

OpenCL-Generated Optimizing Compiler

for FPGA Using ROSE Compiler Infrastructure

Yuichiro Aoki

Research and Development Group, Center for Technology Innovation - Digital Technology

Hitachi, Ltd.

1-280, Higashi-Koigakubo, Kokubunji, 185-8601, Tokyo, Japan

e-mail: yuichiro.aoki.jk@hitachi.com

Abstract— Many researchers are investigating deep learning

because it can recognize pedestrians for automatic driving

and/or criminals to prevent crimes on the street. A promising

device for such tasks in deep learning is a Field Programmable

Gate Array (FPGA). However, the conventional manual FPGA

programming and optimizations are complicated and take a

long time. Thus, FPGA development time needs to be

decreased. In this paper, we propose an OpenCL-generated

optimizing compiler based on the ROSE Compiler

Infrastructure. OpenCL is a C-extended programming

language for heterogeneous computing, such as an FPGA and

a Central Processing Unit (CPU). We add simple pragmas to

the C program, and our compiler generates the optimized

OpenCL program for FPGA. The preliminary evaluation using

the deep learning framework Caffe shows that our compiler

decreases to about 1/16 of the conventional development time.

Keywords-FPGA; OpenCL; compiler; parallel programming.

I. INTRODUCTION

Many researchers are investigating deep learning because
it can recognize pedestrians for automatic driving [1][2]
and/or criminals to prevent crimes on the street [3]. However,
deep learning takes a long time to learn data. For example,
training large data may take a week or more. Shortening this
long training time can help make deep learning more
practical and make its hyper-parameters easier to tune.

A Field Programmable Gate Array (FPGA) is a promising

device for deep learning because it does not have unused

circuits to be connected and consumes low power. The

conventional development process of the FPGA involves

the use of Hardware Description Languages (HDLs), such

as Verilog HDL and/or VHDL, which are strongly

hardware-dependent programming languages. Thus,

development steps, such as writing and optimizing the

FPGA programs, incur high cost. To address this problem, a

new programming language called Open Computing

Language (OpenCLTM) [4] has been developed for FPGAs

[5][6].

OpenCL is an extended C-style language that can be used

to write host (Central Processing Unit (CPU)) and device

Figure 1. ROSE compiler infrastructure overview.

(FPGA) programs. Thus, programmers can write and

optimize C-style OpenCL more easily than HDLs. However,

they must write the communications between the host

program and the device program manually. Some examples

are data transfer function calls between a CPU and an FPGA.

Sometimes they have a few hundred lines. In addition,

programmers have to optimize the device program for the

FPGA manually, which is a hard task.
In this paper, we propose an OpenCL-generated

optimizing compiler from the C program with specific
pragmas based on the ROSE Compiler Infrastructure. This
is a preliminary study. However, no other compiler
generates the optimized OpenCL program for FPGA.

The rest of the paper is organized as follows: In Section
II, we review related study. In Section III, we describe
ROSE Compiler Infrastructure. In Section IV, we explain
how to modify ROSE for FPGA. We show the preliminary
evaluation results in Section V. In Section VI, we discuss
OpenCL optimization candidates for FPGAs, followed by
conclusion and future study in Section VII.

II. RELATED WORK

ROSE Compiler Infrastructure [8][9] was developed by

the Lawrence Livermore National Laboratory. Its input is

C/C++ with the original pragmas, and its output is OpenCL.

RoseACC [10] is an extended module of ROSE and can

compile C program with OpenACC pragmas to the OpenCL.

OpenARC Compiler [11][12] is developed by the

Oakridge National Laboratory on the basis of the Cetus

57Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Parallelizing Compiler [13]. Its input is C/C++ with

OpenACC pragmas, and its output is OpenCL or CUDA.

IPMACC [14] compiles C program with OpenACC

pragmas into the OpenCL program. The status of

optimization implementation is unknown.

Grewe et al. [15] complied C program with OpenMP

pragmas into a multiversion program using OpenMP and

OpenCL. Memory access optimizations, such as register

promotion for CPU are implemented.

MATISSE [16] compiles a MATLAB program with the

original pragmas into OpenCL program. Type inference

optimization and variable shape inference optimization are

implemented.

Habanero-Java [17] compiles an extended Java program

into OpenCL program. To treat Java’s exception handling

functions, two versions of the program are generated.

Gaspard2 [19] compiles UML into OpenCL. The

communication optimization which removes unnecessary

data transfer between CPU and GPU is implemented.

PyOpenCL [20] compiles Python program into OpenCL

program. CU2CL [18] and Swan [21] compiles CUDA

program into OpenCL program. Firepile [7] compiles Scala

program into OpenCL program. They do not optimize the

output OpenCL program.

In addition, the target device of all the compilers

described above is GPU. FPGA-specific code generation and

optimizations are not implemented yet. Our compiler

generates and optimizes the OpenCL device program for

FPGA.

III. ROSE COMPILER INFRASTRUCTURE

In this section, we give an overview of the ROSE
Compiler Infrastructure [8][9]. It is an open-source tool for
analyses and source-to-source program transformations
developed by the Lawrence Livermore National Laboratory.
Its characteristics are as follows:

(i) Its input is C/C++ programs with TileK pragmas.

(ii) ROSE transforms the input program into the

OpenCL host and device program for Graphics

Processing Unit (GPU).

(iii) The generated OpenCL device program is not

optimized.
Figure 1 shows the overview of the ROSE Compiler

Infrastructure. C program with TileK pragmas is inputted to
the ROSE, and it outputs the OpenCL host program and
device program. Gcc compiles the OpenCL host program
and generates a.out. The OpenCL compiler for a GPU
compiles the OpenCL device program and outputs the GPU
program. Then, a.out calls the GPU program.

Figure 2 shows a TileK pragma example. TileK is a ROSE

original pragma manually inserted in front of the target loop.

The target loop is offloaded to the GPU if the pragma exists.

Figure 2. TileK pragma example.

The clause of the pragma, such as data(x[0:N]), means that

the array x[0]...x[N-1] is sent to the GPU just before GPU

offloading and sent back to the CPU just after GPU

offloading.

IV. OUR PROPOSAL TO MODIFY ROSE FOR FPGA

In this section, we point out the problems of the ROSE
Compiler Infrastructure when it is applied to the FPGA, and
propose new functionalities for it. The current ROSE
Compiler Infrastructure is not appropriate for the FPGA.
Among its characteristics described in Section III, (i) and (ii)
indicate that it can output the OpenCL host and device
programs from the input C/C++ program. However, (ii)
states that its target device is a GPU, not an FPGA. In
addition, (iii) shows that the output OpenCL device program
is not optimized. Thus, the current output OpenCL device
program may run on an FPGA but are not optimized for the
FPGA. We thus have to modify the ROSE Compiler
Infrastructure for FPGA.

Figure 3. Modified ROSE compiler infrastructure.

Figure 4. Algorithm of inserting loop unrolling pragma.

58Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Figure 5. Example of generated loop with unrolling pragma.

First, we create a new environment variable
ROSE_OPENCL_PLATFORM. It uses a device name as a
clause. This environment variable selects appropriate
OpenCL functions for the device. For example, for an FPGA,
the host program calls the clCreateProgramWithBinary
function, instead of clCreateProgramWithSource for GPU.

Second, we add a new FPGA optimization function to the

ROSE. The new optimization is loop unrolling because it

increases the parallelism of the OpenCL device program for

FPGA. Thus, it can decrease the execution time on an FPGA

if the OpenCL compiler for FPGA can utilize the parallelism.

In this case, we automatically insert the loop unrolling

pragma to the innermost loops of the OpenCL device

program for FPGA.

Figure 3 depicts the modified ROSE Compiler

Infrastructure. The ROSE outputs the OpenCL host program

and the optimized OpenCL device program for FPGA. In

addition, a.out calls FPGA, instead of GPU.

Figure 4 shows the loop unrolling algorithm. It traverses

loopnests and find if the loopnest is offloaded by the TileK

pragma. If so, it gets the innermost loop of the loopnest and

inserts the loop unrolling pragma in front of the innermost

loop.
Figure 5 shows an example of the output OpenCL device

program that is inserted in the loop unrolling pragma. Intel
FPGA SDK for OpenCL Compiler [5] and Xilinx SDAccel
Compiler [6] support similar pragmas for FPGA.

V. PRELIMINARY EVALUATION

In this section, we evaluate the validity of our proposal.
First, we interviewed skilled HDL programmers about how
long they take to make the HDL program for FPGA
manually. Second, we manually made an OpenCL host and
device program and measured how long it took. Third, we

Figure 6. Comparison of development time.

used TileK pragma and generated the OpenCL host program
and optimized device program for FPGA automatically.
Thus, we compared the development times among manual
HDL, manual OpenCL, and ROSE-Generated OpenCL.

The example application program is Caffe, a deep
learning framework written in C++ and developed by the
Berkeley Artificial Intelligence Research at the University of
California, Berkeley. It has many layers for deep learning,
and we use the pooling layer for the development time
evaluation because it is one of the most widely used and one
of the most time-consuming layers in deep learning.

Figure 6 compares development times. In manual HDL,
both the investigation of the program (pooling layer) and the
HDL programming for an FPGA take about two months.
Thus, the development takes about four months. In manual
OpenCL, both the investigation and the OpenCL
programming are reduced to one week each. Thus, the
development takes about two weeks. In ROSE-Generated
OpenCL, the investigation takes seven days and TileK
programming and automatic OpenCL generation takes one.
Thus, development time is only about eight days. Thus, the
OpenCL-generated optimizing compiler reduces the
development time of Caffe’s pooling layer for FPGA to 1/16
of the conventional HDL development time.

Caffe’s pooling layer has 6 multiple loop nest. Using our
optimization, the loop unrolling pragma is inserted to the
innermost loop automatically. Thus, the maximum FPGA
pipeline pitch predicted by the FPGA compiler (Altera®
SDK for OpenCLTM v15.0.0) decreases from 487 cycles to 1
cycle. It suggests that the optimized pooling layer may run
much faster on FPGA. Execution time, accuracy, and power
consumption comparison among other devices (CPU, GPU)
will be a future study.

VI. DISCUSSION

In this section, we discuss the OpenCL optimization
candidates for FPGA. Besides the loop unrolling we
implemented, there are several optimization candidates
suitable for FPGA. One is the use of the OpenCL’s vector
type. OpenCL has original vector types, such as float2, float4,
float8, and float16. For example, a variable with type float4
is processed in a group of four in parallel. These types are
useful in parallel processing for FPGA.

Another optimization candidate is to copy the global
memory data to the local memory. An FPGA has two kinds
of memory: global (DRAM) and local (SRAM). The global
memory has large capacity but large latency, whereas the
local memory has small capacity but small latency. In
addition, we have to use the global memory to store the
CPU’s main memory data via a PCI Express(R) between the
CPU and FPGA. If there are multiple global memory
accesses for the same variable, the performance might
degrade. Thus, the global memory data should be copied to
the local memory.

The other optimization candidate is to align the data to
the 4-byte boundary. If the data in FPGA is not aligned to the
4-byte boundary, the OpenCL compiler for FPGA may
generate a low-speed program [5]. Thus, we will insert the
padding to the data to align it to the 4-byte boundary.

59Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Our loop unrolling in this paper is the first step to

implement the OpenCL optimizations for the FPGA.

VII. CONCLUSION

To reduce the development time of the OpenCL host and

device program, we developed an OpenCL-generated

optimizing compiler on the basis of the ROSE Compiler

Infrastructure.

Our compiler compiles a C/C++ program with TileK

pragmas into the OpenCL host program and the OpenCL

optimized device program with loop unrolling pragmas

automatically. Preliminary evaluation shows that our

compiler decreases the development time of the OpenCL host

and device program to 1/16 of the conventional development

time with manual HDL.

In the future, we will implement other optimizations to our

compiler to generate more optimized OpenCL device

programs for FPGA easily and evaluate the execution time,

accuracy, and power consumption compared to CPU and

GPU.

ACKNOWLEDGMENT

The author thanks Dr. Tsuyoshi Tanaka for his support in
writing this paper.

REFERENCES

[1] Toyota Motor Corporation, “Toyota to Make Additional
Investment in Preferred Networks, Inc.,” Aug. 4, 2017,
[Online]. Available:
https://newsroom.toyota.co.jp/en/detail/18012355, Accessed
on: Sep. 18, 2019.

[2] NVIDIA, “Automotive Innovators Motoring to NVIDIA
DRIVE,” Jan. 4, 2016, [Online]. Available:
http://blogs.nvidia.com/blog/2016/01/04/automotive-nvidia-
drive-px-2/, Accessed on: Sep. 18, 2019.

[3] NTT Communications, “NTT Com's New AI Technology
Identifies Specific Human Motions with High Accuracy,” Oct.
7, 2015, [Online]. Available:
http://www.ntt.com/release/monthNEWS/detail/20151007_4.
html, Accessed on: Sep. 18, 2019.

[4] Khronos Group, “The open standard for parallel programming
of heterogeneous systems,” [Online]. Available:
https://www.khronos.org/opencl/, Accessed on: Sep. 18, 2019.

[5] Intel Corporation, “Intel FPGA SDK for OpenCL, “ [Online].
Available:
https://www.intel.com/content/www/us/en/software/program
mable/sdk-for-opencl/overview.html, Accessed on: Sep. 18,
2019.

[6] Xilinx Inc., “SDAccel Development Environment,” [Online].
Available: https://www.xilinx.com/products/design-
tools/software-zone/sdaccel.html, Accessed on: Sep. 18, 2019

[7] N. Nystrom, D. White, and K. Das, “Firepile: Run-time
Compilation for GPUs in Scala,” In Proc. of the Tenth
International Conference on Generative Programming and
Component Engineering, Portland, OR, USA, pp. 107-115,
2011.

[8] D. Quinlan and C. Liao, “The ROSE Source-to-Source
Compiler Infrastructure,” The Cetus Users and Compiler
Infrastructure Workshop, Galveston Island, Texas, USA, 2011.

[9] Y. Yan, P.-H. Lin, C. Lio, B. R. Supinski, and D. J. Quinlan,
“Supporting Multiple Accelerators in High-Level
Programming Models,” In Proc. the Sixth International
Workshop on Programming Models and Applications for
Multicores and Manycores, San Francisco, CA, USA, pp.170-
180, 2015.

[10] T. Vanderbruggen and J. Cavazos, “Generating OpenCL C
kernels from OpenACC,” The International Workshop on
OpenCL 2013 & 2014, Bristol, United Kingdom, 2014.

[11] S. Lee and J. S. Vetter, “OpenARC: Extensible OpenACC
Compiler Framework for Directive-Based Accelerator
Programming Study,” In Proc. of the First Workshop on
Accelerator Programming using Directives, New Orleans, LA,
USA, pp.1-11, 2014.

[12] S. Lee and J. S. Vetter, “OpenARC: Open Accelerator
Research Compiler for Directive-Based, Efficient
Heterogeneous Computing,” In Proc. the 23rd ACM
Symposium on High-Performance Parallel and Distributed
Computing, Vancouver, BC, Canada, pp.115-120, 2014.

[13] S.-I. Lee, T. A. Johnson, and R. Eigenmann, “Cetus -- An
Extensible Compiler Infrastructure for Source-to-Source
Transformation,” in Proc. the 16th International Workshop on
Languages and Compilers for Parallel Computing, in Lecture
Notes in Computer Science 2958, Springer Verlag, 2003, pp.
539-553.

[14] A. Lashgar, A. Majidi, and A. Baniasadi, “IPMACC:
Translating OpenACC API to OpenCL,” The 3rd
International Workshop on OpenCL, Palo Alto, CA, USA,
2015.

[15] D. Grewe, Z. Wang, and M. F. P. O’Boyle, “Portable
Mapping of Data Parallel Programs to OpenCL for
Heterogeneous Systems,” In Proc. of the 2013 International
Symposium on Code Generation and Optimization, Shenzhen,
China, pp.1-10, 2013.

[16] J. Bispo, L. Reis, and J. M. P. Cardoso, “Multi-Target C Code
Generation from MATLAB(R),” In Proc. the ACM
SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming, Edinburgh, United
Kingdom, pp.95-100, 2014.

[17] A. Hayashi, M. Grossman, J. Zhao, J. Shirako, and V. Sarkar,
“Accelerating Habanero-Java Programs with OpenCL
Generation,” In Proc. the International Conference on
Principles and Practices of Programming on the Java
Platform: virtual machines, languages, and tools, Cracow,
Poland, pp.124-134, 2014.

[18] G. Martinez, M. Gardner, and W.-c. Feng, “CU2CL: A
CUDA-to-OpenCL Translator for Multi- and Many-core
Architectures,” In Proc. the 17th IEEE International
Conference on Parallel and Distributed Systems, Tainan,
Taiwan, pp.300-307, 2011.

[19] A. Wendell O. Rodrigues, F. Guyomarc’h, and J.-L. Dekeyser,
“An MDE Approach for Automatic Code Generation from
UML/MARTE to OpenCL,” Computing in Science &
Engineering, January/February 2013, pp. 46-55, 2013.

[20] A. Klöckner, et al., “PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation,” Parallel
Computing, vol. 38, no. 3, pp. 157-174, 2012.

[21] M. J. Harvey, “Swan: A tool for porting CUDA programs to
OpenCL,” Computer Physics Communications, vol. 184,
issue 4, pp. 1093-1099, 2011.

60Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

