
An Intermediate Model for Code Generation from the Two-Hemisphere Model

Konstantins Gusarovs, Oksana Nikiforova

Department of Applied Computer Science

Riga Technical University

Riga, Latvia

email:{konstantins.gusarovs, oksana.nikiforova}@rtu.lv

Abstract—Nowadays, models are widely used in software

engineering. By using different types of models, it is possible to

present business requirements, system architecture, test

strategies, etc. It is also possible to use models as an input to an

automated or semi-automated method that will produce other

types of artifacts – other models, statistics, or even software

code specified in a programming language. The authors of the

present paper work in the area of Model-Driven Software

Development (MDSD) by constantly improving the so-called

two-hemisphere model that can be used for system modelling

and later transformed into several types of artifacts, including

Unified Modelling Language diagrams. The goal of the paper

is to define an intermediate representation (or model) that can

be used for code generation. The present research is the

extended and expanded version of the authors’ previous work.

Keywords - two-hemisphere model; model transformation;

code generation; model-driven software development.

I. INTRODUCTION

Model-Driven Software Development (MDSD) is one of
the advanced approaches to the software development
process that is still being developed and adopted by several
researchers and enterprises. It seems that nowadays it is
possible to distinguish two main groups of MDSD users:
those treating models as an analytical tool that can help in
better understanding of a problem domain, requirements, etc.
[1], as well as those who see models as a high level
executable ones that can be further used to produce a
programming language code on a target platform [1]. This
task can be achieved by using model transformation and
code generation techniques, which can be done in an
automatic [2] or a semi-automatic way.

The authors of the current paper also treat models as a
source for producing the software definition in a chosen
programming language and for a chosen platform. While
several researchers undertake their efforts to produce a
software code from the Unified Modelling Language (UML)
[3] defined diagrams (for example, [2][4][5]), the current
research is based on another approach to code generation,
which is called the two-hemisphere model that has been
developed by the authors [6]-[8].

The role of models in Software Development is still
unclear, and it can be explained by the fact that MDSD is
still at high level of vision [9], and while UML is de-facto
industry standard [5], it can be hard for a business analyst,
who is not a software engineer, to develop a set of UML

diagrams. Even more, most UML diagrams describe the
architecture of the system that conforms to object-oriented
principles. As an example, the UML class diagram defines a
set of classes that form the system, and the UML sequence
diagram defines how use cases can be implemented using
this set of classes, while the UML communication diagram
defines relations between classes from a communication
perspective – how classes (or their instances) interact with
each other, and what information is passed, etc. It is possible
to see that this set of diagrams used as a system analysis
model basically corresponds to the core elements of code
written in object-oriented programming language.

Nowadays, it is possible to find multiple tools that can be
used to transform the system analysis model into the code.
The main condition for code generation is that the model
should contain both aspects of the system (i.e., static and
dynamic), and both should be supported in code generation.
Despite several limitations in code generation, which are
mainly limitations of the tools rather than the transformation
abilities [10], a lot of studies performed since 1980s
demonstrate different sets of transformation rules for code
generation from UML and mention exactly the dynamic
aspect as the primary problem in code generation [11].
Therefore, the authors indicate that by creating a set of UML
diagrams, one basically carries out the coding work. In
addition, one also has to overcome the difficulties caused by
UML usage. As the two-hemisphere model provides an
ability to generate UML diagrams, which is enough for code
generation, the authors of the paper assume that the two-
hemisphere model already contains all the necessary
information to get all the required constructions specified in
the programming language. That is why in the present
research the authors move further away from complex
models specified in UML and use their own model. The
research also attempts not to focus on the static aspects of the
system, i.e., data structures and domain models, but rather on
defining the dynamic capabilities of the system by the so-
called intermediate model, which, in general, is like the
adoption of the two-hemisphere model for the task of code
generation.

The goal of the paper is to define an intermediate artifact
that will serve as a “bridge” between the initial model (two-
hemipshere model) and the target model (source code).
Although UML can be used to cover this area, and there are
the methods to generate UML diagrams from the two-
hemisphere model, the authors would like to mention once

74Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

again that most UML diagrams cover object-oriented
architecture. This raises a need for the intermediate model
that is target-architecture-agnostic and can be used to
describe both static and dynamic aspects of the system. This
model should also serve as a source model for the code
generator, which means, it should cover necessary elements
of the source code.

The paper is structured as follows. Section II gives an
insight into related work. Section III provides a high-level
overview of the two-hemisphere model. Section IV discusses
the target model, which in this case is a code written in some
programming language. Section V describes what is required
to define the data structures for the system being built.
Section VI covers the definitions that can be used for
describing the capabilities of the dynamic system. Section
VII provides examples of various applications of the
proposed intermediate model along with the analysis of the
respective applications. A short demonstration of
intermediate model application is presented in Section VIII.
Finally, Section IX concludes the paper, as well as provides
an insight into the future research to be conducted in this
area.

II. RELATED WORK

Having defined requirements for the intermediate model,
the authors performed an analysis of the existing approaches
to code generation in the MDSD area. Full analysis of the
published articles is an area for a separate research itself;
therefore, in this article the authors provide a brief overview
of related studies.

The first example under consideration is [12]. Its authors
propose an extensible intermediate model for code
generation from UML sequence diagrams. The article
describes metamodel and its possible extensions. The authors
claim that their model can be used with different target
languages; however, such languages must be object-oriented.

Another example is [13], where the author develops an
intermediate model, called Hierarchical Syntax Char (HSC),
which is used for the UML activity diagram conversion to
the source code. Here, the author has chosen the Java
programming language [14] as a target model. The HSC
developed by the author once again recognizes the necessity
for the object-oriented target language.

Authors of [15] also target object-oriented languages in
their research. Even more, the approach described in [15]
also defines the architecture of generated code by listing
specific components of the system to be generated. Again, an
intermediate model is developed to support multiple target
platforms.

It is possible to find more studies in this area; however, it
seems that they mostly aim at improving the code generation
techniques from different types of UML diagrams. For
example, studies [2][4][5] focus on code generation from
UML diagrams, targeting at object-oriented languages. It
should be noted that researchers usually target the object-
oriented languages, which could probably be explained by
the use of UML, since it already defines basic components of
an object-oriented system. This, in turn, leads to limited
coverage of target languages that do not support an object-

oriented paradigm by the existing methods. Examples of
such languages are provided in Section V of this paper. The
authors consider that the current state of code generation
from models is somehow limited to support only one
paradigm, and, therefore, propose the intermediate model
described in the paper.

III. THE TWO-HEMISPHERE MODEL: A HIGH-LEVEL

OVERVIEW

One of the MDSD tasks is transformation from the
source model to the target model. The task itself describes a
need for at least two models – one that is defined in the
beginning and is called the source model. This is an initial
artifact that can be produced, for example, by a business
analyst, while performing a requirement analysis. Another
one is a target model, which can be almost everything,
starting with the set of UML diagrams and ending with the
software code defined in some programming language.

The authors of the present paper define the two-
hemisphere model [6] as a source artifact. The model itself
was first introduced in 2004 with the goal of describing the
business requirements with as minimal set of diagrams as
possible for an object-oriented system analysis. It introduces
an idea of joining both static and dynamic aspects of the
system in the model that consists of two diagram types.
Later, several improvements were introduced to it, enriching
the model and precising its elements in [7] and [8], and
working on the supporting tool in [16]. The notation of the
two-hemisphere model is presented in Figure 1.

Figure 1. Two-Hemispher model notation.

The two-hemisphere model contains two diagrams:

• Concept model (labeled G2) is a set of concepts
or datatypes used throughout the system or a
given use case. Each concept has at least its
name and a set of 0-n attributes. Each attribute
consists of a name and data type, where data
type might be a primitive value, such as a
number, string literal, boolean type, etc., another
concept or array/collection of the
aforementioned. The notation of the concept
model is similar to the one used for Entity-
Relationship (ER) diagram [17], but

75Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

relationships among concepts is not used as far
as they are not meaningful at this level of
abstraction and are generated automatically at
the level of UML class diagram.

• Process model (labeled G1) is based upon the
notation of Data Flow Diagram (DFD) [18] and
is composed of two types of elements –
processes and data flows. Processes show units
of work inside the system. Data flows, in turn,
interconnect processes, both defining the
sequence of process execution and the data each
process receives and produces. Here, data might
be 0-n of the same data types, concept attribute
use. Thus, the data flow might carry no data at
all or a complex set of data. This way both
diagrams are interconnected, i.e., concepts
appear as the data flow content.

It is possible to see that the definition of the two-
hemisphere model does not require specific software
engineering knowledge – basically to create it, one has to
analyze what business processes take place in the system
being built, what data they consume and produce, and in
which order it might be executed. Moreover, the two-
hemisphere model can be obtained directly from the business
domain, where business processes and data flows are
somehow or other structured and supported in the form of
the model specified in the analogical notation for business
issues. Thus, the authors of the paper see this model as a
great candidate for the MDSD source model, since the model
only describes how the system works, rather than how the
system should be built.

After the choice of the source model is performed, it is
necessary to define what type of artifact is targeted. Little
information on the chosen target model is provided in the
next section. This model is nothing else, but the software
code written in the chosen programming language, in other
words, computer program.

IV. COMPUTER PROGRAM: DEFINITION

In order to define the concept of computer program, the
authors would like to mention several definitions from
ISO/IEC 2382:2015 standard [19] and analyze what is
required to transform the source model to it.

First, it is necessary to define what a computer program
is at a glance. In ISO/IEC 2382:2105, it is defined as a
“syntactic unit that conforms to the rules of a particular
programming language and that is composed of declarations
and statements or instructions needed to solve a certain
function, task, or problem”. By analyzing this definition, it is
possible to see that a computer program should consist of the
two main parts:

• Declarations that are used to describe data
structures and variables that are used to solve
the given task.

• Statements or instructions needed for the given
task or problem solution. It is also possible to
further analyze the standard and conclude that
these elements are used to compose the

algorithm – “finite ordered set of well-defined
rules for the solution of a problem”.

By combining and analyzing these definitions and
common knowledge about software engineering, it is
possible to define the target model that consists of the two
main parts:

• Data structure and variable definitions – to
cover the static aspect of the system in
development.

• Sequence of instructions or statements that use
former part to cover the dynamic aspect of the
developed system.

Again, it is possible to see that the chosen source model
already provides an insight into these two aspects with the
concept model being focused on the data structure definition
and the process model describing the dynamic capabilities of
the system, i.e., how data are transformed during the system
operation, and in which order processes are invoked
performing these transformations.

Thus, to transform the two-hemisphere model into the
computer program, it would be necessary to transform every
element (or a set of elements) of it to the appropriate element
(or a set of elements) of the target model and to preserve the
linkage between them based on the specific algorithm
defined by the authors.

V. CONVERTING CONCEPTS TO DATA STRUCTURES

Data structures describe the static aspect of the system
that is being analyzed and built. According to [19], data
structure can be defined as “physical or logical relationship
among units of data and the data themselves”. This definition
can be linked to the concept model of the two-hemisphere
model: by representing data types in form of units of data
and defining the necessary relationship by utilizing already
defined concepts, it is possible to extract all the necessary
information to the form required for code generation.

In order to be programming language-agnostic, it is
necessary to analyze how data structures might be
represented in different programming languages and what
information is shared between these representations.

The first case is object-oriented programming languages
– here, it is possible to define data structure as a class with
appropriate attributes. Each attribute can be described by its
name and data type.

Some programming languages, for example,
ECMAScript [20], are sometimes called object-based. While
the latest ECMAScript standard allows for the definition of
classes, it is also possible to use the so-called prototypes for
the object blueprint definition. Prototype here is an object
that has a set of fields and methods that can be used by all
the other objects that are referencing this prototype. In a way,
this is like the class in stricter object-oriented languages;
however, prototypes usually do not support inheritance. In
case of the static aspect description, a prototype should
contain a set of fields, where each field has a name and data
type.

Next, there are programming languages that are not
object-oriented, for example, C programming language [21],
where data structures are commonly represented with a

76Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

struct syntax construction. Structure in C language can be
viewed as a “weak class” – it is a set of data that consists of
fields that are like class attributes. Each of them has a name
and data type. However, structures in C language do not
have methods (it is possible to reference the function via the
pointer, which is a field of structure; however, it still will be
a field, but not a method).

Other non-object-oriented programming languages, such
as Erlang [22], can have different ways of representing the
data structures. For example, in Erlang it is possible to define
it as a record, which is similar to structure in C language

and consists of fields of given types, or it is also possible to
define it as a tuple, which can be viewed similar to the array.
In case of record, each element has a name and can have a
data type. In case of tuple, a name is omitted and replaced by
an index; a data type, in turn, can be preserved.

Even using low-level assembly languages, it is usually
possible to define the data structures. For example, one of the
modern assemblers – flat assembler [23] – provides a way of
defining the so-called structures consisting of a field, where
each of them has a name and data type definition.

To sum up, it is possible to see that most programming
languages require a data structure to have its own type (or
name) and a set of fields/attributes, each of them having its
own name and data type. Even considering some exclusions,
such as Erlang tuples, where names are not preserved, it is
possible to define an intermediate representation of a data
structure that can be later used to generate a code in different
programming languages.

This intermediate representation is provided in (1). Here,
the data structure definition is described by its name and a
set of attributes, each having its name and data type.
Basically, one can notice that such a representation
corresponds to the concept definition in a concept model of
the two-hemisphere model. Thus, obtaining the data structure
information from the source model is a simple task.

()

Data structure information is the first part of the proposed

intermediate model that can be used for code generation. The
second part is the information that can be used for describing
the behavioral capabilities of the code. Definition of such a
model is provided in the subsequent section.

VI. DEFINITIONS OF SYSTEM BEHAVIOR

System behavior in the two-hemisphere model is
described with the help of the process model that provides
the information on the processes that are executed inside the
analyzed system, the data exchanged by these processes, and
the sequence of execution. In order to convert this
information to the code defined in a programming language,
it is necessary to define a model that is capable of the
programming language code description and can represent
such a code.

One of the ways to represent the target model, i.e.,
programming language syntax constructions, is to use
Abstract Syntax Tree (AST) [24]. This approach is widely
used in the compilers, which translate textual representation
of the code into ASTs and then build the machine instruction
set out of them. Thus, AST is one of the possible
intermediate models that can be used for code generation.

As mentioned above, AST is used to generate the
machine instruction set that, in turn, can be represented in a
way of the so-called Assembly Language [25], which is
human readable representation of the machine instructions.
Obviously, it is possible to use a similar approach when
defining the dynamic part of the intermediate code
representation. However, assembly languages for the modern
processors can contain a lot of instructions, for example,
x86-64 instruction set consists of ~1000 instructions [26],
which would make the intermediate model complex to define
correctly, while easy to transform to the appropriate code.

Yet another option to analyze is to look at cross-platform
languages, such as Java [14] and .NET [27]. These languages
are compiled into the so-called bytecode that can be defined
as a “lightweight assembly”. Bytecode provides an
alternative to more complex assembly languages by defining
a reduced instruction set, for example, Java Virtual Machine
(JVM) bytecode consists of ~200 instructions [28].

It is possible to use these representations to define the
logic encapsulated in the process model and describe the
dynamic aspect of the system under analysis. Though, at
first, the use of AST seems to be a correct approach, the
authors would like to note that ASTs usually define the
syntax of a particular language. Therefore, AST defined for
the Java language [14] will probably not be suitable for
language such as Erlang [22], since the syntaxes of two are
different. However, it might be used for code generation in
JavaScript [20] or C [21].

Thus, the authors propose defining the intermediate
model by using ideas that define the bytecode – use a
reduced set of instructions in order to accomplish the task. It
is necessary to define such instructions in a way that they can
be used to cover the maximum number of possible target
languages.

For this purpose, it is necessary to analyze the two-
hemisphere model once again. It is possible to see that the
dynamic aspect of the system under analysis is described by
processes, each of which might accept and produce data
flows. Data flows, in turn, can carry data in form of concepts
or primitives. Therefore, the main logical element here is
process. Processes can be turned into methods, functions,
predicates, etc., depending on the chosen target language.
Common characteristic of these targets is that they can have
inputs and outputs, which correlate well with the process
consuming and producing data flows.

Therefore, it is possible to define an intermediate
representation of the process: it should have an identifier (it,
for example, can be a name), a set of consumed data, which
can be empty, and a set of produced data, which can also be
empty. Transformation to such representation from the target
model is straightforward – it is necessary to use the process
name and collect all the possible data elements from the

77Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

incoming and outgoing data flows to define the
representation shown in (2).

()

In this representation, each process is transformed into a

three-element tuple that consists of name, inputs and outputs.
Both inputs and outputs are defined as sets of name-type
tuples, where a name is a logical name of the input/output,
i.e., parameter name, and a type is a data structure, primitive
or array/collection of former types mixed in any way.

Such a representation allows for a wide range of possible
target languages – it does not define whether the target
language element is a class method or a free function, or any
other kind of data processing primitive. It does not enforce a
way on how parameters are passed – there are languages, for
example, C# [27] or Python [29] that can allow returning
multiple data structures from the function/method.
Otherwise, it is possible to combine the outputs into a special
data structure to guarantee a single returned item.

The authors propose calling this representation a “logical
unit”, since it corresponds to a single process being executed
inside a system; however, its target representation may vary.

In order to define the interaction between the logical
units, it is necessary to analyze what might happen inside the
system and how processes might interact with each other.

The simplest case is sequential invocation of processes,
which takes the data produced by the first processes and
passes it to the next one in the logical chain. To cover this
case, it is necessary to define storage units for data process
exchange – when doing further transformation, these
definitions can become local or global variables, virtual or
physical machine registers, etc. It is also necessary to be able
to invoke any logical unit by passing its parameters to it and
storing its result.

Next case is branching – branching in programming
languages can be represented by various syntax
constructions, starting with if..else, switch and ending

with loops that, in turn, may contain premature exit
conditions. It is also necessary to note that loops can be
defined in several ways – a loop may have its condition
checked before the next iteration execution, or after it.
Despite different ways of branching, it is possible to analyze
lower-level languages, such as assembly language [25], and
different byte code implementations (for example, JVM [28]
bytecode and .NET [27] intermediate language) to see that it
should be possible to implement the necessary branching
support by using several definitions. It should be possible to
define labels, which can mark different states (or points) in
the execution flows and instructions that would allow
passing the control to these labels, i.e., branching
instructions. Branching, in turn, can be conditional and non-
conditional. In the first case, when the execution flow
reaches an appropriate instruction, the so-called jump is
performed to the appropriate label, which means a change in

the next executed instruction. Conditional branching requires
first performing the condition check and then, depending on
the result of this check, performing or not performing the
“jump”.

By analyzing the possible logical unit execution flows,
one can see that these two cases are enough to cover all the
possible process execution sequences in the initial model.
Thus, it is possible to define additional elements that are
described further to be generated for the intermediate model.

First of these elements is label definition instruction. It is
shown in (3). Here, the label is defined by its name, which
can be any kind of symbolic identifier – numeric or textual.

Label<Name> ()

Next elements are branching instructions that are used

with the labels. The first branching instruction is non-
conditional branching that is shown in (4).

Jump<Label> ()

Non-conditional jump transfers the execution to the label

defined in it, so it can be defined by a jump instruction
followed by a label to be “jumped” to.

Next two instructions are conditional branching
instructions, and they are presented in (5). Both instructions
are similar, with only difference in the situation when
branching should happen – when the condition is met or is
not met.

JumpIf<Var, Label>

JumpIfNot<Var, Label> ()

These instructions require the boolean type variable to be

checked. This variable is defined via its name, which will be
discussed later. Otherwise, both instructions contain labels to
be “jumped” to, depending on the value of this variable.

It is possible to see that conditions here are not the part of
the branching instruction; instead branching instructions use
variables that contain the result of the condition check. This
means the necessity for the condition checking instruction,
which is given in (6).

Check<Var, Condition> ()

This instruction has two parameters – a variable to store

the condition check result and the condition to be checked.
Here, the condition is a free-text phrase or a sentence.

It is possible to see that condition checking requires a
variable to store the result, which later will be used by a
conditional branching instruction. Therefore, it is necessary
to be able to define the variable, which is supported by
variable definition instruction presented in (7).

Var<Name, Type> ()

This instruction has two arguments – the name of

variable and its type, which is the same as for data structures.

78Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Last necessary instruction is the process invocation
instruction. It is presented in (8).

Invoke<Process, Inputs, Outputs> ()

Here, the instruction has three parameters defined in it –

the name of the process to be executed, its inputs, which are
an array of appropriate variable names, and its outputs
defined in the same way.

As it will be shown in the next section, these instructions
are enough to define all the types of branching and possible
execution flows, at least in the context of code generation
from the two-hemisphere model.

VII. EXAMPLES OF THE PROPOSED MODEL APPLICATIONS

In order to prove that the developed model is feasible and
can be used for code generation, the authors propose
analyzing several examples of its application.

The first example is sequential invocation of processes.
In case of the Java [14] programming language, such a code
can be written in a form shown in Figure 2.

Figure 2. Sequential process invocation in Java.

Here, method f1 is invoked with arguments a and b, its
invocation result is stored in variable c, and then used to

invoke method f2. It is possible to define such an invocation

sequence in the proposed intermediate model notation,
which, in turn, is shown in Figure 3.

Figure 3. Sequential process invocation in the proposed model.

One can realize that the proposed model corresponds to
the Java code, and it is possible to perform transformations
from one to another.

Next example is presented in Figure 4. Here, several
branching definitions are given – first, there is simple
branching with only single condition check, which defines if
method f1 should be executed. Next, there is more complex

if..else branching, and finally – branching using switch.
The same branching instructions are presented in Figure

5. Again, by studying both representations, it is possible to
see their equality and ability to transform from one to
another.

Figure 4. Branching in Java.

Figure 5. Branching in the intermediate model.

if (a == b) {

 f1();

}

if (c < d) {

 f2();

} else if (c == d) {

 f3();

} else {

 f4();

}

switch (e) {

 case 1:

 f5();

 break;

 case 2:

 f6();

 break;

 default:

 f7();

}

Check<Cond1, "a == b">

JumpIfNot<Cond1, L1>

Invoke<f1, [], []>

Label<L1>

Check<Cond2, "c < d">

Check<Cond3, "c == d">

JumpIfNot<Cond2, L2>

Invoke<f2, [], []>

Jump<L4>

Label<L2>

JumpIfNot<Cond3, L3>

Invoke<f3, [], []>

Jump<L4>

Label<L3>

Invoke<f4, [], []>

Label<L4>

Check<Cond4, "e == 1">

JumpIfNot<Cond4, L5>

Invoke<f5, [], []>

Jump<L7>

Label<L5>

Check<Cond5, "e == 2">

JumpIfNot<Cond5, L6>

Jump<L7>

Invoke<f6, [], []>

Label<L6>

Invoke<f7, [], []>

Label<L7>

Invoke<f1, [a, b], [c]>

Invoke<f2, [c], [d]>

c = f1(a, b);

d = f2(c);

79Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Last situation to be covered by the proposed intermediate
model is loops in the code. To show that these cases can also
be covered, the authors propose considering the Java code
provided in Figure 6. The appropriate intermediate model
representation is given in Figure 7.

Here, three types of loops are presented. The first loop is
for loop, which repeats for a given amount of time. This is

controlled via a local loop variable i. The second loop is a
loop with precondition, while the last one is a loop with post-
condition. The second loop also involves possible premature
exit via checking local variable c value.

It is possible once again to see that all the necessary cases
are covered by the intermediate model with a single
exception of incrementing the loop variable value in case of
the loop with fixed iteration count. This, however, can be
improved by adding additional instructions to the model. It is
also worth noting that the two-hemisphere model notation
does not allow defining such loops now, so this case is not
covered fully.

Figure 6. Loops in Java.

It is possible to see that the proposed intermediate model
allows covering all the possible cases that might be
encountered in the initial model, as well as presents a solid
way to enable code generation in various programming
languages.

VIII. AN EXAMPLE OF THE PROPOSED MODEL

APPLICATION

In order to demonstrate how the proposed model can be
used in conjunction with the two-hemisphere model, the
authors refer to the diagram first presented in [30]. Due to
the fact that the research described here is still underway, the
authors do not present a full system. Instead, the authors
demonstrate only part of it that was used to evaluate the
approach. As in the original work, only a process diagram is
analyzed here. It is presented in Figure 8.

Figure 7. Loops in the intermediate model.

Figure 8. Example of the two-hemisphere model.

Here, the model describes a booking process in the hotel
that starts with receiving a booking request with room
preference details. After that there are two options: either
room that fits the request is found or not (for example, due to
the fact that rooms do not meet the criteria, or non-
availability of the rooms in the given dates). If no room is
found, a user is advised to revise the information and submit
a new request. At this point, a user can also cancel the
booking. If a room is found and request can be served, a user
is asked to provide additional information, which is used to
create the booking and store it in the database. Here, all

Label<L1>

Check<Cond1, "i < 5">

JumpIfNot<Cond1, L2>

Invoke<f1, [], []>

Jump<L1>

Label<L2>

Label<L3>

Check<Cond2, "a < b">

JumpIfNot<Cond2, L4>

Check<Cond3, "c > 0">

JumpIf<Cond3, L4>

Invoke<f2, [], []>

Jump<L3>

Label<L4>

Label<L5>

Invoke<f3, [], []>

Check<Cond4, "e > 1">

JumpIfNot<Cond4, L6>

Jump<L5>

Label<L6>

for (int i = 1; i < 5; i++) {

 f1();

}

while (a < b) {

 if (c > 0) {

 break;

 }

 f2();

}

do {

 f3();

} (while e > 1);

80Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

elements are marked with identifiers – processes are marked
P1…P8, dataflows – D1…D8. These identifiers are later
used in the intermediate model that is presented in Figure 9.
Here, it is possible to see how the intermediate model would
look after transformation of the initial process model. It is
also possible to see that additional information is required to
produce it – such as conditions for branching.

Figure 9. Example of the intermediate model.

It is also possible to trace the intermediate model back to
the initial one and see that processes are invoked in the same
sequence as defined by the initial business process analysis.
This task could also be automated – it is possible to create a
graph of all the possible branching and compare it with the
initial model in order to check, if the defined process
invocation sequence is preserved. Such a graph definition
would allow verifying the correctness of the generated
model. However, the algorithm to define such a verification
graph is out of scope of this paper. However, it should be
noted that it has already been developed and currently is
under testing.

IX. CONCLUSIONS AND FUTURE WORK

Previous research conducted by the authors on the use of
the two-hemisphere model for generation of different types
of UML diagrams, such as use case, sequence,
communication, state or class diagrams, has demonstrated
that the two-hemisphere model contains quite enough
information to obtain the static elements of the system
analysis model, as well as dynamic ones. The received UML
model, according to the main statement of MDSD, provides
an ability to generate a code as well. So far, as we have a
transformation chain: the two-hemisphere model → UML

diagrams → code, the authors can assume that the direct
transformation, i.e., the two-hemisphere model → code is
also feasible. In this paper, the authors have presented the
intermediate model that can be used to enable direct code
generation from the two-hemisphere model. The proposed
model allows for code generation in different programming
languages – object-oriented, object-based, procedural, etc.

While this paper describes how the model should look
like and what artifacts it consists of, it is also necessary to
define algorithms for transformation of the initial model to
the intermediate one. This is the first part of future work. It
might also be necessary to enrich the model itself to cover
more cases, as well as develop algorithms for transforming
this model into an actual code. This is also part of future
research in this area.

Since the intermediate model described here is still being
developed and the research about its definition and
application is still being carried out, the authors define the
evaluation of the proposed approach and additional
validation of the achieved results as another part of future
work. The goal is to test this model with a completely
developed system and identify the possible gaps and
improvement areas.

So far, the goal has been to develop the intermediate
model as a basis for code generation. The proposed model
covers both static and dynamic aspects of the system and
should be compatible not only with the two-hemisphere
model, but also with other types of the source model, since
the model itself is simple enough to be generated from any
type of initial data. The authors also consider the proposed
model to be useful for code generation in different
programming languages, since it does not enforce any
paradigm to be applied and can be used to generate data
structures and invocation flows of different types.

REFERENCES

[1] B. Perisic, “Model Driven Software Development – State of
the Art and Perspectives”, Invited Paper, INFOTEH 2014,
Proceedings Vol. 13, pp. 1237-1248, 2014.

[2] F. Daniel and M. Matera, “Model-Driven Software
Development,” in Mashups. Data Centric Systems and
Applications, 1st ed., Berlin: Springer-Verlag Berlin
Heidelberg, pp. 71-93, 2014.

[3] OMG® Unified Modeling Language® (OMG UML®), OMG
[Online]. Available: https://www.omg.org/spec/UML/
[retrieved: September, 2019]

[4] M. K. Shiferaw and A. K. Jena, “Code Generator for Model-
Driven Software Development Using UML Models” 2018
Second International Conference on Electronics,
Communication and Aerospace Technology (ICECA), pp.
1671-1678, 2018.

[5] H. D. Gurad and V. S. Mahalle, “An Approach to Code
Generation from UML Diagrams”, IJESRT - International
Journal of Engineering Sciences & Research Technology, pp.
421-423, 2014.

[6] O. Nikiforova and M. Kirikova, “Two-hemisphere model
Driven Approach: Engineering Based Software
Development”, Scientific Proceedings of CAiSE 2004 (the
16th International Conference on Advanced Information
Systems Engineering), pp. 219-233, 2004.

[7] O. Nikiforova, “Two Hemisphere Model Driven Approach for
Generation of UML Class Diagram in the Context of MDA”,

Invoke<P1, [], [D1]>

Label<L1>

Invoke<P2, [D1, D7], [D2, D5]>

Check<Rejected,

"booking is rejected">

JumpIfNot<Rejected, L2>

Invoke<P4, [D5], [D6]>

Invoke<P5, [D6], [D7, D8]>

Check<Canceled, "User canceled">

JumpIf<Canceled, L3>

Jump<L1>

Label<L2>

Invoke<P3, [D2], [D3]>

Invoke<P6, [D3], [D4]>

Invoke<P7, [D4], []>

Jump<L4>

Label<L3>

Invoke<P8, [D8], []>

Label<L4>

81Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

e-Informatica Software Engineering Journal - Volume 3, Issue
1, pp. 59-72, 2009.

[8] O. Nikiforova, “System Modeling in UML with Two-
Hemisphere Model Driven Approach”, Proceedings of The
50th Scientific Conference of Riga Technical University,
Computer Science, Applied Computer Systems, pp. 37-44,
2010

[9] A. Noureen, A. Amjad, and F. Azam, “Model Driven
Architecture - Issues, Challenges and Future Directions,”
JSW, vol. 11, No. 9, pp. 924-933, 2016.

[10] J. Sejans and O. Nikiforova, “Practical Experiments with
Code Generation from the UML Class Diagram”, Proceedings
of MDA&MDSD 2011, 3rd International Workshop on
Model Driven Architecture and Modeling Driven Software
Development In conjunction with the 6th International
Conference on Evaluation of Novel Approaches to Software
Engineering, pp. 57-67, 2011.

[11] O. Nikiforova, “Object Interaction as a Central Component of
Object-Oriented System Analysis”, Proceedings of the 2nd
International Workshop „Model Driven Architecture and
Modeling Theory Driven Development” (MDA&MTDD
2010), pp. 3-12, 2010.

[12] E. B. Omar, B. Brahim, and G. Taoufiq, “Automatic code
generation by model transformation from sequence diagram
of system’s internal behavior”, International Journal of
Computer and Information Technology Vol. 01 Issue 02, pp.
129-146, 2012.

[13] Z. Wang, “A JAVA Code Generation Method based on
XUML”, IOP Conference Series: Materials Science and
Engineering, pp 1-8, 2019.

[14] Java | Oracle [Online]. Available: https://java.com/ [retrieved:
September, 2019]

[15] A. Lasbahani, M. Chhiba, and A. Tabyaoui, “A UML Profile
for Security and Code Generation”, International Journal of
Electrical and Computer Engineering (IJECE), pp 5278-5291,
2018.

[16] O. Nikiforova, U. Sukovskis, and K. Gusarovs, “Application
of the Two-Hemisphere Model Supported by BrainTool:
Football Game Simulation”, Proceedings of the 4th
Symposium on Computer Languages, Implementations and
Tools, organized within the International Conference of
Numerical Analysis and Applied Mathematics (ICNAAM
2014), pp. 1-4, 2014

[17] P. Chen, “The Entity-Relationship Model - Toward a Unified
View of Data”, ACM Transactions on Database Systems, pp.
9-36, 1976.

[18] W. Stevens, G. Myers, and L. Constantine, "Structured
Design". IBM Systems Journal. 1974, vol.13, no.2, pp.115-
139, 1974.

[19] ISO/IEC 2382:2015 Information technology -- Vocabulary.
[Online]. Available from:
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en
[retrieved: September, 2019]

[20] Standard ECMA-262 [Online]. Available: https://www.ecma-
international.org/publications/standards/Ecma-262.htm
[retrieved: September, 2019]

[21] D. M. Ritchie and B. W. Kernighan, The C Programming
Language, Second Edition. - USA: Prentice Hall, 1988.

[22] Erlang Programming Language [Online]. Available:
https://www.erlang.org/ [retrieved: September, 2019]

[23] flat assembler [Online]. Available: https://flatassembler.net/
[retrieved: September, 2019]

[24] D. Grune and C.J.H Jacobs, Parsing Techniques – a Practical
Guide. - USA: Prentice Hall, 1988.

[25] D. Salomon, Assemblers and Loaders. - USA: Prentice Hall,
1993.

[26] Intel® 64 and IA-32 Architectures Software Developer
Manuals | Intel® Software [Online]. Available:
https://software.intel.com/en-us/articles/intel-sdm [retrieved:
September, 2019]

[27] .NET | Free. Cross-platform. Open Source. [Online].
Available: https://www.microsoft.com/net/ [retrieved:
September, 2019]

[28] The Java® Virtual Machine Specification [Online].
Available:
https://docs.oracle.com/javase/specs/jvms/se12/html/index.ht
ml [retrieved: September, 2019]

[29] Welcome to Python.org [Online]. Available:
https://www.python.org/ [retrieved: September, 2019]

[30] K. Gusarovs and O. Nikiforova, “Workflow Generation from
the Two-Hemisphere Model”, Applied Computer Systems,
Vol.22, pp. 36-46, 2017.

82Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

