
Graph-Based Analysis of the Architectural Restructuring Impact on Energy Efficiency

Basma khil

Faculty of Mathematical, Physical
and Natural Sciences of Tunis

Tunis, Tunisia
Email: basma.khil@fst.utm.tn

Adel Khalfallah

Higher Institute of Computer Science
Ariana, Tunisia

Email: adel.khalfallah@isi.utm.tn

Samir Ben Ahmed

Faculty of Mathematical, Physical
and Natural Sciences of Tunis

Tunis, Tunisia
Email: samir.benahmed@fst.utm.tn

Abstract—Software design patterns and refactoring are widely
used in software engineering to enhance maintainability, reuse
and productivity. However, recent empirical studies revealed the
high energy overhead in these patterns. Our approach consists
of automatically applying refactoring techniques, detecting and
injecting design patterns during design level for better energy
efficiency without impacting existing coding practices. Regarding
that, refactoring techniques could help to tackle these issues
considering that it is a method of changing the internal design of
the system while preserving the external behavior. In this paper,
we propose a graph transformation for refactoring, design pattern
injection and furthermore rules to compute the total energy
consumption and perform an initial evaluation of the energy
efficiency.

Keywords–Energy-efficiency; Software Architectures; Graph
transformation rules; Energy consumption.

I. INTRODUCTION

Energy consumption has emerged as an important design
constraint in software engineering. Information and Communi-
cation Technology (ICT) [1] and the Internet of Things (IoT)
yield a huge potential increase in energy demand. These kinds
of systems are mostly imposed by a restrict power budget.
This is a problem that now looks to exceed many challenges
and has been enlarged into a mammoth task. It takes into
account the effects of hardware, devices, networks, drivers,
operating systems, and applications on energy consumption.
In this paper, we focus on applications and, particularly, on
how we experiment with the effect of applying transformations
activities at a design level which can be optimized in terms of
energy consumption.

In searching generic transformation units, we worked on
the original definition of standardized transformations such as
the refactoring catalog. Refactoring is proven to improve the
quality of a system. Thus, it can be a potential solution to
increase software maintainability and re-usability. It is proven
that software engineering best practices can improve software
maintainability [1][2]. Hence, investigating refactoring activ-
ities to optimize energy consumption seems more and more
trendy.

Some tentative proved that software engineering best
practices can improve energy efficiency [3][4][5]. Notably,
[6][7][8][9] focused on the impact of refactoring activities on
energy consumption. Nevertheless, the available evidences are
tried and tested in a limited number of refactoring techniques.
Typically, they are applied in a code artifact, Whereas the most
common approach used in software engineering makes a great

emphasis on the use of modeling artifact [1]. Therefore, it
is desirable to master the modeling in software architecture
by working at a relevant level of abstraction. That gives rise
to the idea of managing energy consumption since the phase
architectural design.

The scope of this work lies at the design level. We aim to
explore the effect of transformation activities on energy con-
sumption. In particular, we propose a combinatorial approach
based on graph transformations. Namely, we use metamod-
eling to represent the architectural design artifact, as well as
graph transformation rules to explore the different alternatives
induced by the design decisions and transformations.

The remainder of the paper is organized as follows: Section
2 surveys recent literature to have an overview of how soft-
ware engineering researchers are tackling energy consumption
issues. In Section 3, the current proposal is explained by
a suitable process and with an adequate architectural meta-
model. Sections 4 and 5 state the graph transformation rules.
The first kind of rule embodies transformation activities. the
other kind surveys their effect on energy consumption. In
Section 6, a motivating scenario is presented to illustrate the
proposal with a concrete example. Finally, Section 7 concludes
this paper and gives avenues for future work.

II. RELATED WORK

The literature on the energy efficiency topic shows diver-
gences: According to some works, the energy consumption in
network infrastructure is predominant, whereas, for others, it
is prominent in the terminals. Many experimental approaches
specifically deal with identifying the parts of an application
that mostly affect the total energy consumption [10] and try
to minimize its consumption. For this purpose, some trials
[11][12] optimized code to minimize power consumption.

Luo [13] proposed an ant colony algorithm for task
scheduling to optimizing the energy cost. Liu [14] explored
the non-dominant sorting genetic algorithm to bridge the trade-
off between energy consumption and delay in task scheduling.
However, scheduling tasks using only offline power consump-
tion information cannot generate efficient schedules on account
of the dynamic variation in energy consumption. Thus,[15][16]
proposed a real-time monitoring and management system for
energy consumption. However, there is further evidence that
changes in architectural design tend to have a greater impact
on energy consumption [17].

Other attempts rely on the quantitative evaluation of energy
consumption of software systems at higher levels and in early

163Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

stage in the software development process [18][19][20]. Some
of these works proposed architecture description languages that
support the analysis of power consumption at the design level
[1][12][21]. Other implemented experimental solutions and
tools to evaluate and monitor energy consumption. Seo has per-
formed an energy consumption analysis for specific architec-
tural styles [22] such as client-server. The works [23][24][25]
propose an approach that predicts energy consumption using
linear power models.

Other attempts aimed to evaluate the energy consumption
of the Cloud Computing application and High-Performance
Computing (HPC) systems. Previously discussed approaches
focus on the energy consumption analysis at an architectural-
level. Some of them do not take account of parametric depen-
dencies between software components [24][25] while others
percept the dependency between different energy concerns
[26]. They specify the relationships between energy concerns
under the modeled component. These relationships can then
be used during the analysis phase to see how an energy
concern (communication) can affect other energy concerns (for
example, compression storage).

Recently, certain approaches take advantage of the positive
effect of software engineering best practices on software
quality [1][2]and on energy consumption to tackle trade-off
between productivity and energy efficiency [3][4][6][7][8][9].
Some works prove that software engineering best practices can
improve energy efficiency [3][4]. Others [6][7][8][9] focus on
the impact of refactoring activities on energy consumption.
The searchers experiment that idea in a code application
such as Java, C and Android applications. However, these
evidences are experimented in a limited number of refactoring
techniques. Typically, they are empirical studies applied in a
code artifact. However, it is desirable to work at a relevant
level of abstraction and also manage the Global Software issues
through modeling.

Our approach is involved in this area, it consists of applying
refactoring activities by analyzing modeling artifacts and mon-
itor the changes in energy consumption. That gives rise to the
idea of managing energy consumption at architectural design.
And follow the impact of refactoring on software consumption.
Therefore Graph-based approaches seem very promising, due
to their robust theoretical foundation.

III. MOTIVATION

A major challenge that is currently faced in the design
of applications concerns the optimal use of available energy
resources. In particular, the IoT applications are imposed by the
battery lifetime of the devices. The challenge is derived from
the heterogeneity of the devices, in terms of their hardware
and the provided functionalities. Several works in energy
management are focusing their studies on the hardware side
of computational systems. However, it is tempting to suppose
that only hardware dissipates power, not software. Since energy
consumption is the amount of energy used by devices or a built
environment. The energy consumption varies according to the
kind of device and the time that it remains in the operating
modes. It is, therefore, necessary to think about saving energy,
and that requires a careful choice of electrical appliances.
Recently, the software engineering community started to carry
out researches about estimations of energy consumption in
software applications [12][17]. According to the authors,the

software directs much of the activity of the hardware. There-
fore, the software can have a substantial impact on the power
dissipation of computational systems. They investigated the
mixes of hardware-software designs to minimize energy con-
sumption. However, these approaches were focused on low
levels of software design, such as the number of execution
cycles of a software, optimization of memory addresses. Other
works analyze this issue from a different perspective [27]
where energy management is discussed in higher levels of
abstraction. Such levels are related to software requirement
analysis, design and specification. We intend to approach this
issue in design levels.

IV. PROPOSED APPROACH

The main contributions of this paper are defined as follows.
First, it outlines an approach for modeling and injection of re-
structuring activities such as refactoring and ever more design
patterns by analyzing UML diagrams. Second, a methodical
analysis to assess the relative impact of that restructuring ac-
tivity and expect the total energy consumption induced by the
different components of an IoT application. Following that, we
perform an analysis of the impact of refactoring activities on
energy consumption and performance in software applications.
We aim to take advantage of the formal foundations of graphs
transformation.

A. The proposed method
In the thought of taking advantage of the formal foundation

of graphs, we presented a graph-based transformation to intro-
duce restructuring activities in the design of a new application
or an existing one. Furthermore, we established sets of graph
transformation rules to estimate the total energy consumed.
We presented our graph-based system and then performed an
exploratory analysis of the impact of design transformation on
energy consumption and performance in software applications.
In this area, graph-based approaches seem more promising due
to their robust theoretical foundation. Consequently, graphs are
well-known structures combining rigor with simplicity [28],
which are beneficial in modeling design software systems.

B. Method process
In the exploratory study here reported we investigated

the impact of software architecture restructuring with well-
known transformation techniques on energy consumption. We
consider design transformations activity as a set of graph trans-
formations applied to a graph instance representing a given
model. So, a given transformation recognition is provided by
the mechanism of matching within graphs.

A graph transformation introducing a complex restructur-
ing, such as a design Pattern, is composed of a sequence
of graph transformation units. In searching for a generic
transformation unit, we worked on the original definition of the
refactoring catalog and the Elements Design Patterns (EDPs)
defined by Smith [29]. They represent micro-transformations
whose different combinations lead to the introduction of De-
sign Patterns into models. So we built a library of the possible
instantiations of each transformation such as Refactoring, EDP
and intermediate pattern compositions. In practice, we used
the toolset GROOVE to implement these transformations as
graph transformation rules [11]. Also, we enrich our rule set
by another kind of rules that compute the energy consumed

164Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

under each stage in the entire application tasks. We will
explain later in this article how to investigate the effect of
refactoring transformation in energy efficiency by analyzing
UML diagrams (class diagram) and not only existing code.
Software optimizations and energy computing, in this context,
have been discussed at three levels of granularity (Figure 1):
Type graph, graph transformation rules and instance graph.

Figure 1. Graph transformation system.

We represent our architectural design as a graph, we identify
and represent refactoring activity as graph transformation rules
and then we formalize another cluster of rules to compute the
energy consumption. The following section will detail every
level individually.

V. META MODEL

To analyze the energy consumption of a software system,
we propose the meta-model depicted in Figure 2. It includes
the required artifacts, on the one hand, to describe the software
architecture and on the other hand to assess the expected
energy consumption.

Our model is based on the concepts of component-oriented
architectures (CBSE) and service-oriented architectures (SOA).
To analyze the expected energy consumption of so many alter-
native architectural solutions, we must define the elements of
such a solution. As shown in Figure 2, the architectural aspect
is represented by an architectural style element that includes
a collection of homogeneous and heterogeneous components
(elements and architectural constraints). An architectural el-
ement is composed, in turn, by other architectural elements,
components that interact through connectors.

A component is defined as a set of interacting tasks and
services to fill a role and communicate with the environment
via two interfaces. Typically, connectors define abstractions
that encapsulate the mechanisms of communication, coordi-
nation, and conversion (type, number, frequency, and order
of interactions) between components. The component is also
defined by a predefined set of tasks or roles. A task is a
semantic entity of the basic unit of work (activity or role). It
can be a task of calculation or storage, etc. It can be extended
by others under spots. Sometimes the execution of a task is
heavily dependent on other tasks (for example, remote storage
of data depends on the communication problem). As a result,
this information is defined by a reflexive relationship that
reflects this dependency [30].

Figure 2. Component-oriented architecture as a graph.

To enlarge the scope of the current approach, in particular,
tackling the artifacts involved with the IoT paradigm. the
metamodel encompasses concepts related to a thing.

A Thing is organized into two categories (Figure 3):

• A physical thing is organized into a group of physical
networked things, including devices, sensors, actua-
tors, and even embedded devices.

• A virtual thing is organized into a virtual group
of things in a network, including web services and
programs.

Figure 3. Meta-model of the entities types in IoT.

To analyze the expected energy consumption, it is required to
discriminate the fields that affect the global consumption. They

165Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

are mainly due to several operations such as computational
tasks and data communication.

The Energy consumed by the processing unit is divided
into two parts: the energy induced by computational tasks in
the busy state and the energy consumed in the idle state. The
first one is determined by the supply voltage and the total
capacity switched likewise in the hardware level (sensors and
actuators, etc.) and the software level (by running software
program, services, etc.). The second one corresponds to the
energy consumed when the calculation unit does not carry out
any treatment. The communication energy can be divided into
the reception energy, the energy of the emission and the sleep
mode. This energy is determined by the amount of data to be
communicated and the transmission distance, as well as by the
physical properties of the communication module.

Another part of our meta-model is dedicated to representing
power distribution infrastructure (see Figure 4). Power distri-
bution infrastructure can be organized in a hierarchical manner
[1]. Power distribution units distribute power to racks which
in turn provide power to the connected devices.

Figure 4. hierarchical of power distribution infrastructure.

In order to percept the dependency between different tasks,
we add a reflexive link labeled as ”have dependency”. It
specifies the relationships between energy concerns under the
modeled component. Then, we classified tasks according to
the well-known energy concerns hierarchy and activities more
recurrent in a given application such as Store, Communication,
Data Access, Data collect [31] (see Figure 5). That list will
be augmented once there is new evidence about other energy
hotspots.

There are many variabilities in how to design and im-
plement concerns (e.g., the data could be stored locally or
remotely, compress audio or video files). Additionally, these
concerns could depend on each other. For instance, there
are several concerns related to Communication, such as Data
Access and Store. Due to that dependency, for every energy
consumption concern cannot be analyzed on an isolated basis.
Instead, a whole architecture should be analyzed taking into
account these explicit dependencies modeled.

VI. EXPECTED ENERGY CONSUMPTION BASED-GRAPH
TRANSFORMATION RULES

Commonly, energy calculation is straightforward. The elec-
trical energy is (in kilowatt-hour, kWh), found by multiplying
the power use (in kilowatts, kW) by the number of hours during
which the power is consumed.
Accurate the expected energy consumption characterization

Figure 5. Relevant concerns in IoT applications.

is important in computing platforms, notably IoT based ap-
plications. To extend our approach on a large scale of IoT
applications, we adopt an incremental scheme to quantify total
energy consumption. We consider that the total consumption
is evaluated by the sum of the energy consumption induced by
the different tasks from the collection of the data, sending via
the network until the processing of this data. The total spot is
estimated and summarized over the period of real-time which
is the typical IoT application architecture. Thus, the period T
is outlined by three layers as follow:

• The first is the perception layer: It is defined by
physical objects and sensor devices that collect and
acquire data from the physical world. It consists of
two parts: the detection devices and the wireless sensor
network. The first includes sensor nodes and the Radio
Frequency Identification (RFID) tag. The latter is a
self-organized wireless network consisting of numer-
ous sensor nodes distributed over a large area. These
devices coordinate to monitor the state of the physical
environment (M2M terminal and a sensor gateway).
These devices monitor in a coordinated manner the
state of the physical world. The collected information
is then passed on to the transport layer.

• Transport layer is an intermediate layer: It enables
the transfer of data received from the perception layer
to the application layer through different networks as
wireless or cable networks. There are various tech-
nologies used include infrared, 2G, 3G and Bluetooth,
depending on the sensor devices. The collected data
will be transferred across long distances and over a
large area through different kinds of networks that
employ different technologies and protocols.

• Application Layer: this part focuses on data processing
and providing services for all user types. The trans-
mitted data will be treated and managed by suitable
management systems, Then various services will be
provided to the target users.

Figure 6 displays how energy consumption at the global
process of an IoT application is estimated. It is the sum

166Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

of several contributions represented by different areas, called
layers. A layer, Li, corresponds to the consumption of part of
the system for task i. The energy consumption of the entire
system is the addition of the energy consumption of each task.
It essentially consists of applying estimation for each task of
the system with the order of layers.

Figure 6. Energy consumption induced within IoT architecture.

Based on this assumption the power required can be broken
down into three main blocks: power for data acquisition ap-
pointed as Pacq, power for data processing Pprc and power for
data networking Pnet. Additionally, a tiny fraction is intended
for system management tasks such as rising the system at
periodic wake-ups or running a real-time operating system.
The needs of these management tasks are gathered in this
Psys contribution. The general formula (1) is expressed by
the contribution of these elements together.

Ptot = Pacq + Pprc+ Pnet+ Psys (1)

In order to estimate the power consumption, it is required to
avail Power models. These models correlate energy consump-
tion with measurable metrics. A wide variety of power models
exist [20][32][33]. We establish a set of graph transformation
rules implementing power consumption models as mentioned
in Figure 1. Those rules enable computing energy consumption
in the different layers (Figure 7). For instance, Figure 8
introduce the formula (1) as graph transformation rule.

Figure 7. kinds of graph transformation rules computing energy
consumption.

We start with exploring the energy consumed by the
connected devices (sensor, actuator and computer program).
Although software systems do not consume energy themselves,
they affect the use of the hardware resulting in indirect energy
consumption. Namely, it is required to inquire into the given
software under execution, hardware platform and during a
given time. The energy consumption E is an accumulation of
power dissipation P over time (formula (2)). The energy E is

measured in watts and power P is measured in joules, i.e.

E = P ∗ t (2)

For example, if a given task takes 15 seconds to be achieved
and dissipate 5 watts, it consumes 75 joules of energy.

Figure 8. Computing total power consumption.

The display view of the corresponding rule (Figure 9)
is composed of different kinds of nodes: the node depicted
by a diamond stand for triple of data values. It states a
multiplication operation for a pair of real values 0 and 1
which correspond respectively to power and time interval. The
edge labeled as “mul” specifies the data node representing
the result of the performed operation. Then the result will be
attributed to a node typed as power consumption which is an
element of the adopted meta-model. Note that the ellipses,
typed as real, allow to handle unknown values and the values
will only be established when matching the rule. It ensures
the applicability of that rule in all cases of value. This rule
calculates energy consumption by multiplying the power by
the estimated time for such a task. After computing the energy
consumption in each task alone, it is required to elaborate
a rule that encompasses the total energy induced by a set
of tasks, which collaborate to achieve a particular intent or
service.

Figure 9. Graph transformation rule calculating energy induced by a set of
tasks.

Figure 10 and Figure 11 depict graph transformation rules
modeling Data Acquisition Energy.
Commonly, monitoring applications could be classified into
two categories: regular sensing with a fixed acquisition time
interval, and event-driven sensing characterized by stochastic
distribution. In event-driven sensing, a random event triggers
the acquisition of a collection of samples from the sensor.
Thus, the energy consumption of the acquisition component

167Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

can be established as follow (4)[33].

Eacq =

{
Esmp ∗N (Regular)
Esmp ∗N ′ ∗ Pr(e) (Event)

(3)

Esmp is the energy required to acquire one sample and N is the
number of samples taken during one regular sensing interval.
For event-driven sensing, Pr(e) is the probability of an event
occurring in one sensing interval, and N’ is the number of
samples taken following the occurrence of an event.

Figure 10. Graph transformation rule computing energy consumption of
regular sensing

In our framework, the calculation is carried with graph trans-
formation rules. For instance, the graph transformation rule
(shown in Figure 10) calculates the energy consumed by the
acquisition component during one regular sensing interval.

Figure 11. Graph transformation rule computing energy consumption of
event-driven sensing

Figure 11 computes the energy consumed by the acquisition
component in event-driven sensing.

VII. ELEMENTARY TRANSFORMATIONS BASED GRAPH
TRANSFORMATION RULES

In order to implement our approach, we build a library of
combined graph transformation rules that incorporate restruc-
turing activities and refactoring [34]. We take advantage of the
formal specifications of refactoring techniques presented in the

literature such as the refactoring catalog, EDPs catalog. Entire
EDPs can be found in [29] with full definition and original
explication. Please refer to that base document if necessary.
Some refactoring operations are represented in TABLE I.

TABLE I. ELEMENTARY TRANSFORMATIONS INCLUDING
THEIR ACTORS AND ROLES.

Elementary tackled Role
transformations artifacts
Extract class class source class, new class

field moved fields
method moved methods

Extract interface class source classes, new interface
field moved fields
method moved methods

Inline class class source class, target class
Move field class source class, target class

field moved field
Move method class source class, target class

method moved method
Push down field class superclass, subclasses

field moved field
Push down method class superclass, subclasses

method moved method
Pull up field class subclasses, superclass

field moved field
Pull up method class subclasses, superclass

method moved method
Move class package source package, target package

class moved class

Every restructuring activity is associated with a graph trans-
formation rule implemented using GROOVE, with the same
name and the corresponding components. This part will depict
some of the techniques formalized as graph transformation
rules. Figure 12 represents an elemental transformation as
graph transformation rule. It aims to create a class hierarchy
once two classes have two attributes with the same names and
the same types, and then pull up that attribute to the superclass.
Figure 13 represents another elemental transformation as a
graph transformation rule. It leads to pull up the other attributes
to the superclass.

Figure 12. The transformation”pull up field” represented as graph
transformation rule

Applying some of the elemental transformation techniques
can impact energy consumption whether they can contribute
to the design pattern injection. In particular when applying
the technique ‘Inline Method’ can enhance performance and
support power reduction for a specific application [35]. In
the embedded systems, the ‘Inline Method’ may be useful
(if it is small) since it can yield less code than the method
call preamble and return. Extract Method and Extract Class
can increase the energy consumption of mobile devices due
to the increase of message traffic between the objects [6].

168Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Figure 13. The transformation”Move field” represented as a graph
transformation rule

Additionally, applying a sequence of elemental transformations
in particular orders could contribute to the injection of design
patterns [36]. Thus, they can enhance energy efficiency corre-
sponding that software engineering best practices can improve
energy efficiency [3][4][5].

VIII. MOTIVATING SCENARIO

We are investigating the validity of our approach in moti-
vating scenarios in the scope of IoT. A focus is made on the use
of IoT in the monitoring and remote control in the solar photo-
voltaic system accurately on the off-grid system installing. It is
customary that this kind of electricity-management system in-
cludes a combination of a photovoltaic module, electric power
converters and Storage devises to handle the intermittency
of power output presented by renewables [37]. Besides, it
contains power-conditioning equipment, including devices to
limit current and voltage to maximize power output and convert
direct-current to alternating current.
Availing the IoT technique, additional smart components en-
able to achieve energy efficiency in PV systems. That technol-
ogy is used at all levels of the network such as production,
distribution and consumption. It allows to:

• Real-time flow control: System-wide sensors instantly
show electrical flows and consumption levels. Op-
erators can then redirect energy flows according to
demand.

• The integration of different types of renewable ener-
gies.

• More responsible management of consumption re-
sources (scheduling): They provide useful information
for the scheduling of household electricity supplies
during the day in case of lack of energy.

IoT based photovoltaic system architecture can be established
by three different layers as clearly depict in Figure 14. The PV
system layer, gateway linkage layer and the remote control
and monitoring layer. Figure 14 clearly depicted the IoT
architecture for photovoltaic systems.

Although the performance and cost of each component
of the PV System are important parameters to be considered
before the design process, it is required to carry out optimizing
in the software held in the system. thus, software design
choice effects heavily global cost and performances. For the
sake of enhancing performances and cost reduction for a
prospective mini-grid architect, we undertake an analysis of
various architectural solutions.

Figure 14. Architecture photovoltaic system based on IoT technology.

Our investigation is ongoing for identifying eligible tasks
that constitute hotspot and undertake transformations and
refactoring techniques. We are availing quality metrics mea-
surement to access the impacts of applying restructuring activ-
ities and to make informed trade-off decisions between costs
and QoS of offered services.

IX. CONCLUSION AND FUTURE WORK

Energy-aware software development is a growing trend
in computing. Indeed, the software developer community is
paying more and more attention to energy-efficiency concerns.
Refactoring can be a potential solution to many of the dis-
cussed challenges as architectural choices and design quality;
it is proven to improve the quality of a system. However, the
impact of design refactoring on energy efficiency has been
scarcely investigated. In the exploratory study here reported, a
graph-based approach is proposed to investigate the impact
of refactoring on energy consumption on the design level,
focusing on how we experiment with the effect of applying
transformations activities at a design level, which can be
optimized in terms of energy consumption. According to the
literature, though refactoring is involved in the area of code re-
engineering successfully there is huge potential for refactoring
at the architectural level.

In further work, it is intended to develop a concept of
following detailed refactoring techniques which include meth-
ods to identify architecture smells and to evaluate its effect
in the consumption energy, apply suitable refactoring and test
applied refactoring to guarantee less energy consumption of
the system.

REFERENCES
[1] G. Procaccianti, H. Fernández, and P. Lago, “Empirical evaluation of

two best practices for energy-efficient software development,” Journal
of Systems and Software, vol. 117, 2016, pp. 185–198, ISSN: 0164-
1212.

[2] F. A. Moghaddam, G. Procaccianti, G. A. Lewis, and P. Lago, “Em-
pirical validation of cyber-foraging architectural tactics for surrogate
provisioning,” Journal of Systems and Software, vol. 138, 2018, pp.
37–51, ISSN: 0164-1212.

[3] A. Hindle, “Green mining: a methodology of relating software change
and configuration to power consumption,” Empirical Software Engi-
neering, vol. 20, no. 2, 2015, pp. 374–409, ISSN: 1382-3256.

[4] A. R. Tonini, L. M. Fischer, J. C. B. de Mattos, and L. B. de Brisolara,
“Analysis and evaluation of the android best practices impact on the
efficiency of mobile applications,” in Proceedings of the 3rd Brazilian
Symposium on Computing Systems Engineering (SBESC) December
4–8, 2013, Niteroi, Rio De Janeiro, Brazil. IEEE, Dec. 2013, pp.
157–158, ISBN: 978-1-4799-3890-2.

169Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

[5] Linares-Vásquez et al., “Mining energy-greedy api usage patterns in
android apps: an empirical study,” in Proceedings of the 11th Working
Conference on Mining Software Repositories(MSR) May 31 – June 01,
2014, Hyderabad, India. ACM, May 2014, pp. 2–11, ISSN: 978-1-
4503-2863-0.

[6] R. Pérez-Castillo and M. Piattini, “Analyzing the harmful effect of god
class refactoring on power consumption,” IEEE software, vol. 31, no. 3,
2014, pp. 48–54, ISSN: 0740-7459.

[7] A. Vetrò, L. Ardito, G. Procaccianti, and M. Morisio, “Definition,
implementation and validation of energy code smells: an exploratory
study on an embedded system,” in Proceedings of the 4th international
conference on Future energy systems (e-Energy) May 21 – 24, 2013,
Berkeley, California, USA. ThinkMind, May 2013, pp. 34–39, ISSN:
978-1-4503-2052-8.

[8] M. Gottschalk, J. Jelschen, and A. Winter, “Saving energy on mo-
bile devices by refactoring.” in Proceedings of the 28th International
Conference on Informatics for Environmental Protection: ICT for
Energy Effieciency, (EnviroInfo) September 10–12, 2014, Oldenburg,
Germany,. BIS-Verlag, Sep. 2014, pp. 437–444, ISBN: 978-3-8142-
2317-9.

[9] A. Rodriguez, M. Longo, and A. Zunino, “Using bad smell-driven code
refactorings in mobile applications to reduce battery usage,” in Simposio
Argentino de Ingenierı́a de Software (ASSE) September 3–4, 2015,
Rosario, Santa Fé, Argentina, Sep. 2015, pp. 56–68, ISSN: 2451-7593.

[10] G. Mouzon and M. B. Yildirim, “A framework to minimise total energy
consumption and total tardiness on a single machine,” International
Journal of Sustainable Engineering.

[11] S. Hasan et al., “Energy profiles of java collections classes,” in Pro-
ceedings of the 38th International Conference on Software Engineering
(ICSE) May 14 – 22, 2016, Austin, Texas. ACM, May 2016, pp.
225–236, ISBN: 978-1-4503-3900-1.

[12] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of the en-
ergy consumption of android applications,” in 2014 IEEE International
Conference on Software Maintenance and Evolution (ICSME) Sep 28
– Oct 3, 2014, Victoria, British Columbia, Canada. IEEE, Sep. 2014,
pp. 121–130, ISBN: 978-1-4799-6146-7.

[13] H. Luo, B. Du, G. Q. Huang, H. Chen, and X. Li, “Hybrid flow
shop scheduling considering machine electricity consumption cost,”
International Journal of Production Economics, vol. 146, 2013, pp. 423–
439, ISSN: 0925-5273.

[14] Y. Liu, H. Dong, N. Lohse, S. Petrovic, and N. Gindy, “An investigation
into minimising total energy consumption and total weighted tardiness
in job shops,” Journal of Cleaner Production, vol. 65, 2014, pp. 87–96,
ISSN: 0959-6526.

[15] M. Trejo-Perea et al., “Development of a real time energy monitoring
platform user-friendly for buildings,” Procedia Technology, vol. 7, 2013,
pp. 238–247, ISSN: 1877-7058.

[16] R. Bayindir, E. Irmak, I. Colak, and A. Bektas, “Development of a real
time energy monitoring platform,” International Journal of Electrical
Power & Energy Systems, vol. 33, no. 1, 2011, pp. 137–146, ISSN:
0142-0615.

[17] K. Grosskop and J. Visser, “Identification of application-level energy
optimizations,” Proceeding of ICT for Sustainability (ICT4S), vol. A4,
2013, pp. 101–107, ISBN: 978-3-906031-24-8.

[18] A. Noureddine and A. Rajan, “Optimising energy consumption of
design patterns,” in Proceedings of the 37th International Conference on
Software Engineering-Volume 2 (ICSE) May 16 – 24, 2015,Florence,
Italy. IEEE Press, May 2015, pp. 623–626, ISSN: 1558-1225.

[19] G. Procaccianti, P. Lago, and G. A. Lewis, “Green architectural tactics
for the cloud,” in Proceedings of the 2014 IEEE/IFIP Conference
on Software Architecture (WICSA) April 7–11, 2014, Sydney, NSW,
Australia. IEEE, Apr. 2014, pp. 41–44, ISBN: 978-1-4799-3412-6.

[20] C. Stier, A. Koziolek, H. Groenda, and R. Reussner, “Model-based
energy efficiency analysis of software architectures,” in Proceedings
of the 9th European conference on software architecture (ECSA)
September 7 – 11, 2015, Dubrovnik/Cavtat, Croatia. Springer, Sep.
2015, pp. 221–238, ISBN: 978-3-319-23727-5.

[21] V. De Maio, R. Prodan, S. Benedict, and G. Kecskemeti, “Modelling
energy consumption of network transfers and virtual machine migra-

tion,” Future Generation Computer Systems, vol. 56, 2016, pp. 388–
406, ISSN: 0167-739X.

[22] C. Seo, G. Edwards, S. Malek, and N. Medvidovic, “A framework for
estimating the impact of a distributed software system’s architectural
style on its energy consumption,” in Proceedings of the 7th Working
IEEE/IFIP Conference on Software Architecture (WICSA) February 18
– 21, 2008, Vancouver, BC, Canada. IEEE, Feb. 2008, pp. 277–280,
ISBN: 978-0-7695-3092-5.

[23] A. Brunnert, K. Wischer, and H. Krcmar, “Using architecture-level
performance models as resource profiles for enterprise applications,”
in Proceedings of the 10th international ACM Sigsoft conference on
Quality of software architectures (QoSA) June 30 - July 04, 2014,
Marcq-en-Bareul, France. ACM, Jul. 2014, pp. 53–62, ISBN: 978-
1-4503-2576-9.

[24] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and experience, vol. 41, 2011, pp. 23–50,
ISBN: 978-1-60750-073-5.

[25] K. Kurowski et al., “Dcworms–a tool for simulation of energy efficiency
in distributed computing infrastructures,” Simulation Modelling Practice
and Theory, vol. 39, 2013, pp. 135–151, ISBN: 978-3-642-40516-7.

[26] A. Memari, J. Vornberger, J. M. Gómez, and W. Nebel, “A data
center simulation framework based on an ontological foundation,” in
Proceedings of the 28th International Conference on Informatics for
Environmental Protection: (ICT) for Energy Effieciency, September 10-
12, 2014, Oldenburg, Germany. BIS-Verlag, Sep. 2014, pp. 461–468,
ISBN: 978-3-8142-2317-9.

[27] N. Amsel, Z. Ibrahim, A. Malik, and B. Tomlinson, “Toward sustain-
able software engineering: Nier track,” in Proceedings of the 33RD

international conference on software engineering (ICSE) May 21 – 28,
2011, Honolulu, Hawaii, USA. IEEE, May 2011, pp. 976–979, ISBN:
978-1-4503-0445-0.

[28] E. Biermann et al., “Emf model refactoring based on graph transfor-
mation concepts,” Electronic Communications of the EASST, vol. 3,
2006, ISSN: 1863-2122.

[29] J. M. Smith, Elemental design patterns. Addison-Wesley, Apr. 2012,
ISBN: 978-0321711922.

[30] M. Kim, H. Ahn, and K. P. Kim, “Process-aware internet of things: A
conceptual extension of the internet of things framework and architec-
ture,” KSII Transactions on Internet and Information Systems (TIIS),
vol. 10, 2016, pp. 4008–4022, ISSN: 1976-7277.

[31] N. Gamez, M. Pinto, and L. Fuentes, “Hadas green assistant: designing
energy-efficient applications,” arXiv preprint arXiv:1612.08095, vol.
abs/1612.08095, 2016.

[32] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in Proceedings of the 34th annual interna-
tional symposium on Computer architecture (ISCA) June 9–13, 2007,
San Diego, California, USA, vol. 35. ACM, Jun. 2007, pp. 13–23,
ISSN: 0360–5442.

[33] B. Martinez, M. Monton, I. Vilajosana, and J. D. Prades, “The power of
models: Modeling power consumption for iot devices,” IEEE Sensors
Journal, vol. 15, 2015, pp. 5777–5789, ISSN: 1558-1748.

[34] B. Babic, N. Nesic, and Z. Miljkovic, “A review of automated feature
recognition with rule-based pattern recognition,” Computers in industry,
vol. 59, no. 4, 2008, pp. 321–337, ISSN: 0166-3615.

[35] W. G. da Silva, L. Brisolara, U. B. Corrêa, and L. Carro, “Evaluation
of the impact of code refactoring on embedded software efficiency,”
in Proceedings of the 1st Workshop de Sistemas Embarcados (WESE)
October 28 – 28, 2010, Scottsdale, Arizona, Oct. 2010, pp. 145–150,
ISBN: 978-1-4503-0521-1.

[36] N. Zoubeir, A. Khalfallah, and S. Ahmed, “Graph-based decomposition
of design patterns,” International Journal of Software Engineering and
Its Applications (IJSEIA), vol. 8, 2014, pp. 391–408, ISSN: 1738-9984.

[37] N. M. Kumar, K. Atluri, and S. Palaparthi, “Internet of things (iot) in
photovoltaic systems,” in Proceedings of the National Power Engineer-
ing Conference (NPEC) March 9–10, 2018, Madurai, India. IEEE,
Mar. 2018, pp. 1–4, ISBN: 978-1-5386-3804-0.

170Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

