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Abstract—Human living indoor environments are changing con-
tinuously according to our various lifestyles and activities.
Human-symbiotic robots require advanced capabilities of en-
vironmental understanding and adaptation. For robotic en-
vironmental adaptation, numerous machine-learning-based ap-
proaches have been proposed. Moreover, numerous types of
features such as brightness, edges, texture, etc. have been used
for learning networks. This study was conducted to evaluate
combinations of supervised-learning-based indoor scene recog-
nition methods and their input features. This paper presents a
framework to provide image features of three types according to
learning strategies. The experimentally obtained results evaluate
using two open benchmark datasets revealed suitable combina-
tions of input features including weights obtained from category
maps of Counter Propagation Networks (CNNs) used for Deep
Neural Networks (DNNs). We demonstrate a suitable combination
of features from scene images used for semantic indoor scene
recognition. Particularly, higher recognition accuracy is obtain-
able using original time-series images for learning with CNNs.

Keywords–bags of features; category maps; convolutional neural
networks; counter propagation networks; self-organizing maps; and
semantic indoor scene recognition.

I. INTRODUCTION

Human vision has a gazing mechanism that selects
attention-gathering information from a huge amount of infor-
mation: around 109 bit/s [1]. Treisman et al. defined visual
saliency as a bottom-up target extracting mechanism based on
physiological knowledge and perception with visual feature
attention [2]. Koch et al. [3] proposed Saliency Maps (SMs) as
a conceptual model of visual saliency. Subsequently, Itti et al.
[4] implemented SMs as a computational model for computer-
aided processing of images. Applications using saliency mod-
els have been proposed widely for computer vision, machine
vision, robot vision, collision detection, autopilot, visual per-
ception, and various recognition systems [5]. Using salient
objects as visual landmarks in an environment is regarded
as highly useful for semantic category recognition used as
components that characterize a complex scene [6].

Human living indoor environments are changing continu-
ously according to our various lifestyles and activities. Human-
symbiotic robots must have advanced capabilities of envi-
ronmental understanding and adaptation. Numerous machine-
learning-based approaches have been proposed for the adapta-
tion of robots in general environments [7][8][9]. In our earlier

study, we proposed a supervised-learning-based scene recog-
nition method using category maps [10]. Our experimentally
obtained results revealed that category maps, which visualize
relations among scene features, are beneficial for semantic
scene recognition.

In conventional machine-learning-based methods, suitable
combinational features are extracted in advance. Subsequently,
the number of feature dimensions is set as equal using Bag-of-
Features (BoF) representation methods. Recently, Deep Neural
Networks (DNNs) of various models are fascinating because of
their advanced classification and recognition accomplishments
[11]. We contemplate that improved accuracy is obtainable
for robotic scene recognition using DNNs. However, no scene
recognition result has been reported for DNNs trained using
weights extracted from category maps.

Saliency-based features are used widely for outdoor and
indoor scene classification and for recognition tasks. In one
earlier study of saliency-based object recognition, Shoko-
ufandeha et al. [12] examined an SM Graph (SMG) that
extracts object saliency regions in several scales using wavelet
transformation. Walther et al. [13] produced a biologically
plausible model based on SMs for detecting objects from
natural scenes. They used a Scale-Invariant Feature Transform
(SIFT) [14] descriptor for extracting and describing object
features. For outdoor scene recognition, Agrawal et al. [15]
described a method to specify accurate positions using cost
effective sensors simultaneously combined with GPS. As a
challenging reason for indoor scene recognition, Quattoni et
al. [8] demonstrated that vast indoor scenes are characterized
by objects. It is limited to scenes that are characterized by
spatial properties.

Fornoni et al. [16] explained an image classification method
based on saliency used for indoor semantic scene recognition.
For their method, they used SIFT and Support Vector Ma-
chines (SVMs) [17] as a feature descriptor and as a classifier.
Botterill et al. [18] proposed a real-time detection method of
similar scenes for position estimation used for a mobile robot.
They used low-dimensional codebooks combined with a rapid
descriptor based on Speeded-Up Robust Features (SURF) [19].
Their method achieved not only rapid object extraction and
recognition, but also position estimation in real time for 30
fps, which is an ordinary video frame rate.

For one earlier study using feature descriptors and DNNs,
Sachdeva et al. [20] compared the respective accuracies of
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Figure 1. Whole system structure of our proposed framework including data
flows among several algorithms.

their proposed model using SIFT and of Convolution Neural
Networks (CNNs). They reported that CNNs, which learned
using original images, achieved superior accuracy to those
which learned using SIFT features with BoF. Mundher et al.
[21] proposed a facial expression recognition method using
fully connected CNNs combined with dense SIFT. The ac-
curacy of their method was superior to that achieved using
the conventional method using CNNs trained using original
image features. Both results demonstrated a different tendency
for selecting features from scene images used for learning
data of CNNs. Actually, the main advances in semantic indoor
scene relies on making use of state-of-the-art DNNs. However,
we consider that the limitation of DNN-based approaches
is inarticulate between input image features and recognition
accuracies.

This study was conducted to evaluate combinations of
machine-learning-based semantic indoor scene recognition
methods and their input features. This paper presents a frame-
work for providing image features of three types according
to learning strategies. The experimentally obtained results
evaluated using two open benchmark datasets revealed suitable
combinations of input features including weights obtained
from category maps used for DNNs. We demonstrate a suitable
combination of features from scene images used for learning
data of CNNs.

The rest of the paper is structured as follows. Sections II
and III present our proposed method and an experimental setup
including benchmark datasets and evaluation criteria, respec-
tively. Subsequently, Section IV presets evaluation experimen-
tal results with discussion. Finally, Section V concludes and
highlights future work.

II. PROPOSED METHOD

A. Whole architecture
Our proposed supervised-learning-based semantic indoor

scene recognition method comprises the following six steps:

1) description of Accelerated KAZE (AKAZE) features,
2) selection of salient regions using SM,
3) generation of BoF using Self-Organizing Maps

(SOMs),
4) creation of category maps using Counter Propagation

Networks (CPNs),
5) extraction of category boundaries using U-Matrix,
6) and recognition of semantic scenes using DNNs.

Figure 1 depicts the whole system architecture of our
proposed framework including data flows among the respec-
tive algorithms used for the system. First, local features are

extracted from an original input image Iorg using AKAZE
[23] for feature description. Subsequently, high-saliency or
low-saliency regions are divided using SMs. Herein, Iaka and
Ism respectively denote AKAZE features and an image mask
of SMs. AKAZE features on high saliency regions Ihigh and
those on low saliency regions Ilow are defined as

Ihigh = Iorg ∧ Iaka ∧ Ism, (1)

Ilow = Iorg ∧ Iaka ∧ Ism. (2)

Our method adopts SOMs [24] for BoF. Subsequently,
codebooks are created from Iaka, Ihigh, and Ilow. Letting
Isom a be histogram of SOMs as codebooks, then using Isom
as input features, category maps are created with CPNs [25].
Letting Icpn be weights of CPNs, then category boundaries are
extracted from Icpn using a U-Matrix. For the comparison of
recognition accuracies, Iorg , Isom, or Icpn are used as input
features for CNNs.

B. AKAZE descriptor
For conventional generic object recognition, SIFT [14]

has been used widely for use as an outstanding descriptor
of local features. Actually, SIFT descriptors are robust for
rotation, scale, position, and brightness changes not only from
a static image, but also from dynamic images. Alcantarilla et al.
[22] proposed KAZE using nonlinear scale space as a feature
that exceeded the SIFT performance. Moreover, they proposed
Accelerated-KAZE (AKAZE) [23], which accelerated con-
struction of nonlinear scale spaces of KAZE. In contrast to
SIFT, AKAZE was demonstrated as being approximately three
times faster, although maintaining equivalent performance and
accuracy. Therefore, we use AKAZE, which is suitable for
indoor environments where environmental changes occurred
frequently.

C. SMs
Briefly, the procedures of SMs include the following five

steps. First, a pyramid image is created from Iorg. Second a
Gaussian filter is applied to the pyramid image. Third, images
of the respective components of color phase, brightness, and
direction are created. Fourth, Feature Maps (FMs) are created
as visual features of each component with center-surround and
normalization operations. Finally, SMs are obtained from a
Winner-Take-All (WTA) competition for the linear summation
of FMs.

D. BoF
For this study, we used SOMs to create codebooks. Fig. 2

presents our codebook creation procedure from Iaka as BoF.
The following is the SOM learning algorithm.

Let xp(t) be output from the input layer unit p (1 ≤ p ≤ P )
at time t. As input features, Iaka, Ihigh, and Ilow are given
to xp(t). Let wp,q(t) be a weight from p to mapping layer
unit q (1 ≤ q ≤ Q) at time t. Herein, P and Q respectively
denote the total numbers of input layer units and mapping layer
units. Before learning, wp,q(t) are randomly initialized. Using
the Euclidean distance between xp(t) and wp,q(t), a winner
unit cq(t) is sought for the following.

cq(t) = argmin
1≤q≤Q

√√√√ P∑
p=1

(xp(t)− wp,q(t))2. (3)
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Figure 2. Codebook creation procedure using SOMs from Iaka as BoF.

A neighborhood region ψsom(t) is set from the center of cq
as the following.

ψsom(t) = ⌊ψsom(0) ·Q ·
(
1− t

Zsom

)
+ 0.5⌋, (4)

where Zsom is the maximum learning iteration. Subsequently,
wp,q(t) in ψsom(t) is updated as

wp,q(t+ 1) = wp,q(t) + α(t)(xp(t)− wp,q(t)), (5)

where α(t) is a learning coefficient that is decreasing according
to the learning progress.

After learning, test data are entered to the input layer.
A winner unit is used for voting to create a histogram as
a codebook: Isom. We obtained Isom of two types: a 1-
Dimensional (1D) codebook using a 1D category map and a
2D codebook using a 2D category map. For creating Isom, the
index of the mapping layer is changed to qx and qy.

E. CPNs
We create a category map using CPNs. For learning CPNs,

Isom are entered to the input layer of CPNs as input features.
Let yr(t) be output from the input layer unit r (1 ≤ r ≤ R) at
time t. Let wr,s(t) be a weight from r to Kohonen layer unit
s (1 ≤ s ≤ S) at time t. Herein, R and Q respectively denote
the total numbers of input layer units and Kohonen layer units.
Before learning, wr,s(t) are initialized randomly. Using the
Euclidean distance between yr(t) and wr,s(t), a winner unit
cs(t) is sought for the following.

cs(t) = argmin
1≤s≤S

√√√√ R∑
r=1

(yr(t)− ur,s(t))2. (6)

A neighborhood region ψcpn(t) is set from the center of cs as
the following.

ψcpn(t) = ⌊ψcpn(0) · S ·
(
1− t

Zcpn

)
+ 0.5⌋, (7)

where Zcpn stands for the maximum learning iteration. Subse-
quently, ur,s and vs,k in ψcpn(t) is updated as shown below.

ur,s(t+ 1) = ur,s(t) + β(t)(yr(t)− un,m(t)), (8)

Figure 3. Brightness changes in daytime (upper) and nighttime (lower) with
similar positions.

vs,k(t+ 1) = vs,k(t) + γ(t)(zl(t)− vjn,m(t)), (9)

where β(t) and γ(t) are learning coefficients that decrease
along with learning progress.

As a learning result, ur,s is used for the input to CNNs.
We defined this interface as Icpn.

F. U-Matrix

For this study, we used a 2D Kohonen layer. The unit index
s is extended to sx and sy. Category boundaries are extracted
from ur,sx,sy using U-Matrix. Based on metric distances
between weights, U-Matrix visualizes the spatial distribution
of categories from similarity of neighbor units [26]. On a
2D category map of square grids, a unit has eight neighbor
units except for boundary units. Assuming U as the similarity
calculated using a U-Matrix, then for the component of the
horizontal and vertical directions, Uh± and Uv± are defined
as shown below.

Uh± =

√√√√ R∑
r=1

(ur,sx,sy − ur,sx±1,sy)2, (10)

Uv± =

√√√√ R∑
r=1

(ur,sx,sy − ur,sx,sy±1)2. (11)

For the components of the diagonal directions, Ud± are defined
as the following.

Ud± =
1

2

√√√√ R∑
r=1

(ur,sx,sy±1 − ur,sx±1,sy)2 (12)

+
1

2

√√√√ R∑
r=1

(ur,sx±1,sy − ur,sx,sy±1)2 (13)

G. DNNs

Numerous DNN frameworks are provided. For this study,
we used VGG-16 [28] that composed 13 convolutional layers
and three fully connected layers. As a mechanism to reduce
errors, VGG-16 includes a batch normalization algorithm in
each convolutional layer [27]. For general object position iden-
tification and classification, VGG-16 demonstrated superior
results in large-scale image competitions [28].
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III. EXPERIMENTAL SETUP

A. Benchmark datasets
Quattoni et al. presented large-scale indoor scene recogni-

tion datasets [8]. The database includes 67 indoor categories
that collectively include 15,620 images. Although the numbers
of images vary among the categories, each category has at least
100 images. Images were obtained using a monocular camera.
Therefore, the datasets comprise dispersed images. For a real-
world robotics application, it remains a challenging task for a
mobile robot to move 67 different places [29].

For this study, we used two open benchmark datasets that
comprised time-series images obtained using mobile robots.
The first dataset is KTH-IDOL2 [30], which comprises time-
series images used for indoor robotics navigation and vision-
based position estimation. Indoor scenes are of five categories:
a printer area (PA), a corridor (CR), a one-person office (EO),
a kitchen (KT), and a two-person office (BO). The image
resolution is 320 × 240 pixels. This dataset includes some
object changes because images were obtained at time intervals
of up to six months in the same environment. Moreover, rotated
images were obtained at PA and KT for providing diverse
visual information.

The second dataset includes place recognition datasets [29]
that comprise time-series images obtained using a monocular
camera on a mobile robot. This dataset includes 17 scene
categories: 11 categories at York University and the remaining
6 categories at the Coast Capri Hotel. For this study, the
York University sub-dataset and the Coast Capri Hotel sub-
dataset are abbreviated respectively as YUSD and CHSD. The
respective resolutions of the images are 640 × 480 pixels.

As common features of both datasets, two robots of dif-
ferent heights were used for image data acquisition. We used
images obtained using a higher robot. Both datasets include
diverse image appearances with positional shifts because the
robot moved a previously setting route with manual operation.
Moreover, images are obtained in daytime and nighttime. Fig.
3 shows brightness changes with similar positions. For this
study, we used the both illumination condition images.

B. Evaluation criteria
As evaluation criteria, recognition accuracy R is defined as

R =
Stest

Ntest
× 100, (14)

where Ntest and Stest respectively denote the numbers of
test images and of correct recognition images. For this study,
we used Leave-One-Out Cross-Validation (LOOCV) [31] to
evaluate the capability of generalization.

IV. EVALUATION EXPERIMENT USING CPNS

A. Saliency for recognition
We evaluated the relations between recognition accuracy

and input features of three types: Iaka, Ihigh, and Ilow. Fig. 4
depicts results obtained from a comparison of the recognition
accuracy for KTH-IDOL2. The mean recognition accuracies
of Iaka, Ihigh, and Ilow were, respectively, 67.8%, 59.3%, and
61.2%. The recognition accuracy of Iaka was 8.5 percentage
points higher than that of Ihigh and 6.6 percentage points
higher than that of Ilow. This result revealed that Iaka was
the highest among three feature patterns.
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Figure 4. Recognition accuracy in each category for KTH-IDOL2.
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Figure 5. Recognition accuracy in each category for YUSD.
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Figure 6. Recognition accuracy in each category for CHSD.

Fig. 5 presents results obtained from a comparison of
the recognition accuracy for YUSD. The mean recognition
accuracies of Iaka, Ihigh, and Ilow were 94.7%, 89.0%, and
88.4%. The recognition accuracy of Iaka was 5.7 percentage
points higher than that of Ihigh and 6.3 percentage points
higher than that of Ilow. This result revealed Iaka as the highest
among three feature patterns.

Fig. 6 presents results obtained for comparison recognition
accuracy for CHSD. The mean recognition accuracies of
Iaka, Ihigh, and Ilow were 93.3%, 90.0%, and 88.0%. The
recognition accuracy of Iaka was 3.3 percentage points higher
than that of Ihigh and 5.5 percentage points higher than that of
Ilow. Results demonstrated that Iaka was the highest among
three feature patterns. We obtained the similar tendency for
input features. Results also demonstrated that saliency-based
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Figure 7. Results of category maps for KTH-IDOL2.
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Figure 9. Results of category maps for CHSD.

features dropped recognition accuracy.

B. Category maps
Fig. 7 portrays category maps created from KTH-IDOL2.

Unit color patterns correspond to scene category labels. For
all feature patterns, scene categories were divided into several
independent clusters. Clusters of various shapes and sizes were
mixed on the category maps. Moreover, independent clusters
consisting of a single unit exist in the maps. Particularly, PA,
CR, EO, KT, and CR of Iaka respectively comprised 9, 12,
14, 16, and 15 clusters. The CR clusters are larger than those
of other categories.

Fig. 8 portrays category maps created from YUSD. As
an overall tendency, similar categories are divided into inde-
pendent clusters that depict scene diversity. Comparison with
the result of KTH-IDOL2 reveals that clusters are gathered to
particular locations, with few independent units. Fig. 9 displays
some category maps created from CHSD. Although positions
and sizes differed among categories, the cluster distribution
tendency was similar to those of results presented in Fig. 8. The
experimentally obtained results revealed that category maps
with numerous clusters reflected the complexity of indoor
scenes.

C. Category boundary extraction
For analyzing the category relation, we extracted category

boundaries using U-Matrix, which calculated the similarity
of neighbor units based on the distance of weights between
category map units. For enhancing category boundaries, we
used the representative automatic image thresholding method

Figure 10. Boundary extraction results and category representative images
obtained using U-Matrix.
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Figure 11. Recognition accuracies and comparison results obtained for each
input feature.

reported by Otsu [33]. U-Matrix boundaries are depicted using
temperature colors, with high temperature portrayed as red
according to the distances among weights.

The left panel of Fig. 10 depicts boundary extraction
results for the results depicted in Fig. 7(a). The category
map included three independent regions and several slight
regions. For the three independent regions, we assigned labels
as Boundaries 1–3 according to the order of sizes. The right
panel of Fig. 10 portrays a category map with superimposed
boundary extraction results and category representative images.
Numerous units were labeled to CR in Boundary 1, especially
gathered PA images. In Boundary 3, labels were mixed with
all categories.

D. Evaluation Experiment using CNNs

For this evaluation experiment, we used KTH-IDOL2 alone
because we obtained sufficient recognition accuracies in place
recognition datasets using CPNs.

For learning and validation of CNNs, we used input image
features of three types: Icpn, Isom, and Iaka. Fig. 11 presents
results obtained from comparison of the respective scene
categories. The mean recognition accuracies of Icpn, Isom,
and Iaka with LOOCV were, respectively, 49.8%, 62.2%,
and 86.5%. Comparison of the three results indicates the
following Iaka obtained the highest recognition accuracies
in all categories. Regarding details of respective categories,
recognition accuracies of Isom in BO, CR, and KT were 3.2,
22.5, and 10.7 percentage points higher than those of Icpn. By
contract, recognition accuracies of Icpn in EO and PA were,
respectively, 9.8 and 11.8 percentage points higher than those
of Isom.
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V. CONCLUSION

For semantic indoor scene comprehension when used for
a mobile robot, we evaluated combinations of supervised
machine-learning-based methods and input features using
AKAZE, SMs, SOMs, CPNs, U-Matrix, and DNNs. After
optimizing the parameters and input features, we conducted
two experiments using CPNs and CNNs as a recognizer using
open benchmark datasets comprising time-series images The
experimentally obtained results obtained using CPNs revealed
that the mean recognition accuracy of Iaka was higher than
those of Ihigh and Ilow in all categories. Several clusters
were created on category maps with designated complexity
of scenes. The experimentally obtained results obtained using
CNNs revealed that higher recognition accuracy was obtain-
able using original time-series images for learning.

For our future work, we expect to improve the recognition
accuracy to reduce false recognition around scene-switching
zones. The relation between processing time and recognition
accuracy must be assessed with an assumption of adaptation
to the real environment. Moreover, future studies must assess
recognition when using cameras with spherical lenses. Further-
more, we will implement our proposed framework to a human-
symbiotic robot for the conduct of evaluation experiments in
an actual environment.
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