of soft
skills, which are nowadays considered an important aspect
of software engineering education. However, the evaluation
whether the use of metaphors significantly improve the learn-
ing process still remains an open issue; the empirical analysis
of benefits and potential results isn’t trivial.

There are many important aspects, which, being out of
scope of this paper, requires much attention. These aspects
include software visualization and visual metaphors, metaphors
of software architectures and design pattern metaphors, soft-
ware code transformation and restructuring metaphors (such as
code smells and refactoring), cooperation and mutual depen-
dencies of different theories of metaphor in their application
to technology domains, and transition of metaphors introduced
in technology domains back to the non-technology areas.

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

ACKNOWLEDGEMENT

I would like to thank Professor John Blake from the Center
for Language Research of the University of Aizu who kindly
read the earlier versions of this study and made very valuable
comments.

Many thanks to the anonymous IARIA reviewers for their
very constructive suggestions on making more focused and
compact concretization of basic ideas described in the initial
submission.

The work is supported by the University of Aizu Research
Funding.

REFERENCES
[1] M. Niemelä et al., “Human-driven design: a human-driven approach to

the design of technology,” in IFIP International Conference on Human
Choice and Computers. Springer, 2014, pp. 78–91.

[2] G. C. Murphy, “Human-centric software engineering,” in Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research,
ser. FoSER ’10. New York, NY, USA: ACM, 2010, pp. 251–254.

[3] E. Pyshkin, “Liberal arts in a digitally transformed world: Revisiting
a case of software development education,” in Proceedings of the
13th Central & Eastern European Software Engineering Conference in
Russia, ser. CEE-SECR ’17. New York, NY, USA: ACM, 2017, pp.
23:1–23:7.

[4] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in Guide to
advanced empirical software engineering. Springer, 2008, pp. 285–
311.

[5] D. Baldwin and A. Brady, “Guest editors’ introduction: Computer
science in the liberal arts,” Trans. Comput. Educ., vol. 10, no. 1, Mar.
2010, pp. 1:1–1:5.

[6] V. Davidovski, “Exponential innovation through digital transformation,”
in Proceedings of the 3rd International Conference on Applications in
Information Technology, ser. ICAIT’2018. New York, NY, USA: ACM,
2018, pp. 3–5.

[7] F. Frabetti, “Have the humanities always been digital? For an under-
standing of the digital humanities in the context of originary technicity,”
in Understanding digital humanities. Springer, 2012, pp. 161–171.

[8] J. H. Martin and D. Jurafsky, Speech and language processing: An
introduction to natural language processing, computational linguistics,
and speech recognition. Pearson/Prentice Hall Upper Saddle River,
2009.

[9] W. Shakespeare, As You Like It. Edward Blount and William and
Isaac Jaggard, London, 1623.

[10] P. B. Shelley, The Cloud. Charles and James Ollier, London, 1820.
[11] P. Verlaine, L’heure exquise. Creuzevault, 1936.
[12] L. Cameron, “Operationalising ’metaphor’ for applied linguistic re-

search,” Researching and applying metaphor, 1999, pp. 3–28.
[13] R. M. Weaver and R. S. Beal, A rhetoric and handbook. Holt, Rinehart

and Winston, 1967.
[14] J. Carbonell, A. Sánchez-Esguevillas, and B. Carro, “The role of

metaphors in the development of technologies. The case of the artificial
intelligence,” Futures, vol. 84, 2016, pp. 145–153.

[15] J. E. Kendall and K. E. Kendall, “Metaphors and their meaning for
information systems development,” European Journal of Information
Systems, vol. 3, no. 1, 1994, pp. 37–47.

[16] M. Armisen-Marchetti, “Histoire des notions rhétoriques de métaphore
et de comparaison, des origines à quintilien,” Bulletin de l’association
Guillaume Budé, vol. 49, no. 4, 1990, pp. 333–344.

[17] S. H. Butcher, The poetics of Aristotle edited with Critical Notes and
a Translation. Macmillan, 1902.

[18] J. E. Mahon, “Getting your sources right,” Researching and applying
metaphor, 1999, pp. 69–80.

[19] M. S. Wood, “Aristotle and the question of metaphor,” Ph.D. disserta-
tion, Université d’Ottawa/University of Ottawa, 2015.

[20] A. Novokhatko, “The linguistic treatment of metaphor in quintilian,”
Pallas, vol. 103, 2017, pp. 311–318.

[21] H. E. Butler et al., The Institutio Oratoria of Quintilian. Harvard
University Press, 1922, vol. 4.

[22] G. Lakoff and M. Johnson, “Metaphors we live by,” Chicago, IL:
University of, 1980.

[23] I. A. Richards and J. Constable, The philosophy of rhetoric. Oxford
University Press New York, 1965, vol. 94.

[24] M. Black, “Models and metaphors: Studies in language and philosophy.”
1962.

[25] G. Lakoff, “The contemporary theory of metaphor,” 1993,
retrieved: Sep, 2019. [Online]. Available: https://escholarship.org/
uc/item/54g7j6zh

[26] G. J. Steen, “The contemporary theory of metaphor – now new
and improved!” Review of Cognitive Linguistics. Published under the
auspices of the Spanish Cognitive Linguistics Association, vol. 9, no. 1,
2011, pp. 26–64.

[27] T. R. Colburn and G. M. Shute, “Metaphor in computer science,”
Journal of Applied Logic, vol. 6, no. 4, 2008, pp. 526–533.

[28] G. Lazar, “Exploring metaphors in the classroom,” Teaching English,
2006.

[29] R. H. Clarken, “Five metaphors for educators,” 1997.
[30] J. Krupczak et al., “Defining engineering and technological literacy,”

Philosophical and Educational Perspectives in Engineering and Tech-
nological Literacy 3, 2012, p. 8.

[31] G. J. Johnson, “Of metaphor and difficulty of computer discourse,”
Communications of the ACM, vol. 37, no. 12, 1994, pp. 97–103.

[32] K. Smolander, “Four metaphors of architecture in software organiza-
tions: finding out the meaning of architecture in practice,” in Pro-
ceedings International Symposium on Empirical Software Engineering.
IEEE, 2002, pp. 211–221.

[33] N. Boyd, “Software metaphors,” 2003, retrieved: Sep,
2019. [Online]. Available: https://pdfs.semanticscholar.org/deee/
512ab8b7a3753fda248fe99780e3470e6881.pdf

[34] I. N. Umar and T. H. Hui, “Learning style, metaphor and pair program-
ming: Do they influence performance?” Procedia-Social and Behavioral
Sciences, vol. 46, 2012, pp. 5603–5609.

[35] T. Dufva and M. Dufva, “Metaphors of codestructuring and broadening
the discussion on teaching children to code,” Thinking Skills and
Creativity, vol. 22, 2016, pp. 97–110.

[36] M. Frank, P. Roehrig, and B. Pring, What to do when machines do
everything: How to get ahead in a world of AI, algorithms, bots, and
Big Data. John Wiley & Sons, 2017.

[37] E. Pyshkin, “Designing human-centric applications: Transdisciplinary
connections with examples,” in Cybernetics (CYBCONF), 2017 3rd
IEEE International Conference on. IEEE, 2017, pp. 1–6.

[38] J. Oosterman, J. Yang, A. Bozzon, L. Aroyo, and G.-J. Houben, “On
the impact of knowledge extraction and aggregation on crowdsourced
annotation of visual artworks,” Computer Networks, vol. 90, 2015, pp.
133–149.

[39] J. G. McElroy, “Matter and manner in literary composition.” Modern
Language Notes, 1888, pp. 29–33.

[40] D. Likhachev, “Neskolko mysley o netochnosti iskusstva i stilistich-
eskikh napravleniyakh,” in Philologica. Issledovaniya po yazyku i
literature, 1973, pp. 394–401, (Some ideas about uncertainty of arts
and stylistic trends – In Russian).

[41] P. M. Oliveira, “The Dutch company,” retrieved: Aug, 2019.
[Online]. Available: https://www.academia.edu/8579003/ Eng The
Dutch Company

[42] S. Gruner, “Problems for a philosophy of software engineering,” Minds
and Machines, vol. 21, no. 2, 2011, pp. 275–299.

[43] E. Edmonds, “The art of programming or programs as art,” Frontiers
in Artifical Intelligence and Applications, vol. 161, 2007, p. 119.

[44] R. P. Buse and W. R. Weimer, “Learning a metric for code readability,”
IEEE Transactions on Software Engineering, vol. 36, no. 4, 2009, pp.
546–558.

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

