
A Model-Based Safe-by-Design Approach with IP Reuse for Automotive Applications

Morayo Adedjouma
Université Paris-Saclay, CEA, LIST

F-91120, Palaiseau, France
Email: morayo.adedjouma@cea.fr

Nataliya Yakymets
Université Paris-Saclay, CEA, LIST

F-91120, Palaiseau, France
Email: nataliya.yakymets@cea.fr

Abstract—The paper presents an approach for design/safety co-
engineering and reuse of safety IP Cores. The approach is based
on a compositional development process coupling system devel-
opment and safety processes from a formalization of activities
proposed in ISO26262. The co-engineering approach integrates
reuse of safety and design artifacts to reduce development efforts.
We illustrate the approach on the example of an Adaptive Cruise
Control System within a tool called Sophia. We discuss the
advantages and limitations that the approach brings for the
development of safety critical systems.

Keywords–automotive system; model-based; functional safety;
IP Core reuse.

I. INTRODUCTION

With the growing complexity of systems in the automotive
domain, vehicles become more and more safety-critical as
failures or hazardous decisions about the environment may
lead to accidents that cause human lives. Due to the safety-
critical nature of such systems, system and safety engineers
are prone to follow safety standards (e.g., ISO26262 [1]),
best system development pratices and associated tools. In this
context, Model-Based System Engineering (MBSE) and IP
Core reuse are promising approaches. MBSE helps to integrate
various methods and tools for safety analysis into the common
system modeling environment, to customize this environment
to the automotive domain and to provide extensive traceability
links across the safety analysis process [2]. The IP Core reuse
approach allows reducing the system development efforts by
using libraries of pre-existing design artifacts [3]. We also
integrate the reuse of safety artifacts like libraries of failures
modes, hazards, etc. to reduce the safety activities effort [4].
In practice, however, the tool support of the aforementioned
approaches is not well integrated.

In this paper, we present an approach based on MBSE,
Model-Based Safety Assessment (MBSA) and reuse concepts.
Our approach extends such approaches as [5][6] to the au-
tomotive domain based on ISO26262 standard, in particular,
the recommendations of Part 4 about product development
at the system level. Although ISO26262 provides generic
recommendations on which safety related workproducts should
be issued, it does not specify the particular processes on
how to get those workproducts. There may exist dependencies
between workproducts recommended by ISO26262, which can
slow down the system development. Therefore, an efficient
way to implement the standard recommendations is to turn to
system and safety co-engineering and parallelize steps of both
processes when possible. The advantage of such an approach is
that the safety activities do not block the system development
activities, and vice-versa.

In addition, we apply well-trusted design principles by
exploiting the ability to reuse pre-modeled (and already pre-
analyzed) IP Cores, as well as libraries of safety artifacts. As
defined in Part 4 of ISO26262, by IP Cores we consider well-
trusted designs for elements (including hardware and software
components), as well as well-trusted or standardized interfaces.
By safety artifacts we understand well-trusted technical safety
concepts and mechanisms for the detection and the control of
failures [1]. Although, pre-analyzed design elements and safety
analysis results are context-dependent and cannot be reused as-
is according to ISO26262, certain artifacts (e.g., definition of
generic failure modes, risks and their causes) can be detached
from the context and reused in the form of libraries.

We illustrate the approach on an Adaptive Cruise Control
(ACC) system [7]. The ACC is an example of safety-critical
system that requires engineers to adopt a safety standard.
We conduct our analysis of the ACC system using Sophia
[6], a modeling tool which offers a graphical development
environment for system design and safety analysis. Sophia
semi-automates the proposed methodology and improves the
traceability of system and safety artifacts at the early phases
of the system development lifecycle. Using this case study, we
show how to obtain a safe-by-design automotive system and
reduce the design and analysis efforts due to the co-engineering
and libraries reuse approach.

The rest of the paper is organized as follows. Section I
motivates our work. Section II presents the current practices
and weaknesses for safe development of automotive systems.
We present our approach in Section III and its tool support in
Section IV. We outline the approach application on the ACC
system in Section V and discuss our concluding remarks in
Section VI.

II. STATE OF THE ART AND PRACTICE

The integration of any classical safety analysis method
into an MBSE environment requires three main steps [5]: (1)
system model creation, (2) safety annotation and modeling, (3)
safety analysis and generation of results. Several initiatives,
approaches and tools have evolved over time in the field
of MBSA. In these approaches, the system model can be
created using languages, such as UML (Unified Modeling
Language) [8], SysML (System Modeling Language) [9], or
domain specific languages like EAST-ADL [10]. Then the
system model is extended with the safety concepts and re-
lations either by using safety profiles like [6][11]-[12] or by
translating the system model into formal or safety languages
for further analysis [13][14]. Some of these approaches come
with a methodology to comply with standards, e.g., ISO26262
[10][12]. Once the model has been annotated with safety

112Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

data, it can be analyzed using MBSA tools that offer one
or a few methods for safety analysis. The latter case needs
additional efforts to study the semantics of the languages
and to implement the bridges between tools. Examples of
analytical and simulation tools are xSAP [14] and AltaRica
toolset [13]. Despite profound analysis provided by those
tools, many of them require professional knowledge of model-
ing methods (e.g., Markov chains or Petri nets) and formal
languages (e.g., AltaRica, SMV, etc.), which is a barrier
for widespread utilization. Concerning reuse of pre-existing
artifacts, these tools require reverse engineering to build system
models. RiskWatch [15] or Pilar [16] are examples of tools
implementing risk management methodologies. Those tools are
exclusively qualitative, and based on various tabular structures
filled by informal description methods. The running system is
never explicitly modeled, hence there is no reuse capabilities of
the IP Core provided. Some others research and model-based
tools like Hip-Hops [17], Visual Figaro [18], CAFTA, Isograph
Reliability Workbench [19], ConcertoFLA [20] and Medini
Analyze [21] implement features to store and reuse some safety
artifacts. Most of them provide libraries or databases of failure
modes, their causes and effects, component failure patterns,
etc. However, the lack of interoperability between the tools
and/or closed data formats make it difficult to reuse and/or
export the safety models, libraries and results.

There were also some initiatives and projects working
on safety certification platforms, e.g., the European projects
OPENCOSS [22] and AMASS [23]). These projects and
their associated tools aim at safety certification according to
different standards (including ISO26262) based on MBSA. As
part of the AMASS platform, our work helps follow ISO26262
recommendations for the system development through a MBSE
and MBSA approach in an unified environment. The work
relies on open data and open languages (UML/SysML) and
provides reusability features of IP Core and safety artifacts
libraries.

III. APPROACH

Figure 1 presents the co-engineering methodology at a
glance. The methodology shows how to conduct safety assess-
ment based on the reference phase model for the development
of a safety-related item at system level (Part 4) described in
ISO26262. It allows conducting system development in parallel
with safety assessment with respect to ISO26262 requirements.
By parallelizing both concerns into a co-engineering process,
the system development steps are not blocked by the safety
steps. The reuse of pre-analyzed IP Cores and safety artifacts
reduces development and analysis efforts.

The inputs for the proposed methodology are: 1) sys-
tem description including requirements, functional and system
architecture; and 2) safety analysis results from the FMEA
(Failure Mode and Effects Analysis) [24], the FTA (Fault Tree
Analysis) [25] and the HARA (Hazard Analysis and Risk
Assessment), obtained at the prior phases of system develop-
ment lifecycle, such as concept definition. To harmonize the
methodology with ISO26262 reference model, we prefix its
main steps with the appropriate clauses of the standard. The
methodology includes the following steps:

• (4.5) Initiation of product development at the system
level. We determine and plan the functional safety ac-

tivities to perform during the development of Automotive
System (AS).

• (4.6) Specification of the technical safety requirements
synchronized with system requirements. The system re-
quirements are specified and analyzed by the system
engineer and safety expert to derive the technical safety
requirements. At this stage, one can reuse existing safety
mechanisms from the IP Core library for the require-
ments specification, e.g., fault detection measure, self-
monitoring concept, warning concept.

• (4.7) System design synchronized with system safety
analyses. The technical safety requirements as result of
previous step help define the system design. If the library
contains prior pre-modeled and analyzed components
included in the system under analysis, they could be
reused (with regard to appropriate impact analysis related
to the new system context). Safety analyses are conducted
on the defined architectural design to avoid systematic
failures of the system. System safety analyses may include
the HARA in the case of usage of reusable elements
and if new hazards are introduced, the FMEA and the
qualitative FTA. During safety assessment, various safety
artifacts (hazards, failure modes, causes, effects, control
mechanisms, etc.) could be reused from and added to the
safety artifacts libraries. The newly analyzed elements are
also stored into the libraries for their reuse during further
iterations or for future usage in other projects.

IV. TOOL SUPPORT

The co-engineering methodology given in Section III is
semi-automated in Sophia tool, a MBSE/MBSA framework
[26]. Sophia includes a set of DSLs (Domain Specific Lan-
guage) dedicated to several aspects of safety assessment
methodology. Each DSL is a UML profile having its equivalent
viewpoint [27]. As shown in Figure 1, each viewpoint could
be used during one or several steps of the methodology. The
Safety Requirement DSL describes a taxonomy and properties
of safety requirements compliant with ISO26262 (Part 8). The
Process Management DSL defines the evolution of system
architecture through its lifecycle by introducing such concepts
like system, function, hardware, software along with corre-
sponding allocation relationships. The HARA, FMEA, FTA
and property verification DSL describe the safety concepts
related to these methods recommended in ISO26262.

Figure 2 shows an overview of Sophia architecture. The
tool is implemented as Eclipse plugins on top of Papyrus
tool, a customizable environment supporting modelling of
systems using standardized languages (e.g., UML, SysML).
The framework is modular so that dedicated analysis modules
can be used either independently or conjointly in a given
user-defined process. Sophia provides a fluent and integrated
flow supported by ISO26262 Process package that interacts
with the safety analyses. These packages 1) refer to the
Safety and Reliability package providing generic definitions
to dependability concepts; 2) provide a mechanism to save
and reuse safety artifacts obtained during safety analyses in
the form of annotated elements; 3) provide functionality to
save and reuse pre-analyzed safe IP Cores in form of SysML
models or SysML Blocks annotated with safety concepts.
Sophia also provides bridges to other external tools for further
safety analyses like NuSMV [28], AltaRica, FIDES [29]and

113Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Figure 1. System/safety co-engineering methodology and safety viewpoints mapping

Figure 2. Sophia tool architecture to support ISO26262 recommendations

XFTA [13]. The analyses yield results that are propagated back
through the design and display in the models using dedicated
profiles, editors, tables, and Papyrus customization toolsets.

V. CASE STUDY

We apply the proposed methodology (Figure 1) to design
a safety-critical Adaptive Cruise Control (ACC) System. The
ACC is a well-known automotive system that allows a vehicle’s
cruise control to adapt the vehicle’s speed to the traffic environ-
ment. The ACC uses a radar attached to the front of the vehicle
to detect whether preceding vehicles are moving in the path of
the host car with the ACC. If there is no preceding vehicle, the
ACC maintains the driver selected speed. When a preceding
vehicle shows up, the system may automatically apply braking,
control throttle or shift gear to adapt the vehicle speed and
maintain the selected clearance without driver intervention.

A. Initialization of Product Development at the System Level
As we consider the reuse of various elements from IP Core

and safety artifact libraries, we perform an impact analysis to
assess the effects of the reused artifacts in our context and to
determine the applicable safety activities that we will need to
conduct for the ACC system development.

B. Specification of the Technical Safety Requirements
We capture and model the system requirements of the ACC

system. Hereafter, we consider the requirement REQ ACC 03
given in Figure 3. This requirement is satisfied by the
component ACC module (Figure 4), and its refinement in
several sub-requirements REQ ACC 03a, REQ ACC 03b,
REQ ACC 03c, are satisfied by the system function Incre-
ment speed, Decrement speed and Shift gear, respectively.
These requirements are enriched with safety requirements
(prefixed by Safety REQ ACC) specifying the safety mea-
sures/mechanisms identified as we performed the safety anal-
yses of the system (see Section V-D). We store the technical
safety requirements into the appropriate library for later usage.

C. System Design
Figure 4 shows the top level design of the ACC system with

the interconnecting interfaces between its components. The
core part of the ACC system is the ACC module. It processes
data information from the Radar.

The ACC module sends a signal to Brake Control in
case of braking. The Engine Control and Electronic Throttle
Control control the vehicle speed by increasing or decreasing

114Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Figure 3. Excerpt of functional (shown in white) and safety (shown in red) requirements of the ACC system.

Figure 4. Top level architecture of the ACC system shown in Internal Block Diagram. The ACC architecture was modified (shown in green) to satisfy safety
requirements

the throttle injection. The Cruise Switches component allows
the driver to command the ACC functionalities and to set
the selected speed and clearance. The Instrument Cluster is a
panel in front of the driver that processes the Cruise Switches
and sends them to the ACC and Engine Control modules.
The Instrument Cluster also displays information regarding
the ACC system state. The Brake Switches can deactivate
the Cruise Control operation. The Brake Lights component
allows illumination of the stop lamps during automatic braking
from the ACC module request. The Brake Actuators & Speed
Sensors component includes the sensors and devices, such as
the brake pedal, the accelerator pedal, etc. The communication
bus and the Controller Area Network (CAN) transmit all
the signals between the components. We link the technical
safety requirements to appropriate system components. The
requirement REQ ACC 03 given in Figure 3 is satisfied by
the component ACC module (Figure 4). The sub-requirements
REQ ACC 03a, REQ ACC 03b, REQ ACC 03c, are satis-
fied by the system functions Increment speed, Decrement
speed and Shift gear, respectively. Those system functions
are realized by components that we reuse from the IP Core
libraries, namely the Brake Lights, Brake Switches and Cruise
Switches.

D. System Safety Analysis

Hereby, we focus on performing the HARA and FMEA
analyses with Sophia tool [26] to illustrate the proposed
concept of IP Cores and safety artifacts reuse.

HARA. We perform the HARA on the system design
to determine new hazards and effects that may arise as we
reuse some libraries elements in a new context. The HARA
is based on the usage scenarios and the main functionalities
of the ACC system. It takes into account requirement and
architecture models defined in the Safety Requirements and
Process Management viewpoints. Some HARA artifacts are
defined in a specific library as model elements reusable from
one viewpoint to another, e.g., the set of operating conditions
are derived from the vehicle states and the malfunctions
are specified for all functions that satisfied the functional
requirements of the system. The hazards, nature of injuries
are also coming from a predefined list corresponding to the
injury category described in the ISO26262 standard. During the
analysis, we reused the HARA results for the Brake Lights,
Brake Switches and Cruise Switches that improved analysis
time.

Hereafter, we analyze the following operational situation:
the ACC system being active when the vehicle is driving on
highway at medium speed, following a preceding vehicle. We

115Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

Figure 5. Excerpt of the FMEA results for the ACC system. Columns 5, 9 and 12 are calculated automatically according rules given ISO26262

analyze the ACC function Increment speed (Figure 4) used to
maintain the desired distance with the preceding vehicle. Some
malfunctions associated with this function are the ACC system
increases vehicle speed when it is too close to preceding
vehicle and the ACC system increases vehicle speed beyond
desired speed set by driver. The generic hazard Unintended ac-
celeration is associated with these malfunctions. The resulting
hazardous event, as defined by ISO26262, is a combination
of the hazard and the operational situation, i.e., the ACC
module requests an unintended acceleration when preceding
vehicles are too close. In our example, the hazardous event is
evaluated at the Automotive Safety Integrity Level (ASIL) C,
with Exposure=E4, Controllability=C2, Severity=S3. Finally,
we determine the safety goals for the hazardous events to
prevent an unacceptable risk level from those events or re-
duce their impact. The safety goals refine/extend the ACC
requirements defined in the Safety Requirement Engineering
viewpoint (Figure 3). For our example of hazardous event, we
define two safety goals, Safety REQ ACC 03a: ACC should
not increase the speed beyond the desired speed set by the
driver, and Safety REQ ACC 03b: ACC should decrease the
speed if the distance to the preceding vehicle is too close.
The newly analyzed ACC components and safety artifacts are
stored into the IP Core and safety artifacts libraries (as shown
in Figure 1).

FMEA. The FMEA complements the HARA by deter-
mining the corrective actions to be implemented to meet
previously defined safety objectives. This analysis uses as
inputs the usage scenarios, the ACC system architecture, as
well as the results of the HARA model elements (libraries
of accidents, malfunctions, hazardous events, accidents, etc.)
and their properties (severity, ASIL, etc.). The analysis helps
determine the effects and the criticality of single basic causes
of failure modes at the component level until the system level.

With the help of the safe IP Core libraries, the tool traces
the FMEA artifacts to the hazardous events and accidents
previously identified in the HARA. Figure 5 shows the FMEA
table generated for the ACC module component. The malfunc-
tions found during the HARA are stored into the safety artifacts
library and then reused for failure mode identification. As an
example, we specify the failure mode Loss of the ACC module,
its causes (missing input signal, CAN fault) and effects (loss).
This failure mode can lead to different effects until the crash of
the vehicle at customer level referring to the accident identified
during the HARA. We found that the ACC module changes
its criticality level from critical to moderate after application
of recommended and well-trusted preventive actions (already
existing in the libraries). The list of safety requirements is
derived from the specified preventive actions: for our example,
it is prevent activation of cruise module when braking system
fails. These new safety requirements are traced by the tool
to the safety goals elicited during the HARA. As during the
HARA, the analyzed components with the FMEA results are
stored to safe IP Core library (as shown in Figure 1). We reused

existing results of the analysis for the Brake Lights, Brake
Switches and Cruise Switches that reduce efforts to perform
the FMEA.

Figure 4 shows how the ACC architecture was modified
to satisfy the safety requirements derived during the ACC
development process. The improved scenario is that the ACC
module should send a brake actuator request to a new added
Actuator Controller in order to duplicate the brake actuator
command from both the Brake Control and the Actuator
Controller.

VI. CONCLUSION AND DISCUSSION

The ever growing complexity of modern automotive sys-
tems presents certain challenges in meeting time to market
constraints. To address this issue, we suggest a methodology
that helps in formalizing, synchronizing and semi-automating
the system development and the safety analysis activities
recommended in ISO26262. The methodology includes the
ability to reuse libraries of already pre-modeled and pre-
analyzed IP Cores as basic elements for building more complex
automotive systems. In addition, we can reuse safety artifacts
(e.g., hazards, failure modes, etc.) for analysis of other systems.
It makes the design process more flexible and reduces the
design time.

We implement the proposed methodology in Sophia tool.
Sophia is a modeling tool offering a graphical development
environment for system design and safety analyses. It relies
on SysML and UML languages, so that the models and
libraries can be imported and reused in different modeling
environments. Beside, as both the development and safety
activities are conducted in the same environment, we avoid
interoperability and traceability issues that undermine the reuse
capabilities of certain tools. Although we focus on the system
development process to demonstrate the methodology, the pro-
posed methodology is applicable to later development phases,
in particular, to software and hardware development and testing
activities. For example, we may refer to FIDES to refill our IP
Core libraries, as it is a well-known and standardized database
for reliability prediction of hardware components.

We apply the model-based safety analysis and IP Core
reuse approach to an ACC system. During the case study,
we model the ACC system architecture and conduct safety
analyses according to the proposed methodology. As a result,
we identify critical components of the ACC system and
propose architectural changes to reduce the system overall
criticality level. In the case study, we reuse pre-analyzed IP
Cores (in particular, Brake Lights, Brake Switches and Cruise
Switches), as well as various HARA and FMEA safety artifacts
(e.g., hazards, malfunctions, failure modes, safety mechanisms,
etc.) across the development process. This possibility helps us
reduce the design and analysis effort.

The case study shows the important efforts for the deploy-
ment of the methodology the first time: it takes time to model
the system and to fill in the libraries. However, this effort

116Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

may be rapidly amortized during next iterations or in future
projects by saving time and cost on the analyses thanks to
the reusability inherent to the model-based and IP Core reuse
paradigms.

From our case study, we also notice the lack of certain
domain specific expertise about which safety artifacts can
be reused in specific context. Another difficulty comes from
maintenance of the libraries while IP Cores or safety artifacts
must be accompanied with justifications about their application
context. As future work, we might consider exploration of
solutions based on Safety Element out of Context (SEooC)
concept from ISO26262. We would also develop dedicated
libraries per domain to be able to address other standards (e.g.,
aerospace, robotic, and medical).

REFERENCES

[1] ISO 26262: Road Vehicles : Functional Safety. International Organi-
zation for Standardization, 2018.

[2] D. Brugali, “Model-driven software engineering in robotics: Models are
designed to use the relevant things, thereby reducing the complexity and
cost in the field of robotics,” Robotics & Automation Magazine, IEEE,
vol. 22, no. 3, 09 2015, pp. 155–166.

[3] D. D. Gajski et al., “Essential issues for ip reuse,” in Proceedings 2000.
Design Automation Conference. (IEEE Cat. No.00CH37106), 02 2000,
pp. 37 – 42.

[4] I. Sljivo, B. Gallina, J. Carlson, H. Hansson, and S. Puri, Tool-
Supported Safety-Relevant Component Reuse: From Specification to
Argumentation. Cham: Springer International Publishing, 01 2018,
pp. 19–33.

[5] N. Yakymets, S. Dhouib, H. Jaber, and A. Lanusse, “Model-driven
safety assessment of robotic systems,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, pp. 1137–1142.

[6] N. Yakymets, M. Perin, and A. Lanusse, “Model-driven multi-level
safety analysis of critical systems,” in 2015 Annual IEEE Systems
Conference (SysCon) Proceedings, 2015, pp. 570–577.

[7] W. Pananurak, S. Thanok, and M. Parnichkun, “Adaptive cruise control
for an intelligent vehicle,” in 2008 IEEE International Conference on
Robotics and Biomimetics, 2009, pp. 1794–1799.

[8] The Unified Modeling Language Specification Version 2.5, 2015.
Object Management Group, retrieved: September, 2020. [Online].
Available: https://www.omg.org/spec/UML/2.5/

[9] System Modeling Language Specification Version 1.5, 2017. Object
Management Group, retrieved: September, 2020. [Online]. Available:
https://www.omg.org/spec/SysML/

[10] P. Cuenot, C. Ainhauser, N. Adler, S. Otten, and F. Meurville, “Applying
model based techniques for early safety evaluation of an automotive
architecture in compliance with the ISO 26262 standard,” in Embedded
Real Time Software and Systems (ERTS2014), Toulouse, France, 02
2014.

[11] G. Biggs, T. Juknevicius, A. Armonas, and K. Post, “Integrating safety
and reliability analysis into mbse: overview of the new proposed OMG
standard,” INCOSE International Symposium, vol. 28, no. 1, 07 2018,
pp. 1322–1336.

[12] P. Feth et al., “Multi-aspect safety engineering for highly automated
driving,” in Computer Safety, Reliability, and Security, B. Gallina,
A. Skavhaug, and F. Bitsch, Eds. Cham: Springer International
Publishing, 2018, pp. 59–72.

[13] Altarica. Alatarica Association, retrieved: September, 2020. [Online].
Available: https://altarica.labri.fr/

[14] G. Biggs, T. Juknevicius, A. Armonas, and K. Post, “The xsap safety
analysis platform,” in Tools and Algorithms for the Construction and
Analysis of Systems, M. Chechik and J.-F. Raskin, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 04 2015.

[15] RiskWatch. Risk Watch International, retrieved: September, 2020.
[Online]. Available: http://www.riskwatch.com/

[16] Pilar. EAR, retrieved: September, 2020. [Online]. Available: www.
pilar-tools.com/en/tools/pilar/

[17] Hip-Hops. Hull University, retrieved: September, 2020. [Online].
Available: http://hip-hops.eu/

[18] Visual Figaro. Electricite De France, retrieved: September, 2020.
[Online]. Available: https://sourceforge.net/projects/visualfigaro/

[19] Isograph Reliability Workbench, retrieved: September, 2020. [Online].
Available: https://www.isograph.com/software/reliability-workbench/

[20] B. Gallina, Z. Haider, and A. Carlsson, “Towards generating ECSS-
compliant fault tree analysis results via ConcertoFLA,” IOP Conference
Series: Materials Science and Engineering, vol. 351, 05 2018, p.
012001.

[21] Ansys, Medini Analyzer. Ansys, retrieved: September,
2020. [Online]. Available: https://www.ansys.com/products/systems/
ansys-medini-analyze

[22] OPENOCSS project. The OPENCOSS Consortium, retrieved:
September, 2020. [Online]. Available: http://www.opencossproject.eu

[23] AMASS project. The AMASS Consortium, retrieved: September,
2020. [Online]. Available: https://www.amassecsel.eu

[24] IEC 60812: Analysis techniques for system reliability - Procedures for
FMEA. International Electrotechnical Commission, 1985.

[25] NASA, “Fault tree handbook with aerospace applications,” 2002.
[26] M. Adedjouma and N. Yakymets, “A framework for model-based

dependability analysis of cyber-physical systems,” in 2019 IEEE 19th
International Symposium on High Assurance Systems Engineering
(HASE), 2019, pp. 82–89.

[27] M. Mori et al., “Systems-of-systems modeling using a comprehensive
viewpoint-based SysML profile,” Journal of Software: Evolution and
Process, vol. 30, no. 3, 2018, p. e1878, e1878 JSME-16-0093.R2.

[28] NuSMV. NuSMV Project, retrieved: September, 2020. [Online].
Available: http://nusmv.fbk.eu/

[29] FIDES. The Fides Consortium, retrieved: September, 2020. [Online].
Available: https://www.fides-reliability.org/

117Copyright (c) IARIA, 2020. ISBN: 978-1-61208-827-3

ICSEA 2020 : The Fifteenth International Conference on Software Engineering Advances

