
From a Subset of LTL Formula to Büchi Automata

Bilal Kanso

Lebanese University
Faculty of sciences (V), Computer Science Department

Email: bilal_kanso@hotmail.com

Ali Kansou

Lebanese University
Faculty of sciences (V), Computer Science Department

Email: ali.kansou@gmail.com

Abstract—We present a fragment of Linear Temporal Logic (LTL)
together with an polynomial translation of formula from this
LTL fragment into equivalent Büchi automata. The translation
is completely implemented based on Java Pluging Framework in
GOAL Tool as a plugin. The implementation is mainly based
on pre-proven theorems such that the transformation works
very efficiently. In particular, it runs in polynomial space in
terms of the length of the given formula. The main application
of this transformation could be in model checking area which
consists in obtaining a Büchi automaton that is equivalent to the
software system specification and another one that is equivalent
to the negation of the property. The intersection of the two
Büchi automata is empty if the model satisfies the property.
Furthermore, the experiments are performed with three sets of
LTL formula, which is commonly used in the literature and the
result shows that our proposed LTL fragment covers most of
them.

Keywords–Linear Temporal Logic; Büchi automata; Model
checking; Compositional modeling.

I. INTRODUCTION

The Linear Temporal Logic (LTL) [1] becomes increas-
ingly one of the most important formalisms to model system
properties which are widely used in different areas such as
model checking [2][3], testing [4][5], reasoning event in time,
etc. It is equivalent to first-order logic over finite and infinite
words. It is well-known that model checking and satisfiability
for LTL are PSPACE-complete and in most all cases the model
checking problem is equivalent to a satisfiability-checking
problem. This justifies why the satisfiability problem for LTL
and its fragments has received so much attention. By way
of illustration, model checking based on LTL formalism is
PSPACE-hard [6][7]. This complexity arises from the transla-
tion step of the negation of a property (described as a LTL
formulæ) into Büchi automata. Indeed, the Büchi automaton
of a property is constructed in exponential space in the length
of this property. This makes verification methods hard or
even impossible to be implemented in practice and makes
the scalability of the LTL model checking limited, which
commonly referred to as the state explosion problem [8].

The question we handled is there some LTL fragments
that are feasible in practice. In this paper, we contribute to
finding a subset of LTL properties that can be converted
polynomially into Büchi automata. A fragment called, FLTL
Logic, is defined and how formula in this fragment can be
transformed into Büchi automata whose the state space size
is linear is shown. This fragment is identified by looking
for natural subclasses of LTL formula for which complexity
decreases and by deep understanding of what makes the
converting into Büchi automata PSPACE-complete. Thanks to

the structure of our fragment FLTL formulæ, the proposed
algorithm can be compositional in the sense that the target
Büchi automaton associated to a given formulæ is obtained
by developing a sub-automaton for each sub-formulæ of the
principal formulæ. Hence, the basic idea for developing the
final automaton for a FLTL formulæ ϕ is that ϕ can be
recursively decomposed into a set of sub-formula, arriving at
sub-formula that can be completely handled. Composition is
then used for assembling different sub-automaton and then
forming larger ones. Such a composition can be seen as an
operation taking sub-automata for sub-formula, as well as the
FLTL operator to provide a new more complex automaton.
Furthermore, we showed by experiments that the fragment
coverage average is 65.531% which is acceptable and slightly
high and the use of such fragments seems promising. The
experiments are based on three common sets of LTL formula
widely used in the literature. For each set, we identify the
formula which can be described in the extension and generate
its equivalent automata using the proposed algorithm.

The rest of this article is organized as follows: Section II
briefly describes Büchi automata. In Section III, we describe
our fragment of LTL logic and the reasons to choose it. In
Section IV, we present for each formulæ in our fragment
LTL, its equivalent Büchi automata. Section V shows the
final algorithm that generates to any formulæ in our fragment
an equivalent Büchi automaton. Section VI represents the
experiments we conducted to compute the coverage average of
our LTL fragment. Section VII presents the related work and
Section VIII presents the conclusion and some future works.

II. BÜCHI AUTOMATA

A Büchi automaton is variant of non-deterministic finite-
state automata on infinite inputs [9]-[10]. A word is accepted
if the automaton goes through some designated ”accept” states
infinitely often while reading it. Formally, a Büchi automaton
is defined by a 5-tuple A = (S, s0, F,Σ, δ) where S is a finite
set of states, s0 ∈ S is the initial state, Σ is a non-empty set of
atomic propositions, F ⊆ S is a finite set of accepting states
and δ : S ×Σ −→ 2S is a transition function. A run of A on
σ = σ(0)σ(1)σ(2) · · · ∈ Σω is an infinite sequence of states
s0s1s2 · · · ∈ Sω starting with the initial state s0 of A such that
∀i, i ≥ 0, si+1 ∈ δ(si, σ(i)). A run s0s1s2 . . . is accepting by
an automaton A if A goes through accepting states (i.e ∈ F)
infinitely often while reading it. The accepted language of a
Büchi automaton A, denoted by, Lω(A) is then defined by
Lω(A) = {σ ∈ Σω | there is an accepting run for σ in A}.
The union of two Büchi automata A1 and A2 is formally
defined as follows:

61Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Definition 1 (Buchi automata union): Let A1 =
(S1, s10, F1,Σ, δ1) and A2 = (S2, s20, F2,Σ, δ2) be two
Büchi automata. The union A1 ∪ A2 of A1 and A2 is the
Büchi automaton A = (S, s0, F,Σ, δ) defined as follows:

• S = S1 ∪ S2 ∪ {s0}
• s0 ∈ S is the initial state
• F = F1 ∪ F2

• the transition relation δ is defined as follows:

δ(s, p) =


δ1(s, p) if s ∈ S1

δ2(s, p) if s ∈ S2

δ1(s10, p) ∪ δ2(s20, p) if s is the initial
state s0

In Definition 1, we add a new initial (nonaccept) state snew
to the union set of states of both A1 and A2and the transitions
snew

p−→ s if and only if s0
A1

p−→ s and snew
p−→ s if

and only if s0
A2

p−→ s to the union set of transitions of both
A1 and A2.
The construction of the intersection automaton works a little
differently from the finite state automata case. One needs to
check whether both sets of accepting states are visited infinitely
often. Consider two runs r1 and r2 and a word σ where r1

goes through an accept state after σ(0), σ(2), . . . and r2 enters
accept state after σ(0)σ(3) Thus, there is no guarantee that
r1 and r2 will enter accept states simultaneously. To overcome
this problem, we need to identify the accept states of the
intersection of the two automata. To do so, we create two
copies of the intersected state space. In the first copy, we check
for occurrence of the first acceptance set. In the second copy,
we check for occurrence of the second acceptance set. When
a run enters a final state in the first copy, we wait for that
run also enters in an accept state in the second copy. When
this is encountered, we switch back to the first copy and so
on. We repeat jumping back and forth between the two copies
whenever we find an accepting state.

Definition 2 (Buchi automata intersection): Let A1 =
(S1, s10, F1,Σ, δ1) and A2 = (S2, s20, F2,Σ, δ2) be two
Büchi automata. The intersection A1∩A2 of A1 and A2 is the
Büchi automaton A = (S, s0, F,Σ, δ) defined as follows:

• S = S1 × S2 × {1, 2}
• s0 = (s10, s20, 1)

• F = S1 × F2 × {2}
• The transition function δ is defined as follows:

δ((s1, s
′
1, 1), p) =


(s2, s

′
2, 1) if s2 ∈ δ1(s1, p),

s′2 ∈ δ2(s2, p) and s1 6∈ F1

(s2, s
′
2, 2) if s2 ∈ δ1(s1, p),

s′2 ∈ δ2(s2, p) and s1 ∈ F1

δ((s1, s
′
1, 2), p) =


(s2, s

′
2, 2) if s2 ∈ δ1(s1, p),

s′2 ∈ δ2(s2, p) and s′1 6∈ F2

(s2, s
′
2, 1) if s2 ∈ δ1(s1, p),

s′2 ∈ δ2(s2, p) and s′1 ∈ F2

Theorem 1: Let ψ = ϕ1∨ϕ2 (resp. ψ = ϕ1∧ϕ2) be a LTL
formulæ and Aϕi be the Büchi automaton equivalent to ϕi for
i = 1, 2. Let Aψ be the LTL automaton built according to
Definition 1 (resp. Definition 2). Then, Words(ψ) = Lω(Aψ)
(See Proof in Appendix)

III. FLAT LTL LOGIC

In this section, we introduce our subset of LTL logic that
we call FLTL Logic. This fragment will be used to express
temporal properties and then translate them into Büchi au-
tomata in linear size. The syntax of our FLTL logic adds
to usual boolean propositional operators ¬ (negation) and ∧
(conjunction), some modal operators that describe how the
behavior changes with time. Next: Xϕ requires that the formula
ϕ be true in the next state. Until: ϕ1 U ϕ2 requires that the
formula ϕ1 be true until the formula ϕ2 is true, which is
required to happen. Eventually: ♦ϕ requires that the formula
ϕ be true at some point in the future (starting from the
present) and it is equivalent to ♦ϕ ≡ true U ϕ. Always:
�ϕ requires that the formula ϕ be true at every point in the
future (including the present). Release: ϕ1 R ϕ2 requires that
its second argument ϕ2 always be true, a requirement that is
released as soon as its first argument ϕ1 becomes true. It is
equivalent to ϕ1 R ϕ2 ≡ ¬(¬ϕ1 U ¬ϕ2).

A. Our fragment LTL logic
Definition 3 (FLTL formulæ): The set of FLTL formulæ

Lf is given by the following grammar:

ϕ:=Θ |�Θ |Θ U ϕ |ϕ R Θ |Xϕ |¬∆ |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2

where Θ is a propositional formula defined by:
Θ:=true |p |¬Θ |Θ1 ∧Θ2 and ∆ is the formula defined

by: ∆:=∆ U Θ |Θ R ∆ |Xϕ |¬∆ with p ∈ Σ.

For the sake of brevity and the lack of space, we only
discuss here why the fragment Θ U ϕ is included within our
LTL fragment to the detriment of both formula ϕ1 U ϕ2 and
ϕ1 U Θ. It is well-known the size of an Büchi automaton A that
recognizes the complement language Lω(A) of the language
accepted Lω(A) by an automaton A is exponential [11], [12].
Suppose we have separately built an automaton A1 for ϕ1 and
an automaton A2 for ϕ2, and let us then try to compositionally
obtain the resulting automaton A for ϕ. According to the until
operator’s semantics, it is required that ϕ holds at the current
moment, if there is some future moment for which ϕ2 holds
and ϕ1 holds at all moments until that future moment. That
means constructing the automaton for ϕ = ϕ1 U ϕ2 firstly
requires constructing of the intersection of A1 and A2. As
stated previously, computing A2 is exponential and therefore,
constructing the Büchi automaton for ϕ U ϕ2 is exponential.
To avoid this kind of formula, we choose the formulæ Θ U ϕ
to be a part of our LTL subset where the construction of the
Büchi automaton associated to it, does not need to complement
any Büchi automaton.

B. Positive Normal Form (FPNF)
As LTL formula, FLTL formula can be transformed into

the so-called Positive Normal form (FPNF). This form is
characterized by the fact that negations only occur adjacent to
atomic propositions. All negation symbols of the given LTL
formula have to be pushed inwards over the temporal operators.

Definition 4 (FPNF): The set of FLTL Positive Normal
Form (FPNF) formulæ LFPNF is given by the following
grammar:

ϕ:=true |p |¬p |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |�Θ |Θ U ϕ |ϕ R Θ |Xϕ

62Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Each formulæ ϕ ∈ Lf , can be transformed into a for-
mulæ ϕ′ ∈ LFPNF . This is done by pushing negations inside,
near to atomic propositions. To do this, we use the following
transformation rules:

¬true false,¬¬ϕ ϕ,¬(ϕ1 ∧ϕ2) ¬ϕ1 ∨¬ϕ2,¬Xϕ
X¬ϕ,¬(ϕ U Θ) ¬ϕ R ¬Θ,¬(Θ R ϕ) ¬Θ U ¬ϕ.

Theorem 2: For any FLTL formulæ ϕ ∈ Lf , there exists
an equivalent LTL formula ϕ′ ∈ LFPNF |ϕ′| = O(|ϕ|).

C. Semantics

The semantics of FLTL formulæ is defined over infinite
sequences σ : N −→ 2Σ (2Σ is the power set of Σ).
In other words, a model is an infinite sequence A0A1 . . .
of subsets of Σ. The function σ, called interpretation func-
tion, describes how the truth of atomic propositions changes
as time progresses. For every sequence σ, we write σ =
(σ(0), . . . , σ(n), . . .). Thus, σ(i) denotes the state at index
i and σ(i : j) the part of σ containing the sequence of states
between i and j. σ(i...) = AiAi+1Ai+2 . . . denotes the suffix
of a sequence σ = A0A1A2 · · · ∈ (2Σ)ω starting in the (i+1)st
symbol Ai where ω denotes infinity. We also write σ(i) |= ϕ
to denote that ”ϕ is true at time instant i in the model σ”. This
notion is defined inductively, according to the structure of ϕ.

The FLTL formula are interpreted over infinite sequences of
states σ : N −→ 2Σ as follows:

Definition 5 (Semantics of FLTL): Let σ : N −→ 2Σ be
an interpretation function and ϕ ∈ LFLTL. σ satisfies ϕ,
noted σ |= ϕ,is inductively defined over the construction of ϕ
as follows:

• ϕ = true, then σ |= true

• if ϕ = p, then σ |= p iff p ∈ σ(0)

• if ϕ = Xϕ′, then σ |= Xϕ′ iff σ(1) |= ϕ′

• if ϕ = �Θ, then σ |= �Θ iff ∀i ≥ 0, σ(i) |= Θ

• if ϕ = Θ U ϕ , then σ |= Θ U ϕ iff ∃i, i ≥
0, σ(i, . . .) |= ϕ and ∀j, 0 ≤ j < i, σ(j...) |= Θ

• if ϕ = ϕ R Θ , then σ |= ϕ R Θ iff ∃i, i ≥
0, σ(i, . . .) |= ϕ and ∀j, j ≥ 0, σ(j...) |= Θ or ∃i, i ≥
0 (σ(i...) |= ϕ ∧ ∀k, k ≤ i, σ(k...) |= Θ)

• if ϕ = ¬ϕ′ , then σ |= ¬ϕ′ iff σ 6|= ϕ′

• Propositional connectives are handled as usual

The semantics of a FLTL formulæ can be also seen as the
language Words(ϕ) that contains all infinite words over the set
of atomic propositions (i.e. alphabet) 2Σ that satisfy ϕ. Thus,
the language Words(ϕ) for a FLTL formulæ ϕ is formally
defined by Words(ϕ) = {σ ∈ (2Σ)ω | σ |= ϕ}.

Proposition 1: Two FLTL formula ϕ1 and ϕ2 are equiva-
lent, denoted ϕ1 ≡ ϕ2, if Words(ϕ1) =Words(ϕ2).

IV. CONSTRUCTION OF BÜCHI AUTOMATA FOR FLTL
LOGIC

In the sequel, we explain for each subformulæ in our
fragment LTL logic how its equivalent Büchi automaton can
be obtained.

A. Büchi automata for Θ formula
The Büchi automaton associated to a propositional for-

mulæ Θ is obtained by creating two states s0 and s1 and two
transitions tr1 and tr2. s0 is the only initial state while s1 is
the only final state. tr1 is the transition from s0 to s1 labeling
with Θ while the transition tr2 is a loop labeled with true over
the state s2.

Definition 6 (Θ automaton): Let Θ be a propositional for-
mulæ. The automaton AΘ = (SΘ, s

0
Θ, FΘ,Σ, δΘ) associated

to Θ is defined as follows:

• SΘ = {s0, s1}, s0
Θ = s0, FΘ = {s1}

• The transition function δ is defined as follows:

δΘ(s0,Θ) = {s1} and δΘ(s1, true) = {s1}

B. Büchi automata for Θ U ϕ formula
The automaton associated to Θ U ϕ is obtained by adding

a new initial (nonaccept) state snew to the state set of Aϕ, a
loop over the added state snew labeled with the propositional
formula Θ and transitions snew

p−→ s if and only if and
only if s0 p−→ s with s0 is the initial state of Aϕ. All
other transitions of Aϕ, as well as the accept states, remain
unchanged. snew is the single initial state automaton, is not
accept, and has no incoming transitions except the loop one.

Definition 7 (Θ U ϕ automaton): Let Θ be a proposi-
tional formula and ϕ be an LTL flat formulæ. Let Aϕ =
(Sϕ, s

0
ϕ, Fϕ,Σ, δϕ) be the automaton associated to ϕ. The au-

tomaton Aψ = (Sψ, s
0
ψ, Fψ,Σ, δψ) associated to ψ = Θ U ϕ

is defined as follows:

• Sψ = {snew} ∪ Sϕ
• s0

ψ = snew, Fψ = Fϕ

• The transition function δψ is defined as follows:

δψ(s, p) =


δϕ(s, p) if s ∈ Sϕ (Aϕ transitions)

δϕ(s0
ϕ, p) if s = snew

(Connection initial state to Aϕ)

{snew} if s = snew and p = Θ
(Loop over the new initial state)

Example 1: Figure 1 illustrates the composition definition
of Θ U ϕ. Figure 1a shows the Büchi automaton associated
to (♦b) R c. To construct the Büchi automaton associated to
(a U (♦b R c)), we add a new state snew that we consider as
initial state. Then, for each transition outgoing from snew with
label l and goes to state s, we add a transition from snew to
the state s with a label l. Finally, we then add a loop labeled
with the atomic proposition a over the added state.

Theorem 3: Let ψ = Θ U ϕ, Aϕ be the Büchi automaton
equivalent to ϕ and Aψ be the automaton built according to
Definition 7. Then, Words(ψ) = Lω(Aψ).

C. Büchi automata for Xϕ formula
The automaton associated to Xϕ is obtained by adding two

new states snew (neither initial state or accept state) and sinit
(considered as the initial state) to the state set of Aϕ with
the following two transitions (1) add for any transition in Aϕ
which starts from the initial state s0 to a state s, a transition
from snew to s; (2) add a transition from the initial state sinit to
the snew labeled with true. All other transitions of Aϕ remain

63Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

s0 s1

s2 s3

b ∧ c

¬b ∧ c ¬b ∧ c

true

¬b ∧ c

b ∧ c

¬b ∧ c

¬b

b

(a) (♦b) R c

snew

s0 s1

s2 s3

b ∧ c

¬b ∧ c

¬b ∧ c

a

b ∧ c

¬b ∧ c ¬b ∧ c

true

¬b ∧ c

b ∧ c

¬b ∧ c

¬b

b

(b) a U (♦b R c)
Figure 1. Example of composition: Θ U ϕ

unchanged and final states of Aϕ become accept ones of Aψ
and initial state of Aψ become the state sinit.

Definition 8 (Xϕ automaton): Let ϕ be an Flat LTL for-
mulæ. Let Aϕ = (Sϕ, s

0
ϕ, Fϕ,Σ, δϕ) be the automaton equiv-

alent to ϕ. The automaton Aψ = (Sψ, s
0
ψ, Fψ,Σ, δψ) equiva-

lent to ψ = Xϕ is defined as follows:

• Sψ = Sϕ ∪ {snew, sinit}
• s0

ψ = sinit, Fψ = Fϕ

• The transition function δ is defined as follows:

δψ(s, p) =



δϕ(s, p) if s ∈ Sϕ (Aϕ transitions)

δϕ(s0
ϕ, p) if s = snew

(Connection snew to initial state of Aϕ)

{snew} if s = sinit and p = true
(Connection sinit to snew)

Example 2: Figure 2 illustrates the definition of Xϕ. Fig-
ure 2a shows the Büchi automaton associated to the for-
mulæ a U (Xb R c). To construct the Büchi automaton
equivalent to X(a U (Xb R c)), we add a new state snew and
for each transition tr starting from the initial state s0

ϕ to a state
s, a transition from snew to s with the same label. Finally, we
add the state sinit that we consider as initial and we connect
sinit to snew with a transition labeled with the true label.

Theorem 4: Let ψ = Xϕ, Aϕ be the Büchi automaton
equivalent to ϕ and Aψ be the LTL automaton built according
to Definition 8. Then, Words(Xϕ) = Lω(Aψ).

D. Büchi automata for ϕ R Θ formula
The formulæ ϕ R Θ informally means that Θ is true until

ϕ becomes true, or Θ is true forever. Thus, the construction of
a Büchi automaton for ϕ R Θ can be done by construction the
Büchi automaton associated to the fact that Θ is true until ϕ

s0

s1

s2

a

¬b ∧ c

c

true

b

(a) a U (Xb R c)

s0

snewsinit

s1

s2

a ¬b ∧ c
c

true

a c b

true

(b) X(a U (Xb R c))
Figure 2. Example of composition: Xϕ formula

becomes true and the construction of a Büchi automaton asso-
ciated to the fact that Θ is true forever. Finally, make the union
between the two constructed Büchi automata. Consequently, to
build the Büchi automaton for ϕ R Θ, we need to add two new
states si and sf to the set of states of the automaton Aϕ. si
becomes the single initial state of the resulting automaton and
sf is added to set of final states of the resulting automaton.
The following transitions are added to the set of transitions of
the resulting automaton:

• Transitions si
p∧Θ−→ s if and only if and only if

s0 p−→ s where s0 is the initial state of Aϕ.
• A loop over the added state si labeled with the

propositional formula Θ

• A loop over the added state sf labeled with the
propositional formula Θ

• A transition si
Θ−→ sf

All other transitions of Aϕ, as well as the accept states, remain
unchanged.

Definition 9 (ϕ R Θ automaton): Let Θ be a proposi-
tional formula and ϕ be an LTL flat formulæ. Let Aϕ =
(Sϕ, s

0
ϕ, Fϕ,Σ, δϕ) be the automaton associated to ϕ. The au-

tomaton Aψ = (Sψ, s
0
ψ, Fψ,Σ, δψ) associated to ψ = ϕ R Θ

is defined as follows:

• Sψ = {si, sf} ∪ Sϕ
• s0

ψ = si, Fψ = Fϕ ∪ {sf}
• The transition function δ is defined as follows:

δψ(s, p) =



δϕ(s, p) if s ∈ Sϕ (Aϕ transitions)

δϕ(s0
ϕ, p′) if s = si and p = Θ ∧ p′

(Connection si to initial state of Aϕ)

{si, sf} if s = si and p = Θ
(Loop over si or connection si to sf)

{sf} if s = sf and p = Θ
(Loop over sf)

Example 3: Figure 3 illustrates the composition definition
of ϕ R Θ. Figure 3a shows the Büchi automaton associated
to the formulæ c U ♦b. To construct the Büchi automaton
associated to the LTL formulæ ((c U ♦b) R a), we add a
state si that we consider as the only initial state and a state sf
that we consider as a final state. We add a loop labeled with
the atomic proposition a over the two added states. Finally, for
each transition outgoing from the initial state of the automaton
ϕ with label l and goes to state s, we add a transition from
the added state si to the state s with a label l∧a. We also add
a transition labeled with a from the state si to the state sf .

64Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

s0 s2

s1

b

¬b

c true

¬b

b

(a) c U ♦b

si

sf

s0 s2

s1

b

¬b

c

true

¬b

b

b ∧ a

c ∧ a

b ∧ a
a

a

a

(b) (c U ♦b) R a

Figure 3. Example of composition: ϕ R Θ

Theorem 5: Let ψ = ϕ R Θ, Aϕ be the Büchi automaton
equivalent to ϕ and Aψ be the LTL automaton built according
to Definition 9. Then, Words(ϕ R Θ) = Lω(Aψ).

E. Büchi for �Θ formula
The Büchi automaton associated to formulæ �Θ is ob-

tained by creating one state s0 and a loop over s0 labeling
with Θ.

Definition 10 (�ϕ automaton): Let Θ be an propositional
formulæ. The automaton associated to �Θ is defined as
A�Θ = ({s0}, s0, {s0},Prop, δ�Θ) where δ�Θ is defined as
follows: δ�Θ(s0,Θ) = {s0}

V. OUR ALGORITHM AND ITS IMPLEMENTATION

Our algorithm to build Büchi automata from FLTL formula
is compositional in the sense that the final Büchi automaton
is obtained by developing a sub-automaton for each sub-
formulæ of the principal formulæ . Hence, the basic idea
for developing the final automaton for a FLTL formulæ ϕ
is to explore the formulæ ϕ in a preorder traversal. That is
to say, we visit the root operator of ϕ first, then recursively
do a preorder traversal of the left sub-formula, followed by a
recursive preorder traversal of the right formulæ . Algorithm 1
allows us to build a Büchi automaton for a positive FLTL
formula ϕ and uses the following five functions:

• BuchiProp(Θ): takes as input a propositional formula
Θ and returns the automaton as defined in Definition
6 (Section IV);

• BuchiNext(BA): takes as input an Büchi automaton
BA and returns a Büchi automaton defined according
to Definition 8 (Section IV);

• BuchiEventuelly(BA): takes as input an Büchi au-
tomaton BA and returns a Büchi automaton defined
according to Definition 7 (Section IV);

• BuchiBinary(op,BAl,BAr): that takes as input ∧ or
∨ operator and two Büchi automata BAl and BAr
and returns a Büchi automaton defined according to
definitions of ∧ and ∨ given in Section II;

• BuchiUntil(Θ,BA): that takes as input a propositional
formula Θ and a Büchi automaton BA and returns the
automaton as defined in Definition 7 (Section IV);

• BuchiRelease(Θ,BA) that takes as input a proposi-
tional formula Θ and a Büchi automaton BA and
returns the automaton as defined in Definition 9 (Sec-
tion IV).

• BuchiAlways(Θ): takes as input a propositional for-
mula Θ and returns the automaton as defined in
Definition 10 (Section IV);

Algorithm 1: Generating Büchi automata:
GenerateBA(ϕ) for a FLTL formula

Name : GenerateBA
Input: a positive FLTL formulæ ϕ
Output: a Büchi automaton A;

if ϕ instance of U then
return BuchiUntil (Left (ϕ),
GenerateBA (right (ϕ)));

else if ϕ instance of R then
return BuchiRelease (right (ϕ),
GenerateBA (Left (ϕ)));

else if ϕ instance of X then
return BuchiNext (GenerateBA (right

(ϕ)));
else if ϕ instance of � then

return BuchiAlways (ϕ);
else if ϕ instance of ♦ then

return
BuchiEventuelly (GenerateBA (right
(ϕ)));

else if (ϕ instance of ∨) or (ϕ instance of
∧) then

if isPropositionnal (Left (ϕ)) and
isPropositionnal (right (ϕ) then
return BuchiProp (ϕ) ;

else if isPropositionnal (Left (ϕ)) then
return BuchiBinary (BuchiProp (Left

(ϕ)),GenerateBA (right (ϕ)) ;
else if isPropositionnal (right (ϕ)) then

return BuchiBinary (GenerateBA (Left
(ϕ),BuchiProp (right (ϕ))) ;

else
return BuchiBinary (BuchiProp (Left

(ϕ)),BuchiProp (right (ϕ))) ;

The proposed translation algorithm is very efficient where
we can translate any FLTL formula ϕ of length n in time O(n)
with O(n) states. The trick is to eliminate from our translation
each step that could be exponential. As Büchi automata
complementation is exponential [11][12], our transformation
prohibit the use of complement Büchi automata operation and
requires to use only LTL formula with negation pushed to
atomic propsitions.

Theorem 6: For any FLTL formulæ ϕ ∈ Lf , there exists
an Büchi automaton Aϕ with |Aϕ| = O(|ϕ|) and if Aψ
is the Büchi automaton generated by Algorithm 1, then:
Words(ψ) = Lω(Aψ).

We implemented our algorithm within the Graphical Tool
for Omega-Automata and Logics (GOAL) tool that is an
adequate graphical tool for defining and manipulating common
variants of omega-automata, in particular Büchi automata, and
temporal logic formula [13]. GOAL supports the translation
of temporal formula such as Quantified Propositional Tem-
poral Logic (QPTL) into Büchi automata where many well-
known translation algorithms are implemented. It also provides
language equivalence between two Büchi automata, automata

65Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

TABLE I. BENCHMARK FORMULA FOUND IN [14]

Formula ∈ LFLTL

p U (q U �r) yes
p U (q ∧ X(r U s)) yes
p U (q ∧ X(r ∧ (♦(s ∧X(♦(t ∧ X(♦(u ∧ X♦v)))))))) yes
♦(p ∧ X�q) yes
♦(p ∧ X(q ∧ X♦r)) yes
♦(q ∧ X(p U r)) yes
(♦�q) ∨ (♦�p) yes
♦(p ∧ X♦(q ∧ X♦(r ∧ X♦s))) yes
�♦p ∧ �♦q ∧ �♦r ∧ �♦s ∧ �♦t yes
(p U q U r) ∨ (q U r U p) ∨ (r U p U q) yes
�(p → (q U (�r ∨ �s))) no
�(p → (q U r)) no

complementation, automata union, automata intersection and
emptiness algorithms. It has extensions covering common
translation algorithms (e.g., LTL2BA [8], Tableau algorithm,
LTL2AUT, etc.). As the recent implementation of GOAL is
based on the Java Plugin Framework, it can be properly
extended by new plug-ins, providing new functionalities that
are loaded at run-time. We implemented our composition algo-
rithm within an independent plug-in. The automata generated
by our algorithm are simplified by several simplification meth-
ods (e.g., simulation, Delayed simulation, Faired simulation,
reducing unreachable/dead states) by taking advantage from
GOAL tool which implements all these methods.

VI. COVERAGE AVERAGE OF FLTL FRAGMENT

In this section, we present the experiments that we con-
ducted to show the coverage average of our fragment FLTL
formula. Three sets LTL formula which commonly considered
in the literature are performed. The experiments on the one
hand, emphasis the performance of our implementation algo-
rithm and, on the other, demonstrates that a wide range of
LTL formula can be covered by our approach and translating
polynomially and properly using our GOAL plug-in. The
process we applied for each formula ϕ in our experiments
can be summarized as follows:

1) Checking whether ϕ belongs to FLTL fragment by
building the finite syntax tree of ϕ.

2) Using the well-known algorithm LTL2BA to generate
a Büchi automaton equivalent to ϕ (called A1)

3) Using our GOAL plugin to generate the Büchi au-
tomaton A2 according to rules defined in our algo-
rithm (i.e., Algorithm 1)

4) Runing the GOAL Büchi automata equivalence to
check the equivalence between A1 and A2.

The first set contains 12 formula and can be found in [14].
The experiments for this set show that only two formula do
not belong to our grammar as shown in Table I. The coverage
average for this set is then 83.334%.

The second set contains 27 formula and can be found
in [15][16]. The results show that the FLTL fragment fails to
express only 11 formula as shown in Table II. The coverage
average for this set is then 59.259%.

The third set contains 50 formula and can be found in [17].
Indeed, the authors in [17] have proposed a pattern-based
approach which uses specification patterns that, at a higher
abstraction level, capture recurring temporal properties. The
main idea is that a temporal property is a combination of one
pattern and one scope. A scope is the part of the system

TABLE II. BENCHMARK FORMULA FOUND IN [15][16]

Formula ∈ Formula ∈
p U q yes ¬ �(p → X(q R r)) yes
p U (q U r) yes ¬ (�♦p ∨ ♦�q) yes
¬ (p U (q U r)) no ♦p ∧ ♦¬ p yes
�♦p → �♦q yes (�(q ∨ �♦p) ∧ �(r ∨ �♦¬p)) ∨ �q ∨ �r no
¬ (♦♦p ↔♦p) yes (�(q ∨ ♦�p) ∧ �(r ∨ ♦�¬p)) ∨ �q ∨ �r no
¬ (�♦p → �♦q) yes ¬ ((�(q ∨ �♦p) ∧ �(r ∨ �♦¬p)) ∨ �q ∨ �r) yes
¬ (�♦p ↔ �♦q) yes ¬((�(q ∨ ♦�p) ∧ �(r ∨ ♦�¬p)) ∨ �q ∨ �r) yes
p R (p ∨ q) yes �(q ∨ X�p) ∧ �(r ∨ X�¬ p)) no
(Xp U Xq) ∨ ¬ X(p U q) yes �(q ∨ (Xp ∧ X¬ p)) no
(Xp U q) ∨ ¬ X(p U (p ∧ q)) yes (p U p) ∨ (q U p) yes
�(p → ♦q) ∧ ((Xp U q) ∨ ¬ X(p U (p ∧ q)))no ♦p U �q no
�(p → ♦q) ∧ ((Xp U Xq) ∨ ¬ X(p U p)) no �p U q no
�(p → ♦q) no �(♦p ∧ ♦q) yes
(Xq ∧ r) R X(((s U p) R r) U (s R r)) no

TABLE III. COVERAGE DWYER’S PATTERNS/SCOPES BY OUR LTL
FRAGMENT

Scope/Pattern Globally Before r After q Between q After q
and r until r

Absence yes yes yes yes yes
Universality yes yes yes yes no
Existence no no yes yes yes
Precedence yes yes yes no yes
Response yes yes no no no
s, t precedes p yes yes yes no no
p precedes s, t yes yes yes no no
p responds s t no yes no no no
s, t responds p no yes no no no
s, t without z responds to pno yes no no no

execution path over which a pattern holds. For more details
about patterns and scopes can be found in [17]. They proved
that the patterns dramatically simplify the specification of
temporal properties, with a fairly complete coverage where
they collected hundreds of specifications and they observed
that 92% of them fall into this small set of patterns/scopes.
A translational semantics have been proposed to Dwyer’s
properties by mapping each pattern/scope combination to a
corresponding LTL formula. As Dwyer’s and al. propose 5
scopes and 10 patterns, the total number of involved LTL
formula is then 50. The results of the comparison are given in
Table III and show that our LTL fragment covers 27 formula
from 50 formula associating by Dwyer to scopes/patterns. The
coverage average for this set is then 54%.

The covering average of each set is accepted and slightly
high. This shows that our fragment covers more than 65.531%,
which is considered very good enough due to the importance
of LTL formalism in modeling area. Such a result could be
a promising direction to explore LTL-based model checking
techniques in which system properties are first expressed in
LTL formula then converted into Büchi automata.

VII. RELATED WORK

Translation from LTL formula to Büchi automata has been
extensively studied in the literature. Authors in [1][18] con-
structed Büchi automata whoses states are sets of subformula
of the considered LTL formula. This translation is of order
2O(n) where n is the length of the LTL formula in input. [19]
proposed to build Büchi automata by a bottom-up traversal
through the syntax tree of the considered LTL formula. This
translation has been proved in order of 2O(nlog(n)). [20]
presented an efficient translation by means of alternating ω-
automata. The translation from LTL formula to alternating ω
automata is linear in terms of the length of the considered
LTL formula, but the translation of the resulting alternating ω-
automaton to the target Büchi automata is exponential. [21]-

66Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

[22] proposed on-the-fly translation of so-called generalized
Büchi automata (Büchi automata with multiple acceptance
conditions) which then linearly converted into Büchi automata.

There are several fragments of LTL that have been pro-
posed in the literature. [3] has proved that converting any
formula in which the only allowed modality is the until
operator U or the only allowed modality is X or ♦ to
Büchi automata is PSPACE. The formula that uses only the
♦ operator is coNP-Complete. The formula that uses only
the X operator is coNP-Complete [23]. The formula that uses
only the ♦ operator in the form �♦ is co-NPComplete [24].
In [23], the authors used the term Flat LTL to express formula
that use the U operator whose the left-hand side does not
contain any temporal combinator, but the right-side can contain
only formula with the U operator (or its negation). Translation
from this fragement to Büchi automata has been proved
NP-Complete. Several simple cases with a lower worst-case
complexity are handled in [23][24].

VIII. CONCLUSION AND FUTURE WORK

This paper presented a compositional algorithm for gener-
ating Büchi automata from a fragment of LTL logic. First, we
proposed the grammar of this fragment and then built for each
formulæ ϕ, its equivalent Büchi automata. Second, we showed
theoretically how to compositionnally build from Büchi au-
tomata associated to each sub-formulæ, the Büchi automaton
of the target formulæ. Third, we implemented our approach
in GOAL tool as a plugin and showed the complexity and the
correctness of our Büchi automata generation method. Fourth,
we demonstrated the interest of our method by computing
coverage average of the fragment FLTL using three sets of
well-known LTL formulas as benchmarks.

Several research lines can be continued from the present
work. First, some temporal operators such as always, precedes
or since are not considered in this paper, as an immediate
perspective, we will study how to include these operators in
our LTL fragment. Second, it will be interesting to study
whether our fragment LTL is minimalist and whether there
is possibility to more expand it by identifying what makes it
smallest. A good direction for this point is to study whether
there is a subset of Dwyer’s pattern/scope from which all other
patterns/scopes can be deduced. Third, it would be interesting
to connect the proposed language to usual model checking
tools.

ACKNOWLEDGMENT

This project has been jointly funded with the support of the
National Council for Scientific Research in Lebanon CNRS-L
and Lebanese University.

REFERENCES

[1] O. Lichtenstein and A. Pnueli, “Checking that finite state concurrent
programs satisfy their linear specification,” in Proceedings of the 12th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. New York, NY, USA: ACM, 1985, pp. 97–107.

[2] C. Baier and J. Katoen, Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[3] A. Sistla and E. Clarke, “The complexity of propositional linear
temporal logics,” J. ACM, vol. 32, no. 3, july 1985, pp. 733–749.

[4] R. Hierons and al., “Using formal specifications to support testing,”
ACM Comput. Surv., vol. 41, February 2009, pp. 9:1–9:76.

[5] S. Gnesi, D. Latella, M. Massink, V. Moruzzi, and I. Pisa, “Formal test-
case generation for UML statecharts,” in Proc. 9th IEEE Int. Conf. on
Engineering of Complex Computer Systems. IEEE Computer Society,
2004, pp. 75–84.

[6] E. Clarke, O. Grumberg, and K. Hamaguchi, “Another look at LTL
model checking,” in Formal methods in system design. Springer-
Verlag, 1994, pp. 415–427.

[7] M. Vardi, “Branching vs. linear time: Final showdown,” in Proceedings
of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. London: Springer, 2001, pp.
1–22.

[8] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV’01), ser. LNCS, vol. 2102. Paris, France: Springer,
jully 2001, pp. 53–65.

[9] V. King, O. Kupferman, and M. Vardi, On the Complexity of Parity
Word Automata. Springer Berlin Heidelberg, 2001, pp. 276–286.

[10] E. A. Emerson, “Handbook of theoretical computer science (vol. b),”
J. van Leeuwen, Ed. Cambridge, MA, USA: MIT Press, 1990, ch.
Temporal and Modal Logic, pp. 995–1072.

[11] S. Safra, “On the complexity of omega-automata,” in 29th Annual
Symposium on Foundations of Computer Science, White Plains, New
York, USA, 24-26 October 1988, 1988, pp. 319–327.

[12] A. Sistla, M. Vardi, and P. Wolper, “The complementation problem
for büchi automata with applications to temporal logic,” in Automata,
Languages and Programming. Springer Berlin Heidelberg, 1985, pp.
465–474.

[13] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and W.-C. Chan,
“Goal: A graphical tool for manipulating büchi automata and temporal
formulae,” in Tools and Algorithms for the Construction and Analysis
of Systems. Springer Berlin Heidelberg, 2007, pp. 466–471.

[14] K. E. and G. Holzmann, “Optimizing Büchi automata.” Springer, 2000,
pp. 153–167.

[15] M. Daniele, F. Giunchiglia, and M. Vardi, “Improved automata gener-
ation for linear temporal logic,” in In 11th International Conference on
Computer Aided Verification, ser. CAV ’99. London, UK: Springer,
1999, pp. 249–260.

[16] F. Somenzi and R. Bloem, “Efficient büchi automata from ltl formulae,”
in Computer Aided Verification, E. A. Emerson and A. P. Sistla, Eds.
Berlin, Heidelberg: Springer, 2000, pp. 248–263.

[17] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property specifi-
cations for finite-state verification,” in Proceedings of the 21st Interna-
tional Conference on Software Programming, 1999, pp. 411–420.

[18] P. Wolper, “On the relation of programs and computations to models
of temporal logic,” in Temporal Logic in Specification, B. Banieqbal,
H. Barringer, and A. Pnueli, Eds. Springer Berlin Heidelberg, 1989,
pp. 75–123.

[19] G. G. de Jong, “An automata theoretic approach to temporal logic,” in
Computer Aided Verification, K. G. Larsen and A. Skou, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1992, pp. 477–487.

[20] M. Y. Vardi, An automata-theoretic approach to linear temporal logic.
Berlin, Heidelberg: Springer, 1996, pp. 238–266.

[21] J.-M. Couvreur, “On-the-fly verification of linear temporal logic,” in
FM’99 — Formal Methods, J. M. Wing, J. Woodcock, and J. Davies,
Eds. Springer, 1999, pp. 253–271.

[22] S. Schwoon and J. Esparza, “A note on on-the-fly verification algo-
rithms,” in Tools and Algorithms for the Construction and Analysis
of Systems, N. Halbwachs and L. D. Zuck, Eds. Springer Berlin
Heidelberg, 2005, pp. 174–190.

[23] S. Demri and P. Schnoebelen, “The complexity of propositional linear
temporal logics in simple cases,” Information and Computation, vol.
174, no. 1, 2002, pp. 84 – 103.

[24] E. A. Emerson and C.-L. Lei, “Modalities for model checking: branch-
ing time logic strikes back,” Science of Computer Programming, vol. 8,
no. 3, 1987, pp. 275 – 306.

67Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

