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Abstract—We formulate and transform a real-world combinato-
rial problem into a constraint satisfaction problem: choose a
restricted set of containers from a warehouse, such that the
elements contained in the containers satisfy some restrictions and
compatibility criteria. We set up a formal, mathematical model,
describe the combinatorial problem and define a (nonlinear)
system of equations, which describes the equivalent constraint
satisfaction problem. Next, we use the framework provided
by the Apache Commons Mathematics Library in order to
implement a solution based on genetic algorithms. We carry out
performance tests and show that a general approach, having
business logic solely in the definition of the fitness function,
can deliver satisfactory results for a real-world use-case in the
manufacturing industry.

Keywords–Constraint satisfaction problem; Combinatorial prob-
lem; Genetic algorithm; Crossover; Mutation.

I. INTRODUCTION

We formulate a new real-world combinatorial problem, the
motivation for our study. Initially, we describe succinctly the
real-world problem as it has been identified at a semiconductor
company and present the general strategy to solve it. In order
to avoid the technical difficulties related to the industrial
application, we present the equivalent problem based on
LEGO R© bricks. To conclude this chapter, we present the outline
of the paper.

A. Motivation

Some time ago we were facing a strategic problem at a
big semiconductor company. The company produces Integrated
Circuits (ICs), also termed chips, assembles them to modules
on a circuit board according to guidelines and specifications,
and ships the modules as the final product to the customer.
The ICs are stored in bins before the last technological process
(cleaning) is performed.

The difficulties arise due to technical limitations of the tool
that assembles the ICs to modules. The tool can handle at most
five bins at once. This means in particular, that the ICs required
to fulfill an order from the customer have to be in not more
than five bins. Once the bins have been identified, the modules
are assembled and shipped to the customer. If it is not possible
to identify five bins in connection with a customer order, then
either cost-intensive methods (rearranging the content of some
bins) or time-intensive methods (waiting some days till the

production process delivers new ICs) have to be applied. Hence,
identifying the bins necessary to fulfill an order is crucial for
the economic success of the company.

B. Current State and Challenge

There has been a selection algorithm in place, based
primarily on heuristics and inside knowledge regarding the
patterns of the specifications of the modules. Although the
existing selection algorithm delivered satisfactory results in
most of the cases, it runs for days in some cases and is not
flexible enough, in particular, it cannot handle slight deviations
from the existing specification patterns.

To circumvent the above inconvenient, the main aim of
our study is to determine alternative selection methods, which
always deliver satisfactory results within an acceptable time
frame, and which are easy adaptable to meet future requirements.
Our main objective is to identify and formalize the industrial
problem as a mathematical model and to transform the occurring
Combinatorial Problem (CP) into a Constrained Satisfaction
Problem (CSP). The exact method using MATLAB did not
deliver results within a satisfactory time frame. A suitable
heuristic method – including Simulated Annealing (SA), Ant
Colony Optimization (ACO), Genetic Algorithms (GA), etc. –
to solve the CSP within the requirements had to be identified
and appropriate algorithms had to be developed, which satisfy
both the accuracy and performance demands.

If the general task is to find optimal solution to a set of
constraints, we speak about Constrained Optimization Problem
(COP). The primarily purpose of the industrial problem is to
find a satisfactory solution, since from the technical perspective
undercutting the requirements of the specifications does not
lead to better quality. However, a straightforward extensions
of the CSP towards COP is mentioned later.

C. Problem Description

The following example is artificial, it does not occur in real
life in this manner, although it is very close to it. It is used to
best describe the problem without burden the reader with the
technical details of a concrete “real life” example. Later on,
we will present a “real life” example from the industry and
specify the respective mappings between the two models.

We describe the problem succinctly by using an analogy
of building structures out of LEGO R©-like pieces (bricks).
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LEGO R©-like pieces (also termed blocks or bricks) can be
assembled to build sophisticated structures (in the following
termed objects) like buildings, etc. Figure 1 shows how two
bricks can be pooled together. The manufacturer of the bricks

Figure 1: Illustration how two bricks, one of them a corner brick, can
be pooled together.

wants to facilitate and simplify the assembling of the bricks to
the final objects as well as to cut manufacturing costs and es-
tablishes a two phases strategy when designing the layout plans
of the final objects. The final object is parsed into components
(termed modules or assemblies) in a straightforward way, such
that these modules can also be reused to assemble other objects.
This strategy of representing the final object as a composition of
modules is very similar to the construction of buildings out of
prefabricated structural components, i.e., modules. This way, by
using a modular approach, the description and the design plans
of quite sophisticated objects can be kept relatively simple and
manageable and the complexity and the difficulty of building
the final object is delegated to the assembly of the modules.
Hence, the building specification of the final object is split into
two guidelines, one regarding how to assemble the required
modules, one regarding how to put together the modules to
form the final object.

Each brick has numerical and non-numerical characteristics.
A non-numerical attribute is, for example, a unique ID which
characterizes the bricks like shape, approximate dimensions,
number and the arrangement of the inner tubes, etc. Another
non-numerical attribute is the color of the bricks, etc. There are
very tight requirements in order to be able to assemble two or
more bricks. In order to cut costs the technological process to
manufacture the bricks is kept simple and cost-effective to the
detriment of interchangeability. Thus, the pieces are measured
after the production process and the measurement values are
persisted in adequate storage systems.

In order to be able to assemble the bricks, they have to
fit together, i.e., some measurement values (see Figure 2 for
an example) have to fulfill some constraints. The respective

Figure 2: Exemplification of the measurements of a brick.

measurement values must match in order that the bricks can
be assembled. For example, putting four bricks together, side
by side and on top of each other, strict restrictions concerning
perpendicularity and planarity tolerance, have to be satisfied,
such that for example, the overall maximum planarity error is

0.05 mm and the maximum perpendicularity error is 0.1 angular
degree. Unfortunately, these restrictions can only be evaluated
when all the measurement values of the bricks chosen to
build the module are at the builder’s disposal. Corresponding
calculation prescription are available.

Once, the modules have been assembled, the object can
be put together out of the pre-assembled modules with no
limitations. Furthermore, all the modules are interchangeable
with similar ones.

The manufacturing of the bricks is continuous, the bricks
are packed into bins after the measuring process occurred and
stowed in a warehouse. The ID, the non-numerical attributes
and the numerical measurement values are stored in a database
and associated to the bin ID. This way, the manufacturer
knows exactly the content of each bin. In order to keep the
manufacturing costs low, the bins are never repacked, after a
bin is full and in the warehouse.

The assembly plan for a particular structure (for example
as in Figure 3) is not univocal, i.e., the number and the type of
the bricks to build the envisaged structure is not unequivocally
specified, the assembly plan contains more alternatives. Since

Figure 3: A frame with window as an example for a module.

the manufacturer provides detail information in digital form
regarding each brick contained in the bins offered for sale, a
computer program could easily verify that a house as given
in Figure 4 could be built up from a particular set of bins.
Unfortunately, identifying the set of bins necessary to build an

Figure 4: House as exemplification of an order composed of modules.

object (for example the house as in Figure 4) turns out to be a
very hard task to accomplish. In order to keep costs down, the
number of the bins to be purchased, has to be limited to the
necessary ones.

Let us suppose that the order can be assembled out of 5
bins, and the manufacturer offers 1000 bins for sale on his
home page. Regrettably, the computer program can only verify
if a particular set of five bins contains the bricks necessary
to build the house. The brute force method to verify each set
of 5 bins out of 1000 does not deliver a practical solution as
elementary combinatorics show. Thus, other methods have to
be applied.
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D. Outline

The remainder of the paper is structured as follows:
Section II gives an overview about existing work related to
the described problem. Section III introduces the mathematical
model and describes how the combinatorial problem can be
transformed into a constrained satisfaction problem. Section IV
applies the proposed selection algorithm based on genetic algo-
rithms to an industrial use case and shows the performance of
an implemented solution which is based on genetic algorithms.
A short investigation regarding multi-objective optimization is
considered in Section V, whereas Section VI concludes this
paper and sketches the future work.

II. RELATED WORK

Generally speaking, combinatorial optimization problems
are considered as being difficult [1] [2], which stimulated
the development of effective approximate methods for their
solutions. Combinatorial optimization problems appear in a
multitude of real world applications, such as routing, as-
signment, scheduling, cutting and packing, network design,
protein alignment, and in many fields of utmost economic,
industrial, and scientific importance. The techniques for solving
combinatorial optimization problems can be exact and heuristics.
Exact algorithms guarantee optimal solutions, but the execution
time often increases dramatically with the size of the underlying
data, such that only small size of instances can be exactly solved.
For all other cases, optimality is sacrificed for solvability in a
limited amount of time [3].

The concept of a constraint satisfaction problem has also
been formulated in the nineteen seventies by researchers in
the artificial intelligence. Characteristic CSPs are the n queens
problem, the zebra puzzle, the full adder circuit, the crossword
puzzle, qualitative temporal reasoning, etc. Typical examples of
constrained optimization problems are the knapsack problem
and the coins problem [4]. Further examples of combinatorial
optimization problems [5] are: bin packing, the traveling
salesman problem, job scheduling, network routing, vehicle
routing problem, multiprocessor scheduling, etc.

For the last decades, the development of theory and methods
of computational intelligence regarding problems of combina-
torial optimization was of interest of researchers. Nowadays, a
class of evolutionary methods [6]–[9] is of particular interest,
like simulated annealing, ant colony optimization, taboo search,
particle swarm optimization, to which genetic algorithms
belong [10]–[13]. Recent publications in this direction [14]–[20]
prove the efficacy of applying genetic and other evolutionary
algorithms in solving combinatorial optimization problems.

A genetic algorithm is an adaptive search technique based
on the principles and mechanism of natural selection and of the
survival of the fittest from the natural evolution. The genetic
algorithms evolved from Holland’s study [21] of adaptation in
artificial and natural systems [5].

Typical examples of using evolutionary algorithms are the
genetic algorithm approach to solve the hospital physician
scheduling problem and an ant colony optimization based ap-
proach to solve the split delivery vehicle routing problem [22].

The report [23] offers an approach to use genetic algo-
rithms to solve combinatorial optimization problems on a

set of euclidean combinatorial configuration. The euclidean
combinatorial configuration is a mapping of a finite abstract set
into the euclidean space using the euclidean metric. The class
of handled problems includes a problem of balancing masses
of rotating parts, occurred in turbine construction, power plant
engineering, etc.

III. THE FORMAL MODEL

In the following, we will formalize the description of the
combinatorial problem by introducing a mathematical model.
This way, we use the advantages of the rigor of a formal
approach over the inaccuracy and the incompleteness of natural
languages. First, we introduce and tighten our notation, then
we present the formal definition of the constraints which are
considered in our formal model and which are the major
components in the definition of the fitness function used
to control and steer the genetic algorithm. Concluding, the
combinatorial problem is defined as a constraint satisfaction
problem.

A. Notation

Let V be an arbitrary set. We notate by P(V) the power
set of V, i.e., the set of all subsets of V, including the empty
set and V itself. We notate by card(V) the cardinality of V.
We use a calligraphic font to denote index sets, such that the
index set of V is notated by I V .

The finite sets of bricks, bins, (non-numerical type of)
attributes, (numerical type of) and measurements are denoted
as follows:

S := {si | i ∈ I S and si is a brick (stone)},
B := {bi | i ∈ I B and bi is a bin (carton)},
A := {Ai | i ∈ I A and Ai is an attribute},
M := {M i | i ∈ I M and M i is a measurement}.

Let i ∈ I A , j ∈ I M , and k ∈ I S . We denote by aik the value
of the attribute Ai of the brick sk and by mj

k the value of
the measurement M j at the brick sk. We denote the list of
assembly units (modules) by

U := {U i | i ∈ I U and U i is an assembly unit (module)}.

The construction (guideline) plan for a module U ∈ U
contains

a) the (three dimensional) design plan description, i.e., the
position of each brick within the module,

b) the non-numerical attribute values for each brick and

c) prescriptions regarding the measurement values.

Analogously, by

O := {Oi | i ∈ I O and Oi is an object}
we denote the list of objects for which there exists construction
plans.

The non-numerical attributes values of the selected bricks
have to match the corresponding values in the guideline plan.

We denote by

R := {Ri | i ∈ I R and Ri is a requirement (specification)}
the list of the requirements (specifications) of the objects.
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B. Transformation of the CP into a CSP

Let O ∈ O an order. Then, according to the specifications,
there exists (proxy) modules M̂ l1 , M̂ l2 , . . . , M̂ lk , such that O
is an ordered list of modules, i.e., O = (M̂ l1 , M̂ l2 , . . . , M̂ lk).
The term proxy is used to denote an abstract entity ac-
cording to the specifications. Analogously, each module
M̂ i with i ∈ {l1, l2, . . . , lk} is an ordered list of proxy bricks
(stones), i.e., M̂ i = (ŝi1 , ŝi2 , . . . , ŝim). Hence, each module
can be represented by an ordered list of proxy bricks, i.e.,
O = (ŝk1 , ŝk2 , . . . , ŝkn). This representation will be used later
to define the individuals within the context of the genetic
algorithms.

Let O = (ŝk1 , ŝk2 , . . . , ŝkn) be a module. We say that
the ordered list (sk1

, sk2
, . . . , skn

) with si ∈ S ∀i ∈
{k1, k2, . . . , kn} is an assignment (embodiment) of O. This
means especially that the abstract unit of the specification is
materialized within the production process. We set

E := {Ei | i ∈ I E and Ei is an assignment (embodiment)}.

Let R ∈ R be a requirement (specification) of a specific
module U ∈ U and let {ŝ1, ŝ2, . . . , ŝn} be the proxy bricks
of the specification. The design plan of the specification
provides the three-dimensional assembly plan of the proxy
bricks. Additionally, the specifications provide information
regarding the restriction the bricks have to fulfill in order to be
eligible. For each j ∈ {1, 2, . . . , n} the specifications contain
the values {âij | i ∈ I A} of the attributes A := {Ai | i ∈ I A}
at the proxy brick ŝj . We use the symbol âij to denote the
value of the attribute ai of the proxy (placeholder) brick ŝj .

This means especially, that the brick sj can substitute the
proxy brick ŝj if the values of the corresponding attributes
coincide, i.e., aij = âij for all i ∈ I A .

More formally, the attributes must satisfy certain constraints:

CA : A×S→ {yes,no},
{sij | i ∈ I A , j ∈ I S} 7→ CA(a

i
j).

CA(a
i
j) = yes if the attribute constraint is satisfied for the

brick sj i.e., aij = âij , else CA(a
i
j) = no.

On the other side, the (numerical) measurement values must
also satisfy certain constraints (restrictions). For example, the
standard deviation of the respective measurement values for
some bricks of a specific module should not surpass some
given limits. Formally, CM can be represented as:

CM : M× U→ {yes,no},
{mi

j | i ∈ I M , j ∈ I U} 7→ CM (mi
j).

CM (mi
j) = yes if the constraint is satisfied for the bricks

belonging to the module U j , else CM (mi
j) = no.

In order to be able to reduce the constraints to brick level,
i.e., to be able to decide whether the constraint is satisfied
for a specific brick or not, we use the restriction CS

M of CM

namely CS
M := CM

S
such that CS

M (sij) = yes if sj ∈ U j and
CM (mi

j) = yes ; else CS
M (mi

j) = no. Let U ∈ U be a module.
The above means especially, that the measurement constraint on
brick level is satisfied for s ∈ U if the measurement constraint
is satisfied (on module level) for U .

Since the measurement values do not really characterize
the modules (they must only fulfill the requirements regarding
the constraints), we introduce equivalence classes on the set of
modules. Two modules belong to the same class if

a) they have both the same design plan,

b) the component bricks fulfill the same (non-numerical)
attributes and

c) the prescriptions regarding the measurement values are
satisfied for both modules.

Accordingly, two modules belonging to the same equiva-
lence class are interchangeable.

Hence, all the bricks needed for a module must be selected
in order to be able to finally decide if the constraints are
satisfied or not.

As already mentioned, each object O ∈ O should be
assembled out of bricks contained in a reduced number of
bins. We set MaxBO for the maximum number of bins as
mentioned above.

Let i ∈ I B , j ∈ I O , let {si1 , si2 , . . . , sik} be the content of
the bin bi and let {sj1 , sj2 , . . . , sjl} be an assignment of Oj ∈
O. We set bji := 1 if {si1 , si2 , . . . , sik}∩{sj1 , sj2 , . . . , sjl} 6= ∅
else 0. This means especially, that bji := 1 if the bin contains
bricks belonging to the respective assignment of Oj .

Analogously, the constraints regarding the bins (cartons)
can be regarded formally as:

CB : P(B)×O→ {yes,no},
{B ∈ P(B), Oj ∈ O} 7→ CB(B, Oj).

Let I an index set, such that B = {bi|i ∈ I}. Then CB(B, Oj) =
yes if ∑

i∈I
bji ≤ MaxBOj

,

i.e., the bricks of the order Oj are contained in no more than
MaxBOj

bins. Additionally, CB(B, Oj) = no if the above
condition is not satisfied.

Similar to the measurement constraint CM , we reduce CB

to brick level. Let S := {si1 , si2 , . . . , sik} be an assignment of
Oi. Let B = {bl1 , bl2 , . . . , bln} be a set of bins, such that each
bin contains at least one s ∈ S and there is no brick s ∈ S which
is not contained in one of the bins of the set B. In this sense, B
is minimal regarding the assignment S. Then, for the restriction
CS

B on S of CM we have CS
B(s) = yes if CB(B, Oi) = yes ,

i.e., all the bricks of the assignment S are stored in no more
than MaxBOj

bins. Additionally, CS,U
B (s) = no if CB(B, Oi)

is not satisfied.

Until now, we considered the constraints related to the
architecture of the object, i.e., related to the attributes of
a particular brick, the measurement values of the bricks
belonging to a module, and the restrictions regarding the bins
which contain the bricks. We can condense the constraints
mentioned above, such that they relate only to bricks. This
means especially, that the measurement constraint are satisfied
for a brick, if there is a group of bricks (module, or order), such
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that the given measurement constraint is satisfied as described
above. We set accordingly:

C := {Ci | i ∈ I C and Ci is a distinct constraint}

the list of distinct constraints.

The constraints can be considered as a function. Please
recall that I S is the index set of S.

C : S× I C → {yes,no},
{sik | i ∈ I C , k ∈ I S} 7→ C(sik).

Please consider, that the above representation can be
misinterpreted, such that the constraint is exclusively a property
of the respected brick. This is not the case, for example the
measurement constraints fulfilled or not for the bricks assigned
to a module. Hence, if one brick is changed, then the constraints
of all the bricks belonging to a module can be invalidated.

We define now formally the weights, (i.e., w is a weight if
w > 0 ) which are necessary to be able to model the importance
of the constraints within the genetic algorithm. We set

W := {wi | i ∈ I C and wi is a weight}

the list of weights. This means especially, that each constraint
has an associated weight.

The fitness function [24] characterizes the quality of an
assignment of an order, such that a value closer to 1 means a
better quality. It plays an important role in the decision, whether
an assignment fulfills the specifications or not.

The purpose of the following function inv is purely
technical, it is used to switch the values of the boolean values
1 and 0 to be used in the definition of an example of the fitness
function, i.e., inv : {yes,no} → {0, 1} such that inv(yes) = 0
and inv(no) = 1.

Please find below an example for the fitness function. Let
I S ⊂ I S and let wi ∈W for all i ∈ I C . Then:

F : E× I C → (0, 1],

{sik | i ∈ I C , k ∈ I S} 7→ 1

1 +
∑

i∈I C ,k∈I S

wi · inv(C(sik))
. (1)

Problem formulation (Combinatorial problem)
Let O ∈ O a given object and let n ∈ N.

Choose n bins from the warehouse, such that the
object can be assembled out of the bricks contained
in these bins according to the existing construction
plans.

The construction plan for an object O ∈ O specifies the
lists of (non equivocally determined) modules, including the
design plan, such that the object can be build out of these
modules. Hence, it can be unambiguously decided, whether
the n cartons contain the necessary bricks to assemble them
to modules, which can be put together to form the required
object. Let us suppose that n � card(C), i.e., the number
of bins in the warehouse exceeds the number of bins to be
chosen by orders of magnitude. The difficulties of solving the
problem in a straightforward way lie in the very large number

of possibilities to combine n bins out of card(B). Therefore,
other strategies have to be used.

To summarize: the specification of an object (for example
a house composed of bricks), contains very strict requirements
regarding the components. The assembly plan specifies the
strict order in which the bricks have to be assembled. Hence,
the bricks must satisfy some attributes (like shape, type, color,
etc., in order to satisfy the requirements of the construction
plans. Moreover, some bricks have to fit together (for example
the window frame) so they can be assembled in the order
given by the construction plans. If the above requirements are
satisfied for all the units (modules), the object can be assembled.
Furthermore, the selected bricks have to be selected from a
restricted number of bins (cartons). The latter makes the task
so difficult.

From a formal point of view, the associated constraint
satisfaction problem of the combinatorial problem can now be
formulated:

Problem formulation (Constraint satisfaction problem)
Let O ∈ O be an order with the representation
O = (ŝ1, ŝ2, . . . , ŝk). Set wi = 1 for all i ∈ I C .

Find an index set {l1, l2, . . . , lk} ⊂ I S such that
(sl1 , sl2 , . . . , slk) is an assignment of O, having
F ((sl1 , sl2 , . . . , slk)) = 1.

IV. USE CASE: AN EXCERPT

In the following, we present a real-life use case [25] we
came across at an international semiconductor company. We
describe the problem by using the specific terminology in
the semiconductor industry, utilizing them with care and only
when it is inevitable and undeniable necessary. We describe the
fundamentals of the genetic algorithms and show the way it is
used to solve our problem. Finally, we conclude by presenting
some performance tests.

A. Problem Description

The company manufactures integrated circuits (ICs, also
termed chips), which are subsequently assembled on circuits
boards to salable entities, termed modules. In order to keep
production cost low, the specification of the ICs do not impose
very tight constraints on the attributes of the ICs, such that
the same IC can be used for different types of modules. On
the contrary, the specification regarding the modules are very
stringent, in order that the module should be fully functional
at the customer side. As soon as the ICs are manufactured, a
good dozen of electrical properties are measured and persisted
in a data repository.

Usually, four to six ICs are assembled on the module.
The specification of the modules contains the design (i.e.,
number and positioning) of the ICs on the integrated circuit
board, the type of the IC (article, number of pins, etc.), and
several constrains regarding the interaction of the ICs of the
module. In order for the module to be fully functional, the
corresponding measurement values of the ICs have to be in a
narrow range. For example, for a specific measurement, the
values of the voltage of the ICs have to be between 2.1 volt and
2.5 volt in order that the IC is not scrapped and can be used
for further processing. Unfortunately, not all the ICs having
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the corresponding measurement value in the range as described
above, can be assembled to a module. The values differ too
much from each other, and the module will not work properly
at the customer side. To circumvent this impediment further
constraints are needed. These constraints apply on all ICs of
the module or just on a subset of it. For example, an often
used constraint is limiting the standard deviation of the voltage
to 0.1 within one module.

The ordering unit (termed work order) contains the de-
scription of the modules, the customer expects to be shipped
together at once. There are no additional constraints on the ICs
regarding the work order.

As soon as the manufacturing process of the ICs has been
finished, the ICs are packed in boxes. That way the cleaning
of the ICs can be performed and the ICs can be assembled to
modules. The boxes are then transferred to the warehouse.

The difficulties of the semiconductor company to honor each
the order in general are also due to technological restrictions,
since the tool that assembles the ICs can handle at most five
boxes, i.e., all the ICs necessary to fulfill a work order should
be located in five boxes. Due to the fact that the work orders
always contain the same number of ICs, independent of the
specification of the modules, the minimal number of boxes
which are needed to meet the requirement of the work order is
four with 9 percent surplus of ICs. If we rephrase the above
in a more concise form, the challenge is: Find five boxes in
the warehouse, such that it contains the ICs needed to fulfill
the requirements for a work order.

B. Used Methods

Simple combinatorics show that the brute force method,
i.e., go through all the possibilities and check if the selected
boxes fulfill the requirements, is not implementable for practical
systems. Fortunately, there is an implementation in place for
the selection strategy, based on heuristics, local optimum, and
inside knowledge of the pattern of the modules. This way, we
have a very good way to compare the results of the genetic
algorithm with alternative solutions. Regretfully, our attempt to
deliver exact solutions on the problem using MATLAB were
not crowned by success due to the large amount of data and to
the restricted computing power of the machines we used. The
disadvantages of the already existing solution for the selection
strategy were partly also the issues that made it possible to set
up such a solution:

a) the unpredictability that the selection strategy delivers
a solution within the expected time frame;

b) the inflexibility to even minor changes in the design and
specifications of the modules, thus, the unpredictability
that the software can be used in the future;

c) heavy maintenance efforts due to the sophisticated and
architecture and implementation;

d) lack of the proprietary knowledge and documentation
of the implementation on the low level side;

e) impossibility to reuse the existing code with reasonable
efforts for further development and enhancements.

The concepts of the genetic methods are straightforward
and easy to understand. The main idea is that we start with

an initial population of individuals, and as time goes by, the
genes of the descendants are improved, such that at least one
individual satisfies the expectations. The individual incorporates
the requirements of the problem. The expectation in the end
is that these requirements are finally satisfied. Each individual
owns genes, part of it is inherited by his descendants.

We define the individuals as an abstraction of the work order,
such that each gene of the individual is the abstraction for an
IC of the warehouse. Accordingly, the individual satisfies the
requirements if the ICs can be assembled to modules, such that
the corresponding work order is fulfilled. The initial population
is randomly generated out of the ICs in the warehouse. The
criterion, which determines to what degree the individual fulfills
the requirement of the associated work order, is the fitness
function. The fitness function takes values between 0 and 1, a
greater value means that the individual is more close to fulfill
the specification of the work order. To achieve a value of 1 is
the ultimate goal. It means that the corresponding individual
satisfies the requirements to fulfill the associated work order.
Hence, the definition of the fitness function is one of the most
sensible parts of the genetic algorithms and the setup of this
function should be considered very carefully.

Actually, the strategy of the genetic algorithm resembles
very much to the evolution of the mankind. People marry,
have children by passing their genes to them, divorce and
remarry again, have children, and so on and so forth. The
expectation is that the descendants have more “advantageous
genes”, regardless of how the term “advantageous genes” is
defined.

Establishing the fitness function is one of the most important
strategical decision to be taken when setting up the genetic
algorithm. In our case, there are a few constraints (more than
one) which affect the quality of the individuals. Implementations
which try to find a Pareto optimal state [26], [27] (i.e., a
state from which it is impossible to make an individual better,
without making at least one individual worse) use strategies as
tournament selection [28] or the improved Pareto domination
tournament [27].

As already mentioned, the starting population is selected
aleatorically. Once, the first generation is constituted, the prepa-
rations to generate the next generation are met. Unfortunately,
the Apache Commons Mathematics Library does not support
multi-objective optimization problems, hence our algorithms
cannot use the strategy of the Niched Pareto Genetic Algorithm
(NPGA) [27].

Instead, for each individual, the fitness function is calculated
such that the suitability to fulfill the expectations, is evaluated
for each individual. The higher the computed value is, the
better fitted are the individuals. Let us suppose, that the initial
population is composed of 500 individuals. We use some of the
concepts provided by Apache Commons Mathematics Library
in our implementation, among others the elitism rate, which
specifies the percentage of the individuals with the highest
fitness value to be taken over / cloned to the new generation.
We use an elitism rate of 10 percent, i.e., the 50 best individuals
will be taken without any changes of the genes to the new
generation.

The population of each generation remains constant in time.
In order to choose the remaining 450 individuals (parents)
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to generate the next generation, we use the tournament
selection [28] including the implementation of the Apache
Commons Mathematics Library. The tournament strategy can
be configured by the arity of the tournament strategy, which
specifies the number of individuals who take part in the
tournament. For our purpose, five individuals in the tournament
proved to be efficient. Accordingly, five individuals are selected
randomly out of the total population of 500 individuals to take
part in the tournament. Out of the individuals taking part in
the tournament, the fittest individual is selected as a parent
for the new generation. This way, 500 parents are selected out
of a population of 500 individuals. These parents are paired
aleatorically and they always have two descendants. This way,
the next generation is created. Accordingly, the size of each
generation remains constant.

We use two major strategies in order to improve the
quality of the genes of the descendants, the crossover strategy
described in [29] and the mutation strategy. Generally speaking,
during the crossover phase, the two descendants receive the
partly interchanged genes of their parents. Additionally, some
particular genes can suffer mutations. The general strategy to
generate the descendants is based on random decisions.

We describe in brief the creation strategy of the new
generation. Some parameters are freely configurable, in order
to assure best performance. Thus, the crossover rate, i.e., the
threshold of the probability that a crossover is performed, has to
be set in advance. Then, a crossover is performed if a randomly
generated number is less than the crossover rate. Same is true
regarding the mutation rate.

The crossover policy is quite straightforward. The position
and length of the genes to be crossed over are randomly
generated and the two descendants have receive the inter-
changed genes of their parents. In our case, this policy has
been improved, such that by in the end, the number of the bins
of at least one descendant is using, is lower than (or if this is
not possible equal to) the number of the bins of their parents.
This way, the reduction of the number of bins an individual is
using, is enforced by the crossover policy itself.

The mutation policy is also very intuitive. In addition to
the mutation rate, which defines in the end, whether mutation
is applied after the crossover phase or not, the exchange rate
indicates whether a slot (IC) is to be renewed. Analogously,
the mutation policy can be configured such that the number of
bins the descendant is using is reduced or in worst case, kept
constant.

C. Performance Results

The benchmarks were performed on a Intel R© CoreTM i5-
6500 CPU (quad core CPU 3.2 GHz, 16 GB RAM) running
on Windows 10 and Eclipse 3.7.0 using Java SE Runtime
Environment 1.6.0_22. The genetic algorithm was implemented
using the Apache Common Library, version 3.0. The test data
is a subset of the production environment and contained 5518
ICs in 261 boxes, having 28 measurements on average. The
restricted test data is a subset of the production environment and
contained 27,590 ICs in 1,305 boxes. Due to the incomplete
set of production data, only the two most critical modules
are considered for selection. After taking into account the
attributes corresponding to the specifications of the two modules

regarding the ICs (article, number of pins, etc.) only eleven
boxes contain ICs to be considered for the selection process.
We term pre-selection the method to restrict the number of
boxes by excluding those boxes which do not contain selectable
elements. In this way, the search area can be drastically reduced
and thus, the performance of the selection algorithm can be
substantially improved.

We use a generation size of 500 individuals, an elitism
rate of 10 percent and an arity value of 5. The number of
generation is limited to 1000 and the runtime of the selection
algorithm is limited to 300 seconds. The other parameters
like the crossover rate and the mutation rate are configured
on a case by case basis. Regarding the fitness function, the
following configuration parameters have proved themselves as
good choice: attribute weight = 1; measurement weight = 2;
bin weight = 5. This means especially, that fulfilling the bin
constraints is the most difficult one. In summary, we use the

TABLE I: SETTINGS OF CONFIGURATION PARAMETERS.

Configuration parameter Value

Population limit 500 individuals
Generation limit 1000 generations
Crossover policy Bin reduction
Crossover rate 78 %
Mutation rate 13 %
Runtime limit 300 seconds

configuration parameters given in Table I for the performance
tests.

The prediction of the results of the selection algorithm is
hardly possible, since we use random strategies to generate the
initial population, to select the parents for the next generation,
to determine the crossover and mutation policy. Moreover,
parameters like the elitism rate and the arity have to be
configured. Hence, the interaction between many factors that
can influence the success and performance of the selection
algorithm is not obvious.

It is not the aim of this study to deliver the possible
best solution in an acceptable time frame and to improve
the performance of the algorithm. Instead, our objective is
to deliver an acceptable solution, i.e., a solution that fulfills
the required constraints, for the industry to a crucial problem
regarding their production problems. For example, there is no
technological benefit of tightening the measurement constraints;
the bin constraint was set up in such a way that seeking a
lower value is not possible due to the fixed number of ICs of
a work order and to the maximal capacity of the bins. Hence,
the acceptable solution is also the best possible solution.

Nevertheless, we tried to improve the selection algorithm
by testing the influence of the parameters, we find out to be
decisive. This was also the case for the parameters of the fitness
function as described above.

As already mentioned, we have an algorithm in place, which
can find

a) a suboptimal solution in a heuristic way,

b) determine exactly whether the group of bins contain
ICs which satisfies the specification of a particular work
order.
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Figure 5 shows that the selection algorithm using pre-
selection delivers the expected results, finding individuals
having 19 modules. The success rate, i.e., the probability
that the selection algorithm reaches with an individual the
given number of modules, is over 60 percent and thus, high
enough for practical systems. The pre-selection strategy is
very straightforward and easy to implement. Thus, no practical
system would renounce to it. Nevertheless, when neglecting
the benefit of reducing the search space by using pre-selection,
the results of the genetic algorithm are not always as promising
as with pre-selection. In order to evaluate worst-case scenarios,
we used work that posed a lot of difficulties to select with
the heuristic algorithm in place. As illustrated in Figure 5, the

Figure 5: Success rate and time used depending on the number of
modules with and without pre-selection.

success rate to select 19 modules as in the previous case, is at
60 percent. This means especially, that the successful run of
the genetic algorithm heavily depends on the random numbers
that were generated.

Figure 6: Success rate and time used when selecting the random
recombination crossover policy or the bins reduction policy.

Figure 6 shows the difference between the random recom-
bination crossover policy and the bins reduction policy. The
boxes reduction crossover policy tries to reduce the number
of boxes of the new individuals by focusing on the common
bins of the parents. As a conclusion, using business logic over
general approach, the general approach is as expected slower
and has a lower success rate. This is the price to pay for using
a more general solution over a customized one.

Figures 7 and 8 show the influence of the crossover rate and

Figure 7: Time used depending on the crossover rate and the
mutation rate.

Figure 8: Success rate depending on the crossover rate and the
mutation rate.

the mutation rate to the success rate and the wall clock time.
As not obvious at first glance, a smaller crossover rate and a
higher mutation rate gives better values for the success rate.
Keeping the crossover rate and the mutation rate low, better
run time performance is achieved. Generally speaking, high
mutation rate can destroy the structure of good chromosomes,
if used randomly [30]. The above remark does not hold in our
case, since we do not exchange ICs randomly, but according
to our strategy to minimize the number of bins.

Figure 9: Logarithmic representation of the values of the fitness
function depending on the number of generations (50 attempts).
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The tendency of the convergence of the fitness function is
visualized in Figure 9. The graph shows that in the end all
50 threads converge after some generations, but only a subset
to the envisaged value. Recall that the maximum value of the
fitness function is per definition equal to 1, the higher the value
of the fitness function, the better the solution. The values of
the fitness functions are discrete, {1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . .}.

V. RESUMING ON MULTI-OBJECTIVE OPTIMIZATION

Our preferred implementation framework is Apache Com-
mons Mathematics Library, version 3.0 [31]. However, a
very similar combinatorial grouping problem, the Bin Packing
Problem (BPP) is investigated [32], by using the off the shelf
jMetal framework [33]. The (one-dimensional) BPP [34] is
defined as follows: given an unlimited number of bins with an
integer capacity c > 0 each, a set of n items, N = {1, 2, ..., n},
and an integer weight wi, 0 < wi ≤ c for each item i ∈ N
assign each item to one bin, such that the total weight of the
items in each bin does not exceed c and the number of bins
used is minimized.

Luo et al. [32] extends the base implementation of jMetal
to problems with dynamic variables. This was necessary, since
the number of the genes in chromosomes is fixed in the
base implementation of jMetal. However, the number of the
genes in the specific implementation of the chromosomes for
BPP – termed group based representation – is fluctuating;
they vary in length depending on how many bins are used in
every solution. Accordingly, the adopted implementation of
BPP includes specific adaptations and enhancements of the
basic primitives of jMetal, including those for chromosomes,
crossover and mutation. The need for dynamic variables is
justified by difficulties to use other solutions due to the fitness
function.

In order to evaluate the performance of their algorithms –
termed GABP –, Luo et al. [32] use public bench data as well
as self-created big data sets. The performance of GABP does
not differ very much from some of the known implementation
of BPP. The main benefit of GABP is the implementation in
a generic framework. However, the problem described in this
article, the Matching Lego(R)-Like Bricks Problem (MLBP) is
new to our knowledge, we are now aware of any implementation
of a similar problem. The nearest problem to the MLBP seems
to be BPP.

It seems that Luo et al. [32] used the fitness function as
given below (termed cost function) [35] for their group-based
encoding scheme:

fBPP =
1

Nu
·
Nu∑
i=1

(fill i
c

)k
(2)

with Nu being the number of bins used, fill i the sum of sizes of
the objects in the bin i, c the bin capacity, and k a constant, k >
1. In other words, the cost function to maximize is the average
over all bins used, of the k-th power of the bin’s utilization
of it’s capacity. The authors state that experiments show that
k = 2 gives good results. As Falkenauer and Delchambre [35]
point out that one of the major purpose of the fitness function
is to guide the algorithm in the search.

Although, both BPP and MLBP yield a reduction of the
number of bins, the fitness function of the algorithms are

different. The strategy at BPP is to pack the bins as full as
possible, i.e., a bad use of the capacity of the bins leads to
the necessity of supplementary bins [35]. On the contrary, the
suggestion for the fitness function for MLBP is given by the
need to fulfill the constraints.

By comparing the formula (1) for the fitness function of
MLBP with the formula (2) as above, it is obvious that both
formulas are very similar, both are expected to be maximized,
contain summation over parameters of the respective problems
and the possibility to optimize the execution time of the
respective algorithms through clever setting of constants. In
this respect, both MLBP and BPP substantially benefit from an
ingeniously designed fitness function to ensure fast convergence
towards the optimization goals [35].

Although, in concept MLBP is merely a constraint satisfac-
tion problem, the implementation as described in this article,
can be easily adapted to simulate an optimization problem.
Within the current algorithm, the number of required bins is
fixed. This assumption is perfectly reasonable from an industrial
perspective, since the number of the objects in the bins is more
or less the same and as the number of objects needed for a
work order is known, the minimal number of bins necessary to
fulfill the work order is thus determined. Besides, the maximum
number of bins that can be accessed by a machine is fixed,
less beans means just a vacant working place. However, by
setting the bin constraints to a lower value, – while keeping the
other constraints unchanged – and by modifying the exit criteria
accordingly, the algorithm will loop – delivering better solutions
according to the guidelines of the fitness function – until the
new exit criteria are met. Thus, a local extremum relating
to the fitness function is found. The local extremum is not
automatically a solution to the constraint satisfaction problem,
this has to be validated. The exit criteria only ensure that
the best local value of the fitness function and corresponding
physical entities are found. In this respect, the MLBP and BPP
are closely related problems.

There are other systems, which provide frameworks of evo-
lutionary algorithms, such as EvA2, OPT4j, ECJ, MOEAT, for
a discussion and bibliography see [35]. Moreover, a remarkable
attempt to obtain a deeper understanding of the structure of the
BPP by using Principal Component Analysis and repercussions
on the performance of the heuristic approaches to solve them,
was undertaken [36].

The aim of jMetal was to set up a Java-based framework
in order to develop meta heuristics for solving Multi-objective
Optimization Problems (MOP). jMetal provides a rich set of
Java classes as base components, which can be reused for the
implementation of generic operators, thus making a comparison
of different meta heuristics possible [37] [38].

Unfortunately, the Apache Commons Mathematics Library
deployed in our use case, does not support multi-objective
optimization mechanisms. This means especially, that multi-
objective optimization have to be simulated by single-objective
optimization. For example, optimization criteria for MLBP
are a) reducing the number of bins, b) fulfillment of the
measurement constraints, c) fulfillment of the attribute con-
straints. These criteria are independent of each other and ideally
within the multi-objective optimization they can be optimized
independently, such that an improvement of a criterion does
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not lead to a degradation of another one. For practical purposes,
the fitness function, see formula (1), can be used for simulating
multi-objective optimization by choosing adequate weight
function. Thus, by choosing the values w = 5 for the criterion
(a), w = 2 for criterion (b) and w = 1 for criterion (c) we
achieve fast convergence and hence reduced execution time,
but for example by improving criterion (a) we cannot avoid
the degradation of criterion (b) or (c). By using frameworks
which support multi-objective mechanism, better convergence
of the genetic algorithm is expected.

The jMetal project was started in 2006 [37] and since
then it underwent significant improvements and major re-
leases [39], such that the redesigned jMetal should be useful to
researchers of the multi-objective optimization community, such
as evolutionary algorithm, evolution strategies, scatter search,
particle swarm optimization, ant colony optimization, etc., [40].
Improvements regarding a new package for automatic tuning
of algorithm parameter settings have been introduced [41] in
order to facilitate accurate Pareto front approximations.

In addition, jMetal in conjunction with Spark – which is
becoming a dominant technology in the Big Data context –
have been used to solve Big Data Optimization problems by
setting up a software platform. Accordingly, a dynamic bi-
objective instance of the Traveling Salesman Problem based
on near real-time traffic data from New York City has been
solved [42] [43].

VI. CONCLUSION AND FUTURE WORK

The main challenge, which led to the results of this paper,
was to investigate whether a real-life combinatorial problem,
which popped up at a semiconductor company, can be solved
within a reasonable time. Moreover, the solution should be
flexible, such that the solution is not restricted to the existing
specification of the modules.

We established an abstract formal model, such that the
implementation of the use case is fully functional within the
boundaries of this model. In this sense, new constraints can
be added to the existing ones, no inside knowledge regarding
the structure of the module is needed, as it is the case for the
heuristic algorithm in place.

We set up a genetic algorithmic approach based on the
Apache Commons Mathematics Library, implemented it and
validated the results. Some decisive policies like the crossover
and mutation policy have been additionally implemented and
new optimizations like the bin reduction crossover policy have
been set up to improve the convergence of the genetic algorithm.
The performance results were satisfactory for an industrial
application.

The current implementation does not combine good genes
(taking into account all the constraints, like measurement, etc.)
of the parents. Instead, the crossover strategy is based on
random decisions. Additional research is necessary in this
direction to find a good balance between a more general
suitability (random decisions) and good convergence (adjusted
crossover policy). For the time being, only the fitness function
contains proprietary information regarding the production
process, any other decision is aleatoric.

The implemented basic framework is very flexible, it
has many configuration possibilities like the elitism rate and
the arity. As a consequence of the random variables, many
convergence tests with various configuration assignment have to
be performed, in order to ensure satisfying results. Furthermore,
of crucial importance for the successful completion of the
algorithm is the design of the fitness function, especially the
values of the weights.

The convergence tests show that not every execution will
succeed to find the best solution delivered, this is due to the
random numbers used through out the genetic algorithm. This
is exemplified by the success rate. Thus, the selection algorithm
based on genetic strategies always delivers local maxima, which
may substantially differ from the global one. Our attempt to
find the optimal solution using MATLAB for a reduced set of
ICs failed due to the long execution time.

As already mentioned, the fitness function plays an out-
standing role during the selection of the best candidates for
the next generation. This means especially, that two candidates
having the same value of their fitness function are considered of
the same quality. This assertion is not accurate enough, due to
the use of three different weights, whose interdependence can
hardly be anticipated. Each weight represents the significance
of one aspect of the quality of a candidate. To circumvent
this dilemma, Pareto optimality [27] can be used to solve the
challenge of the multi-objective function. In this case, a new
framework [37] is needed, since Apache Commons Mathematics
Library does not support multi-objective mechanism. Genetic
algorithms, if configured properly, can be used to solve our
constraint satisfaction problem. The delivered solution may
substantially differ from the optimal one.

The current problem is not defined as an optimization
problem, the constraints of a work order are either satisfied or
not. Accordingly, two different solutions of the same work order,
which satisfy the constraints, are of the same quality. However,
the genetic algorithm is based internally on an optimization
process – the higher the value of the fitness function, the better
the solution. The constraints are used as exit criterion for the
genetic algorithm. In this way, the optimization is stopped
arbitrarily, considering that a better solution is out of scope.

Moreover, during the production process multiple work
orders have to be honored simultaneously. The current strategy
at the semiconductor company adopted a sequential one. We
can reformulate the problem as an optimization problem: Given
a list of work orders, find the maximum number of work orders
that can be satisfied simultaneously.

The elapsed time till the genetic algorithm of MLBP
converges is in range of seconds, by all means satisfactory
for the investigated industrial application. As expected, not all
the execution threads converge to the same solution, and not all
the threads find an optimal solution, as shown in some cases
less than 60 percent. Therefore, starting a bunch of threads
within the genetic algorithm increases the chance towards better
solutions.
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