
On the Realization of Meta-Circular Code Generation:
The Case of the Normalized Systems Expanders

Herwig Mannaert

Normalized Systems Institute
University of Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Koen De Cock and Peter Uhnak

Research and Development
NSX BVBA, Belgium

Email: koen.de.cock@nsx.normalizedsystems.org

Abstract—The automated generation of source code is a widely
adopted technique to improve the productivity of computer
programming. Normalized Systems Theory (NST) aims to create
software systems exhibiting a proven degree of evolvability. A
software implementation exists to create skeletons of Normalized
Systems (NS) applications, based on automatic code generation.
This paper describes how the NS model representation, and the
corresponding code generation, has been made meta-circular, a
feature that may be crucial to improve the productivity of the
development of software for source code generation. The detailed
architecture of this meta-circular code generation software is
presented, and some preliminary results are discussed.

Keywords–Evolvability; Normalized Systems; Meta-circularity;
Automated programming; Case Study

I. INTRODUCTION

Increasing the productivity in computer programming has
been an important and long-term goal of computer science.
Though many different approaches have been proposed, dis-
cussed, and debated, two of the most fundamental approaches
toward this goal are arguably automated code generation
and homoiconic programming. Increasing the evolvability of
Information Systems (IS) on the other hand, is crucial for the
productivity during the maintenance of information systems.
Although it is even considered as an important attribute de-
termining the survival chances of organizations, it has not yet
received much attention within the IS research area [1]. Nor-
malized Systems Theory (NST) was proposed to provide an ex-
ante proven approach to build evolvable software by leveraging
concepts from systems theory and statistical thermodynamics.
In this paper, we present an integrated approach that combines
both Normalized Systems theory to provide evolvability, and
automated code generation and homoiconic programming to
offer increased productivity.

The remainder of this paper is structured as follows. In
Section III, we briefly discuss two fundamental approaches
to increase the productivity in computer programming: auto-
matic and homoiconic programming. In Section III, we briefly
present NST as a theoretical basis to obtain higher levels of
evolvability in information systems. Section IV discusses the
application of these fundamental concepts to the Normalized
Systems code expansion in general and the Prime Radiant in
particular. Section V elaborates on the declaration of both
the various expanders generating the code artifacts, and the
configuration parameters that control the expansion process.
Finally, we discuss some results in Section VI and present our
conclusion in Section VII.

II. AUTOMATIC AND HOMOICONIC PROGRAMMING

In this section, we briefly discuss two fundamental and
long-standing approaches to increase the programming pro-
ductivity: automatic and homoiconic programming.

A. Automatic or Meta-Programming
The automatic generation of code is nearly as old as

coding or software programming itself. One often makes a
distinction between code generation, the mechanism where a
compiler generates executable code from a traditional high-
level programming language, and automatic programming, the
act of automatically generating source code from a model
or template. In fact, one could argue that both mechanisms
are quite similar, as David Parnas already concluded in 1985
that ”automatic programming has always been a euphemism
for programming in a higher-level language than was then
available to the programmer” [2].

Another term used to designate automatic programming
is generative programming, aiming to write programs ”to
manufacture software components in an automated way” [3],
in the same way as automation in the industrial revolution
has improved the production of traditional artifacts. As this
basically corresponds to an activity at the meta-level, i.e.,
writing software programs that write software programs, this
is also referred to as meta-programming. Essentially, the goal
of automatic programming is and has always been to improve
programmer productivity.

Software development methodologies such as Model-
Driven Engineering (MDE) and Model-Driven Architecture
(MDA), focusing on creating and exploiting conceptual domain
models and ontologies, are also closely related to automatic
programming. In order to come to full fruition, these method-
ologies require the availability of tools for the automatic gen-
eration of code. Currently, these model-driven code generation
tools are often referred to as Low-Code Development Platforms
(LCDP), i.e., software that provides an environment for pro-
grammers to create application software through graphical user
interfaces and configuration instead of traditional computer
programming. As before, the goal remains to increase the
productivity of computer programming, though the realization
of this goal is not always straightforward [4].

B. Homoiconicity or Meta-Circularity
Another technique in computer science aimed at the in-

crease of the abstraction level, and thereby the productivity,

171Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

of computer programming, is homoiconicity. A language is
homoiconic if a program written in it can be manipulated
as data using the language, and thus the program’s internal
representation can be inferred just by reading the program
itself. As the primary representation of programs is also a data
structure in a primitive type of the language itself, reflection
in the language depends on a single, homogeneous structure
instead of several different structures. It is this language feature
that conceptually enables meta-programming to become much
easier. The best known example of an homoiconic program-
ming language is Lisp, but all Von Neumann architecture
systems can implicitly be described as homoiconic. An early
and influential paper describing the design of the homoiconic
language TRAC [5], traces the fundamental concepts back to
an even earlier paper from McIlroy [6].

Related to homoiconicity is the concept of a meta-circular
evaluator (MCE) or meta-circular interpreter (MCI), a term
that was first coined by Reynolds [7]. Such a meta-circular
interpreter, most prominent in the context of Lisp as well, is
an interpreter which defines each feature of the interpreted
language using a similar facility of the interpreter’s host
language. The term meta-circular clearly expresses that there
is a connection or feedback loop between the activity at
meta-level, the internal model of the language, and the actual
activity, writing models in the language.

III. NORMALIZED SYSTEMS THEORY AND EXPANSION

In this section, we introduce NST as a theoretical basis to
obtain higher levels of evolvability in information systems, and
its realization in a code generation or expansion framework.

A. Evolvability and Normalized Systems
The evolvability of information systems (IS) is considered

as an important attribute determining the survival chances of
organizations, although it has not yet received much attention
within the IS research area [1]. Normalized Systems Theory
(NST), theoretically founded on the concept of stability from
systems theory, was proposed to provide an ex-ante proven
approach to build evolvable software [8][9][10]. Systems the-
oretic stability is an essential property of systems, and means
that a bounded input should result in a bounded output. In the
context of information systems, this implies that a bounded set
of changes should only result in a bounded impact to the soft-
ware. Put differently, it is demanded that the impact of changes
to an information system should not be dependent on the size
of the system to which they are applied, but only on the size
of the changes to be performed. Changes causing an impact
dependent on the size of the system are called combinatorial
effects, and are considered to be a major factor limiting the
evolvability of information systems. The theory prescribes a
set of theorems and formally proves that any violation of any
of the following theorems will result in combinatorial effects
(thereby hampering evolvability) [8][9][10]:

• Separation of Concerns
• Action Version Transparency
• Data Version Transparency
• Separation of States

The application of the theorems in practice has shown to
result in very fine-grained modular structures within a software
application. Such structures are, in general, difficult to achieve

by manual programming. Therefore, the theory also proposes a
set of patterns to generate significant parts of software systems
which comply with these theorems. More specifically, NST
proposes five elements that serve as design patterns [9][10]:

• data element
• action element
• workflow element
• connector element
• trigger element

Based on these elements, NST software is generated in a
relatively straightforward way. First, a model of the considered
universe of discussion is defined in terms of a set of data, task
and workflow elements. Next, code generation or automated
programming is used to generate parameterized copies of
the general element design patterns into boiler plate source
code. Due to the simple and deterministic nature of this code
generation mechanism, i.e., instantiating parametrized copies,
it is referred to as NS expansion and the generators creating
the individual coding artifacts are called NS expanders. This
generated code can, in general, be complemented with custom
code or craftings to add non-standard functionality that is not
provided by the expanders themselves, at well specified places
(anchors) within the boiler plate code.

B. Variability Dimensions and Expansion
In applications generated by a Normalized Systems expan-

sion process, we identify four variability dimensions, as visu-
alized in Figure 1. As discussed in [11][12], the combination
of these dimensions compose an actual Normalized Systems
application codebase, and therefore determine how such an
application can evolve throughout time, i.e., how software
created in this way exhibits evolvability.

First, as represented at the upper left of the figure, one
should specify or select the models or mirrors he or she wants
to expand. Such a model is technology agnostic (i.e., defined
without any reference to a particular technology that should
be used) and represented by standard modeling techniques,
such as ERD’s for data elements and DFD’s for task and flow
elements. Such a model can have multiple versions throughout
time (e.g., being updated or complemented) or concurrently
(e.g., choosing between a more extensive or summarized
version). As a consequence, the chosen model represents a
first dimension of variability or evolvability.

Second, the expanders (represented by the big blue icon in
the figure) generate (boiler plate) source code by instantiating
the various class templates or skeletons, taking the specifi-
cations of the model as parameters. For instance, for a data
element Person, a set of java classes PersonBean, PersonAgent,
PersonView, PersonData, etcetera will be generated. This code
can be considered boiler plate code as it provides a set of
standard functionalities for each of the elements within the
model, though they have evolved over time to provide stan-
dard finders, master-detail (waterfall) screens, certain display
options, document upload/download functionality, child rela-
tions, etcetera. The expanders or template skeletons themselves
evolve throughout time, as bugs of the previous version are
solved and additional features (e.g., creation of a status graph)
are provided. Given the fact that the application model is
completely technology agnostic and can be used as argument

172Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Figure 1. A graphical representation of four variability dimensions within a Normalized Systems application codebase.

for any version of the expanders, these bug fixes and additional
features become available for all versions of all application
models (only a re-expansion or “rejuvenation” is required). As
a consequence, the expanders or template skeletons represent
a second dimension of variability or evolvability.

Third, as represented in the upper right of the figure, one
should specify infrastructural options to select a number of
frameworks or utilities to take care of several generic concerns.
These consist of global options (e.g., determining the build
automation framework), presentation settings (determining the
graphical user interface framework), business logic settings
(determining the database used) and technical infrastructure
(e.g., access control or persistency). This means that, given
a chosen application model version and expander version,
different variants of boiler plate code can be generated, de-
pending on the choices regarding the infrastructural options.
As a consequence, the settings and utility frameworks represent
a third dimension of variability or evolvability.

Fourth, as represented in the lower left of the figure,
“custom code” or craftings can be added to the generated
source code. These craftings enrich (are put upon) the earlier
generated boiler plate code and can be harvested into a separate
repository before regenerating the software application (after
which they can be applied again). This includes extensions
(e.g., additional classes added to the generated code base)
as well as insertions (i.e., additional lines of code added
between the foreseen anchors within the code). Craftings can
have multiple versions throughout time (e.g., being updated or
complemented) or concurrently (e.g., choosing between a more
advanced or simplified version). These craftings should contain
as little technology specific statements within their source code
as possible (apart from the chosen background technology).
Indeed, craftings referring to (for instance) a specific GUI
framework will only be reusable as long as this particular GUI
framework is selected during the generation of the application.
In contrast, craftings performing certain validations but not
containing any EJB specific statements will be able to be
reused when applying other versions or choices regarding such

framework. As a consequence, the custom code or craftings
represent a fourth dimension of variability or evolvability.

In summary, each part in Figure 1 is a variability dimension
in an NST software development context. It is clear that talking
about the “version” of an NST application (as is traditionally
done for software systems) in such context becomes more
refined. Indeed, the eventual software application codebase
(the lower right side of the figure) is the result of a specific
version of an application model, expander version, infras-
tructural options, and a set of craftings [12]. Put differently,
with M , E, I and C referring to the number of available
application model versions, the number of expander versions,
the number of infrastructural option combinations, and crafting
sets respectively, the total set of possible versions V of a
particular NST application becomes equal to:

V = M × E × I × C

Whereas the specific values of M and C are different for every
single application, the values of E and I are dependent on
the current state of the expanders. Remark that the number of
infrastructural option combinations (I) is equally a product:

I = G× P ×B × T

Where G represents the number of available global option
settings, P the number of available presentation settings, B
the number of available business logic settings, and T the
number of available technical infrastructure settings. This
general idea in terms of combinatorics corresponds to the
overall goal of NST: enabling evolvability and variability by
leveraging the law of exponential variation gains by means
of the thorough decoupling of concerns and the facilitation of
their recombination potential [10].

IV. TOWARD META-CIRCULAR EXPANSION CONTROL

In this section, we discuss the application of automatic
programming and homoiconicity to the Normalized Systems
expansion in general and the Prime Radiant in particular.

173Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

A. Phase 1: Standard Code Generation
The original architecture of the Normalized Systems expan-

sion or code generation software is schematically represented
in Figure 2. In the right part of the figure, the generated source

Figure 2. Representation of a basic code generator structure.

code is represented in blue, corresponding to a traditional
multi-tier web application. Based on a Java Enterprise Edition
(JEE) stack [9][12], the generated source code classes are
divided over so-called layers, such as the logic, the control, and
the view layer. On the left, we distinguish the internal structure
of the expanders or the code generators, represented in red.
This corresponds to a very straightforward implementation of
code generators, consisting of:

• model files containing the model parameters.
• reader classes to read the model files.
• model classes to represent the model parameters.
• control classes selecting and invoking the different

expander classes.
• expander classes instantiating the source templates,

using the String Template (ST) library, and feeding
the model parameters to the source templates.

• source templates containing the parametrized code.

B. Phase 2: Generating a Meta-Application
In essence, code generation models or meta-models — and

even all collections of configuration parameters — consist of
various data entities with attributes and relationships. As the
Normalized Systems element definitions are quite straightfor-
ward [9][12], the same is valid for its metamodels. Moreover,
one of the Normalized Systems elements, i.e., the data element,
is basically a data entity with attributes. This means that the
NS meta-models, being data entities with attributes, can be
expressed as regular models. For instance, in the same way
’Person’ and ’Invoice’ can be NS data elements with attributes
and relationships in an information system model, the NS ’data
element’ and ’task element’ of the NS meta-model can be
defined as NS data elements with attributes and relationships
like any other NS model.

As the NS models can be considered a higher-level lan-
guage according to Parnas [2], the single structure of its
model data and meta-model language means that the NS model
language is in fact homoiconic in the sense of [6]. This also

enables us to expand or generate a meta-application, repre-
sented on the left of the figure in dark red, as represented in
Figure 3. This NS meta-application, called the Prime Radiant,

Figure 3. Expansion of a meta-application to define meta-models.

is a multi-tier web application, providing the functionality to
enter, view, modify, and retrieve the various NS models. As
the underlying meta-model is just another NS model, the Prime
Radiant also provides the possibility to view and manipulate
its own model. Therefore, by analogy to the meta-circular
evaluator of Reynolds [7], the Prime Radiant can be considered
as a meta-circular application.

For obvious reasons, the generated reader and model
classes (part of the Prime Radiant on the left of Figure 3)
slightly differ from the reader and model classes that were
originally created during the conception of the expansion or
code generation software (on the right of Figure 3. This means
that, in order to trigger and control the actual expansion classes
to generate the source code, an integration software module
needed to be developed, represented in the middle of Figure 3
as nsx-prime. Though the Prime Radiant meta-application is
auto-generated, and can therefore be regenerated or rejuve-
nated as any NS application, this nsx-prime integration module
needed to be maintained manually.

C. Phase 3: Closing the Expander Meta-Circle
Though the original reader and model classes of the ex-

pander software differed from the generated reader and writer
classes, there is no reason that they should remain so. It
was therefore decided to perform a rewrite of the control
and expander classes of the expander software (right side of
Figure 3), in order to allow for an easier integration with the
auto-generated reader and model classes (left side of Figure 3.
Enabling such a near-seamless integration would not only
eliminate the need for the reader and model classes of the
expander software, it would also reduce the complexity of the
nsx-prime integration component to a significant extent.

Originally, the refactoring was only aimed at the elimina-
tion of the reader and control classes of the original expander
software. However, during the refactoring, it became clear
that it became possible to retire the control and expander
classes of the expander software as well. Indeed, by adopting
a declarative structure to define the expander templates and to
specify the relevant model parameters, both the control classes

174Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

Figure 4. Closing the meta-circle for expanders and meta-application.

(selecting and invoking the expander classes) and the expander
classes (instantiating and feeding the source templates) were
no longer necessary. Moreover, as schematically represented
in Figure 4, the refactoring also eliminated the nsx-prime
integration module. As extensions to the meta-model no longer
require additional coding various expander software classes
(e.g., reader, model, control, and expander classes), nor in the
nsx-prime integration module, one can say that the expander
development meta-circle has been closed, as visualized in
Figure 4. Indeed, expander templates can be introduced by
simply defining them, and extensions to the NS meta-model
simply become available after re-running the expansion or code
generation on this meta-model.

V. DECLARATIVE EXPANSION CONTROL STRUCTURE

In this section, we elaborate on the declaration of both
the various expanders generating the code artifacts, and the
configuration parameters that control the expansion process.

A. Declarative Representation of Expanders
The basic NS expander software currently consists of 181

individual expanders. Every expander is able to instantiate
a specific template into a corresponding artefact, using the
parameters of the model. An example of the definition of such
an individual expander is shown below.

<expander name="DataExpander"
xmlns="http://normalizedsystems.org/expander">
<packageName>expander.jpa.dataElement</packageName>
<layerType name="DATA_LAYER"/>
<technology name="JPA"/>
<sourceType name="SRC"/>
<elementTypeName>DataElement</elementTypeName>
<artifact>$dataElement.name$Data.java</artifact>
<artifactPath>$componentRoot$/$artifactSubFolders$/

$dataElement.packageName</artifactPath>
<isApplicable>true</isApplicable>
<active value="true"/>
<anchors/>
<customAnchors/>

</expander>

Such an expander definition in XML format contains the
following information.

• The identification of the expander, name and package
name, which also identifies in an unambiguous way
the source code template.

• Some technical information, including the tier or layer
of the target artifact in the application, the technology
it depends on, and the source type.

• The name and the complete path in the source tree of
the artifact that will be generated, and the type of NS
element that it belongs to.

• Some control information, stating the model-based
condition to decide whether the expander gets invoked.

• Some information on the anchors delineating sections
of custom code that can be harvested and re-injected.

B. Declarative Mapping of Parameters
The internal structure of an NS element (data, task, flow,

connector, and trigger element) is based on a detailed design
pattern [8][9][10], implemented through a set of source code
templates, each represented by an expander definition. During
the actual expansion or code generation, for every instance of
an NS element, e.g., a data element ’Person’, the set of source
code templates is instantiated, steered by the parameters of the
model. The instantiation of an individual source code template
for an individual instance of an NS element, is schematically
represented in Figure 5, and contains the following aspects.

Figure 5. Expansion of a single artifact.

• The model parameters, represented on the top of
Figure 5, consisting of the attributes of the element
specification, e.g., the data element ’Person’ with its
attributes, and the options and technology settings.
All these parameters are available through the auto-
generated model classes, and may either originate
from the Prime Radiant database, or from XML files.

• An individual source code template, having unique
name that corresponds to the one of the expander
definition as described above. Such a template, rep-
resented in the middle of Figure 5, contains various
parameter-based conditions on the value and/or pres-
ence of specific parts of the source code.

175Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

• An instantiated source file or artifact, represented at
the bottom of Figure 5, where the various conditions
in the source code template have been resolved.

An important design feature is related to the mapping of the
parameters from the model, to the parameters that appear
in the source code templates and are thereby guiding the
instantiation. In order to provide loose coupling between
these two levels of parameters, and to ensure a simple and
straightforward relationship, it was decided to implement this
mapping in a declarative ExpanderMapping XML file. As
the entire NS model is made available as a graph of model
classes, the parameters in the templates can be evaluated
in the NS model using Object-Graph Navigation Language
(OGNL) expressions. These expressions are declared in the
XML mapping file of the expander.

VI. SOME PRELIMINARY RESULTS

The Normalized Systems expander software has been in
development since late 2011. Over the years, it was used by
several organizations to generate, and re-generate on a regular
basis, tens of information systems [11][12]. During these years,
and often on request of these organizations, many additional
features and options were built into the source code templates.
The overall refactoring was triggered by a concern over the
growing size — and therefore complexity — of the control
classes, but also motivated by a desire to leverage the implicit
homoiconicity of the NS model to increase the productivity of
improving and extending the expander software.

The complete refactoring was performed in six months by
two developers. Afterwards, the 181 expanders were cleanly
separated, and the software developers considered the ex-
pander codebase to be much better maintainable. Moreover,
the learning curve for developers to take part in expander
development was widely considered to be very steep, mainly
due to the size and complexity of the control classes. After
the refactoring, nearly all of the approximately 20 application
developers of the company, have stated that the learning curve
is considerably less steep, and that they feel comfortable to add
features and options to the expander software themselves. As
an additional result, we mention the fact that a junior developer
has created in two months a new set of 20 expanders. This
newly developed collection of expanders, targeted mainly at
the development of REST services using Swagger, has already
been successfully used in several projects.

VII. CONCLUSION

The increase of productivity and the improvement of evolv-
ability are goals that have been pursued for a long time in
computer programming. While more research has traditionally
been performed on techniques to enhance productivity, our
research on Normalized Systems has been focusing on the
evolvability of information systems. This paper presented a
strategy to combine both lines of research.

While the technique of automated programming or source
code generation was already incorporated in our work on
Normalized Systems, we have explored in this paper the
technique of homoiconicity or meta-circularity to increase
the productivity of the automatic or meta-programming. A
method was presented to make the representation of the code
generation models homoiconic, resulting in a considerable sim-
plification of the expanders, i.e., the code generation software.

Such a reduction of complexity could lead to a significant
increase in productivity at the level of the development of the
code generation software, and we have presented some very
preliminary results that this is indeed the case.

This paper is believed to make some contributions. First,
we show that it is possible to not only adopt code generation
techniques to improve productivity, but to incorporate meta-
circularity as well to improve the productivity of the code
generation. Moreover, this is demonstrated in a framework
primarily targeted at evolvability. Second, we have presented a
case-based strategy to make a code generation representation
homoiconic, and the corresponding application meta-circular.
Finally, we believe that the simplified structure of the code
generation framework improves the possibilities for collabora-
tion at the level of code generation software.

Next to these contributions, it is clear that this paper is
also subject to a number of limitations. It consists of a single
case of making a code generation application meta-circular.
Moreover, the presented results are very preliminary, and the
achieved collaboration on code generation software is still
limited to nearby colleagues. However, it is our goal to set up a
collaboration of developers on a much wider scale at the level
of code generation software, and to prove that this architecture
can lead to new and much higher levels of productivity for
developing automatic programming.

REFERENCES
[1] R. Agarwal and A. Tiwana, “Editorial—evolvable systems: Through

the looking glass of IS,” Information Systems Research, vol. 26, no. 3,
2015, pp. 473–479.

[2] D. Parnas, “Software aspects of strategic defense systems,” Communi-
cations of the ACM, vol. 28, no. 12, 1985, pp. 1326–1335.

[3] P. Cointe, “Towards generative programming,” Unconventional Pro-
gramming Paradigms. Lecture Notes in Computer Science, vol. 3566,
2005, pp. 86–100.

[4] J. R. Rymer and C. Richardson, “Low-code platforms deliver customer-
facing apps fast, but will they scale up?” Forrester Research, Tech. Rep.,
08 2015.

[5] C. Mooers and L. Deutsch, “Trac, a text-handling language,” in ACM
’65 Proceedings of the 1965 20th National Conference, 1965, pp. 229–
246.

[6] D. McIlroy, “Macro instruction extensions of compiler languages,”
Communications of the ACM, vol. 3, no. 4, 1960, pp. 214–220.

[7] J. Reynolds, “Definitional interpreters for higher-order programming
languages,” Higher-Order and Symbolic Computation, vol. 11, no. 4,
1998, pp. 363–397.

[8] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[9] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89–116.

[10] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[11] P. De Bruyn, H. Mannaert, and P. Huysmans, “On the variability
dimensions of normalized systems applications: Experiences from an
educational case study,” in Proceedings of the Tenth International
Conference on Pervasive Patterns and Applications (PATTERNS) 2018,
2018, pp. 45–50.

[12] ——, “On the variability dimensions of normalized systems applications
: experiences from four case studies,” International journal on advances
in systems and measurements, vol. 11, no. 3, 1960, pp. 306–314.

176Copyright (c) IARIA, 2019. ISBN: 978-1-61208-752-8

ICSEA 2019 : The Fourteenth International Conference on Software Engineering Advances

