
An Empirical Study of the Correlation of Cognitive
Complexity-related Code Measures

Luigi Lavazza
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria
Varese, Italy

email:luigi.lavazza@uninsubria.it

Abstract—Several measures have been proposed to represent
various characteristics of code, such as size, complexity, cohesion,
coupling, etc. These measures are deemed interesting because the
“internal” characteristics they measure (which are not interesting
per se) are believed to be correlated with “external” software
qualities (like reliability, maintainability, etc.) that are definitely
interesting for developers or users. Although many measures have
been proposed for software code, new measures are continuously
proposed. However, before starting using a new measure, we
would like to ascertain that it is actually useful and that it
provides some improvement with respect to well established
measures that have been in use for a long time and whose merits
have been widely evaluated. In 2018, a new code measure, named
“Cognitive Complexity” was proposed. According to the pro-
posers, this measure should correlate to code understandability
much better than ‘traditional’ code measures, such as McCabe
Complexity, for instance. However, hardly any experimentation
proved whether the “Cognitive Complexity” measure is better
than other measures or not. Actually, it was not even verified
whether the new measure provides different knowledge concern-
ing code with respect to ‘traditional’ measures. In this paper, we
aim at evaluating experimentally to what extent the new measure
is correlated with traditional measures. To this end, we measured
the code from a set of open-source Java projects and derived
models of “Cognitive Complexity” based on the traditional code
measures yielded by a state-of-the-art code measurement tool. We
found that fairly accurate models of “Cognitive Complexity” can
be obtained using just a few traditional code measures. In this
sense, the “Cognitive Complexity” measure does not appear to
provide additional knowledge with respect to previously proposed
measures.

Keywords–Cognitive complexity; software code measures;
McCabe complexity; cyclomatic complexity; Halstead mea-
sures; static code measures

I. INTRODUCTION

Many measures have been proposed to represent the internal
characteristics of code, such as size, complexity, cohesion
or coupling. Several empirical studies have correlated these
measures with external software qualities of interest, such as
faultiness or maintainability.

Quite often, new measures are proposed. Some aim at repre-
senting specific features of code that had not been considered
previously: for instance, Chidamber and Kemerer proposed the
Number of Children (NOC) and Depth of Inheritance (DIT) [1]
when object-oriented programming languages started to be-
come popular.

Some other measures are proposed with the specific aim of
predicting interesting external qualities. A new measure was
proposed in 2018 with the aim of representing the complexity
of understanding code [2]. This new measure was named
“Cognitive Complexity,” however, in the remainder of this
paper we shall refer to this measure as “CoCo,” to avoid
confusion with the concept of cognitive complexity, i.e., the
property that CoCo is expected to measure.

Some initial work has been done to evaluate whether
CoCo is actually correlated with code understandability [3].
The initial results yielded by this research do not support the
claim that CoCo is better correlated to code understandability
than previously proposed measures.

At any rate, whatever the goal that a new measure is
supposed to help achieving, the new measure should provide
some “knowledge” that existing measures are not able to
capture. If a new measure is so strongly correlated with other
measures that the latter can be used to to build models that
allow predicting the new measure with reasonable accuracy, it
is unlikely that the new measure actually conveys any knew
knowledge.

CoCo is receiving some attention, probably because it is
provided by SonarQube, which is a quite popular tool.
Therefore, it is time to look for evidence that CoCo provides
additional knowledge with respect to well established code
measures. To this end, in this paper we consider the following
two research questions:

RQ1 How strongly is CoCo correlated with each of the
code measures that are commonly used in software
development?

RQ2 Is it possible to build models that predict the value of
CoCo based on the values of commonly used code
measures? If so, how accurate are the predictions that
can be achieved?

The paper is structured as follows. Section II provides some
background, by introducing CoCo and describing the tradi-
tional code measures used in this study. Section III describes
the empirical study that was carried out to answer the research
questions. Section IV discusses the results obtained by the
study and answers the research questions. Section V discusses
the threats to the validity of the study. Section VI accounts
for related work. Finally, in Section VII some conclusions are
drawn, and future work is outlined.

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

II. CODE MEASURES

In this paper we deal with measures of the internal attributes
of code. Internal attributes of code can be measured by looking
at code alone, without considering software qualities (like
faultiness, robustness, maintainability, etc.) that are externally
perceivable.

Several measures for internal software attributes (e.g., size,
structural complexity, cohesion, coupling) were proposed [4]
to quantify the qualities of software modules. These measures
are interesting because they concern code qualities that are
believed to affect external software qualities (like faultiness or
maintainability), which are the properties that are interesting
for developers and users.

Since CoCo is computed at the method level, in what
follows, we consider only measures at the same granulatrity
level, i.e., measures that are applicable to methods.

A. “Traditional” Code Measures

Since the first high-level programming languages were
introduced, several measures were proposed, to represent the
possibly relevant characteristics of code. For instance, the
Lines Of Code (LOC) measure the size of a software module,
while McCabe Complexity (also known as Cyclomatic Com-
plexity) [5] was proposed to represent the “complexity” of
code, with the idea that high levels of complexity characterize
code that is difficult to test and maintain. The object-oriented
measures by Chidamber and Kemerer [1] were proposed to
recognize poor software design. For instance, modules with
high levels of coupling are supposed to be associated with
difficult maintenance.

In this paper, we are interested in evaluating the correla-
tion between CoCo and traditional measures. Since CoCo is
defined at the method level, here we consider only traditional
measures addressing methods; measures defined to represent
the properties of classes or other code structures are ignored.

SourceMeter [6] was used to collect code measures. The
method-level measures we used are listed in Table I. Because
of space constraints, we cannot give here the detailed definition
of each measure. Instead, we provide a very brief description;
interested readers can find additional information in the doc-
umentation of SourceMeter.

Among the measures listed in Table I we have: Halstead
measures [7], several maintainability indexes, including the
original one [8], McCabe complexity, measures of the nesting
level (i.e., how deeply are code control structured included in
each other), logical lines of code (which are counted excluding
blank lines, comment-only lines, etc.).

B. The “Cognitive Complexity” Measure

In 2017, SonarSource introduced Cognitive Complexity [2]
as a new measure for the understandability of any given
piece of code. This new measure was named “Cognitive
Complexity” because its authors assumed that the measure was
suitable to represent the cognitive complexity of understanding
code. To this end, CoCo was proposed with the aim “to remedy

TABLE I
THE MEASURES COLLECTED VIA SOURCEMETER.

Metric name Abbreviation
Halstead Calculated Program Length HCPL
Halstead Difficulty HDIF
Halstead Effort HEFF
Halstead Number of Delivered Bugs HNDB
Halstead Program Length HPL
Halstead Program Vocabulary HPV
Halstead Time Required to Program HTRP
Halstead Volume HVOL
Maintainability Index (Microsoft version) MIMS
Maintainability Index (Original version) MI
Maintainability Index (SEI version) MISEI
Maintainability Index (SourceMeter version) MISM
McCabe’s Cyclomatic Complexity McCC
Nesting Level NL
Nesting Level Else-If NLE
Logical Lines of Code LLOC
Number of Statements NOS

Cyclomatic Complexity’s shortcomings and produce a mea-
surement that more accurately reflects the relative difficulty of
understanding, and therefore of maintaining methods, classes,
and applications” [2].

Rather than a real measure, CoCo is an indicator, which
takes into account several aspects of code. Like McCabe’s
complexity, it takes into account decision points (conditional
statements, loops, switch statements, etc.), but, unlike Mc-
Cabe’s complexity, gives them a weight equal to their nesting
level plus 1. So, for instance, the following code fragment

void firstMethod() {
if (condition1)
for (int i = 0; i < 10; i++)
while (condition2) { ... }

}

the if statement at nesting level 0 has weight 1, the for
statement at nesting level 1 has weight 2, and the while
statement at nesting level 2 has weight 3, thus CoCo=1+2+3=
6. The same code has McCabe complexity = 4 (3 decision
points plus one).

Consider instead the following code fragment, in which the
control structures are not nested.

void secondMethod() {
if (condition1) { ... }
for (int i = 0; i < 10; i++) { ... }
while (condition2) { ... }

}

This code has CoCo = 3, while its McCabe complexity is still
4. It is thus apparent that nested structures increase CoCo,
while they have no effect on McCabe complexity.

CoCo also accounts for Boolean predicates: a Boolean
predicate contributes to CoCo depending on the number of
its sub-sequences of logical operators. For instance, consider
the following code fragment, where a, b, c, d, e, f
are Boolean variables

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

void thirdMethod() {
if (a && b && c || d || e && f) { ... }

}

Predicate a && b && c || d || e && f contains
three sub-sequences with the same logical operators, i.e.,
a && b && c, c || d || e, and e && f, so it adds
3 to the value of CoCo.

Other aspects of code contribute to increment CoCo, but
they are much less frequent than those described above. For a
complete description of CoCo, see the definition [2].

III. THE EMPIRICAL STUDY

The empirical study involved a set of open-source Java
programs. This code was measured, and the collected data
were analyzed via well consolidated statistical methods. The
dataset is described in Section III-A, while the measurement
and analysis methods are described in Section III-B. The
results we obtained are reported in Section III-C.

A. The Dataset

The code to be analyzed within the study was a convenience
sample: data whose code was already available from previous
studies concerning completely different topics was used. In
practice, this amount to a random choice.

The projects that supplied the code for the study are listed in
Table II, where some descriptive statistics for the most relevant
measures are also given. Methods having CoCo=0 or NOS=0
are clearly uninteresting, therefore their data were excluded,
so Table II does not account for such methods. Overall, the
initial dataset included data from 13,922 methods. The dataset
is available on demand for replication purposes.

B. The Method

The first phase of the study consisted in measuring the code.
We used SourceMeter to obtain the “traditional” measures, and
a self-constructed tool to measure CoCo. The data from the
two tools were joined, thus obtaining a single dataset with
8,214 data points.

The second step consisted in selecting the data for the study.
We excluded from the study all the methods having CoCo <5,
since those methods would bias the results, because of ‘built-
in’ relationships. For instance a piece of code having CoCo = 0
also has McCabe complexity = 1; similarly, CoCo = 1 usually
implies that McCabe complexity = 2, etc. In addition, low-
complexity methods are of little interest: since CoCo is meant
to represent the complexity of understanding code, it is hardly
useful for methods that are so simple that understanding them
is hardly an issue. SonarQube [9] sets the threshold for
CoCo at 15, i.e., CoCo < 15 is reasonably safe, according to
SonarQube. Therefore, by excluding only methods having
CoCo < 5 we are sure to exclude only ‘non-interesting’ code.

We also excluded methods having CoCo > 50, because our
dataset contains too few methods having CoCo > 50 to support
reliable statistical analysis.

After removing the exceedingly simple or complex methods,
we got a dataset including 3,610 data points, definitely enough

TABLE II
DESCRIPTIVE STATISTICS OF THE DATASETS.

Project n Measure mean st.dev. median min max
CoCo 3.1 4.3 2.0 1 79
HPV 32.3 17.1 28.0 0 211

MI 100.3 14.7 102.2 0 135
hibernate 2532 McCC 3.3 2.4 2.0 1 33

NLE 1.3 0.8 1.0 0 7
LLOC 15.2 12.3 12.0 3 201
CoCo 3.3 4.0 2.0 1 34
HPV 35.0 18.4 29.0 10 120

MI 100.3 14.0 102.5 56 132
jcaptcha 317 McCC 3.5 2.2 3.0 2 18

NLE 1.3 0.8 1.0 0 5
LLOC 14.6 10.6 11.0 3 80
CoCo 4.0 7.2 2.0 1 84
HPV 30.6 22.9 28.0 0 280

MI 101.7 20.6 104.0 0 135
jjwt 205 McCC 4.3 4.6 3.0 2 46

NLE 1.3 0.8 1.0 0 4
LLOC 13.5 14.9 11.0 3 169
CoCo 5.6 8.7 3.0 1 73
HPV 38.3 21.1 32.0 14 145

MI 96.4 15.3 99.0 45 131
json iterator 379 McCC 4.6 3.9 3.0 1 28

NLE 1.6 1.0 1.0 0 7
LLOC 18.0 15.1 13.0 3 110
CoCo 5.7 15.8 2.0 1 203
HPV 41.0 36.9 31.5 11 413

MI 95.7 18.2 97.4 32 133
JSON-java 260 McCC 5.0 5.8 3.0 2 50

NLE 1.5 1.1 1.0 0 7
LLOC 21.5 26.5 13.0 3 255
CoCo 4.6 6.4 2.0 1 61
HPV 36.6 21.4 30.0 8 163

MI 98.1 15.2 100.4 44 135
log4j 798 McCC 4.1 3.4 3.0 1 34

NLE 1.6 1.0 1.0 0 8
LLOC 16.9 13.4 12.0 3 115
CoCo 4.4 5.5 3.0 1 37
HPV 33.7 20.0 28.0 0 122

MI 97.7 20.8 101.4 0 132
netty-socketio 136 McCC 4.1 2.8 3.0 1 19

NLE 1.6 0.9 1.0 0 5
LLOC 15.0 12.3 11.0 3 84
CoCo 5.2 8.2 2.0 1 118
HPV 39.3 25.7 32.0 0 326

MI 93.7 17.2 96.4 0 128
pdfbox 3587 McCC 4.5 4.5 3.0 1 58

NLE 1.6 1.1 1.0 0 10
LLOC 22.3 21.8 15.0 3 330
CoCo 5.6 10.1 3.0 1 186
HPV 38.7 28.5 31.0 0 740

MI 93.4 18.1 96.5 0 132
jasperreports 6415 McCC 4.9 5.6 3.0 1 117

NLE 1.6 1.1 1.0 0 10
LLOC 23.5 26.0 15.0 3 383

to perform significant statistical analysis. In this dataset the
mean value of CoCo is 12, while the median is 9.

The third step consisted in performing statistical analysis.
We started by studying the correlation between CoCo and
each one of the other code measures. Since the data are not
normally distributed, we used non-parametric tests, namely
we computed Kendall’s rank correlation coefficient τ [10]
and Spearman’s rank correlation coefficient ρ [11]. Since the
correlation analysis gave encouraging results, we proceeded to
evaluate correlations via both linear and non-linear correlation
analysis. Namely, we performed ordinary least squares (OLS)
linear regression analysis and OLS regression analysis after
log-log transformation of data. In both cases, we identified
and excluded outliers based on Cook’s distance [12].

In all the performed analysis, we considered the results

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

significant at the usual α = 0.05 level. In almost all cases,
we obtained much smaller p-values, though.

C. Results of the Study

The results of Kendall’s and Spearman’s correlation tests
are given in Table III. All the reported results are statistically
significant, with p-values well below 0.001.

TABLE III
RESULTS OF CORRELATION TEST.

Measure τ ρ
HCPL 0.45 0.62
HDIF 0.38 0.52
HEFF 0.47 0.63
HNDB 0.47 0.63
HPL 0.50 0.67
HPV 0.46 0.62
HTRP 0.47 0.63
HVOL 0.50 0.66
MI -0.56 -0.73
MIMS -0.56 -0.73
MISEI -0.41 -0.57
MISM -0.41 -0.57
McCC 0.71 0.85
NL 0.50 0.61
NLE 0.50 0.60
LLOC 0.55 0.72
NOS 0.52 0.68

After the evaluation of correlations between CoCo and
other measures, we proceeded to building regression models.
We obtained 65 statistically significant models after log-log
transformation of measures. Because of space constraints, here
we do not report all of these models. Instead we report only
the ones that appear most accurate.

Table IV provides a summary of the models we found.
For each model, the adjusted R2 determination coefficient
is given (obtained after excluding outliers). We also give
a few indicators of the accuracy of the models (computed
including outliers): MAR is the mean of absolute residuals
(i.e., the average absolute prediction error), MMRE is the
mean magnitude of relative errors, while MdMRE is the
median magnitude of relative errors. MMRE and MdMRE are
considered biased indicators: we report them here only as a
complement to MAR, which we considered the indicator of
accuracy to be taken into account [13].

Note that in addition to the measures listed in Table I, we
used also MCC/LLOC, i.e., McCabe’s complexity density.

IV. DISCUSSION

The results of the correlation tests given in Table III show
that CoCo is correlated with all the traditional code measures
we considered. Specifically, CoCo is strongly correlated with
McCabe’s complexity: this is quite noticeable, considering that
CoCo was proposed to improve McCabe’s complexity.

We can thus answer RQ1 as follows:
Our study shows medium to strong correlations between
CoCo and each of the commonly used code measures that
we considered. Specifically, CoCo appears most strongly cor-
related with McCabe’s complexity.

TABLE IV
MODELS FOUND.

Measures adjusted R2 MAR MMRE MdMRE
MI, NL 0.81 3.60 0.28 0.20
MIMS, NL 0.81 3.60 0.28 0.20
NLE, LLOC 0.79 3.08 0.25 0.20
HCPL, MI, NLE 0.84 2.96 0.24 0.18
HCPL, MIMS, NLE 0.84 2.96 0.24 0.18
HCPL, NLE, LLOC 0.81 3.04 0.25 0.20
HDIF, MI, NL 0.82 3.65 0.28 0.19
HDIF, MI, NLE 0.84 2.96 0.24 0.19
HDIF, MIMS, NL 0.82 3.65 0.28 0.19
HDIF, MIMS, NLE 0.84 2.96 0.24 0.19
HEFF, MI, NL 0.82 3.72 0.28 0.20
HEFF, MI, NLE 0.84 3.01 0.24 0.19
HEFF, MIMS, NL 0.82 3.72 0.28 0.20
HEFF, MIMS, NLE 0.84 3.01 0.24 0.19
HNDB, MI, NL 0.82 3.72 0.28 0.20
HNDB, MI, NLE 0.84 3.01 0.24 0.19
HNDB, MIMS, NL 0.82 3.72 0.28 0.20
HNDB, MIMS, NLE 0.84 3.01 0.24 0.19
HPL, MI, NLE 0.84 3.03 0.24 0.19
HPL, MIMS, NLE 0.84 3.03 0.24 0.19
HPL, NLE, LLOC 0.82 3.03 0.25 0.20
HPV, MI, NL 0.82 3.77 0.28 0.20
HPV, MI, NLE 0.84 2.95 0.24 0.18
HPV, MIMS, NL 0.82 3.77 0.28 0.20
HPV, MIMS, NLE 0.84 2.95 0.24 0.18
HTRP, MI, NL 0.82 3.72 0.28 0.20
HTRP, MI, NLE 0.84 3.01 0.24 0.19
HTRP, MIMS, NL 0.82 3.72 0.28 0.20
HTRP, MIMS, NLE 0.84 3.01 0.24 0.19
HVOL, MI, NLE 0.84 3.04 0.24 0.19
HVOL, MIMS, NLE 0.84 3.04 0.24 0.19
HVOL, NLE, LLOC 0.82 3.03 0.25 0.20
MI, MIMS, NLE 0.81 3.59 0.26 0.19
MI, NL, NLE 0.81 2.89 0.23 0.18
MI, NLE, LLOC 0.83 3.25 0.25 0.19
MIMS, NL, NLE 0.81 2.89 0.23 0.18
MIMS, NLE, LLOC 0.83 3.25 0.25 0.19
MCCC, NLE, LLOC 0.95 1.77 0.15 0.11
MCCC, NLE, MCC/LLOC 0.95 1.77 0.15 0.11
NL, NLE, LLOC 0.78 2.99 0.24 0.20
NLE, LLOC, MCC/LLOC 0.95 1.77 0.15 0.11

The results given in Table IV let us answer RQ2 as follows:
Our study shows that it possible to build models that predict
the value of CoCo based on commonly used measures, as well
as using Halstead measures and maintainability indexes. Many
of the obtained models feature quite good accuracy.

Noticeably, the independent variables that support the most
accurate models are McCabe’s complexity, the nesting level
and the number of logical lines of code. This is hardly
surprising, given that elements of MCC and NLE are used in
the definition of CoCo. As to LLOC, it is clear that the longer
the code, the more decision points it contains (on average),
hence we can expect also LLOC to contribute to CoCo. In
fact, the relationship between CoCo and lines of code was
already observed [14].

In conclusion, our study shows that CoCo does not seem
to convey more knowledge than sets of properly chosen
traditional code measures, like MCC, NLE and LLOC.

V. THREATS TO VALIDITY

Concerning the application of traditional measures, we used
a state-of-the-art tool (SourceMeter), which is widely used
and mature, therefore we do not see any threat on this side.
CoCo was measured using an ad-hoc tool that was built based

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

on the specifications of CoCo [2]. This tool was thoroughly
tested using SonarQube [9] as a reference, therefore we are
reasonably sure that it provides correct measures. However,
when joining the data from SourceMeter with the data from
our tool, we were not able to always match methods identifiers,
because the two tools reported slightly different descriptions
of methods’ names, parameters, etc. We just dropped the
methods’ data for which no sure match could be found: in
this way, we lost less than 2% of the measures. Since the
lost measures depend on characteristics that have nothing to
do with the properties of code being measured, they can
be considered a random subset, which can hardly affect the
outcomes of the study

Concerning the external validity of the study, as with most
empirical studies in the Software Engineering area, we cannot
be sure about the generalizability of results. However, the
dataset used was large enough, and the selected software
projects represent a reasonable variety of application types.

VI. RELATED WORK

Campbell performed an investigation of the developers’
reaction to the introduction of CoCo in the measurement
and analysis tool SonarCloud [15]. In an analysis of 22
open-source projects, she assessed whether a development
team “accepted” the measure, based on whether they fixed
code areas indicated by the tool as characterized by high
CoCo. Around 77% of developers expressed acceptance of
the measure.

An objective validation of the CoCo measure was performed
by Muñoz Barón et al. [3]. They retrieved data sets from pub-
lished studies that measured the understandability of source
code from the perspective of human developers. They collected
the data concerning various aspects of understandability, as
well as the code snippets used in the experiments. They
used SonarQube [9] to obtain the CoCo measure for each
source code snippet. Then, they computed the correlation of
CoCo with the measures of various aspects of understand-
ability. Muñoz Barón et al. reported the correlation between
CoCo and various aspects of understandability for each of
the 10 experiments reported in the selected papers, as well
as a summary obtained via meta-analysis. Muñoz Barón et al.
concluded that CoCo correlates moderately with some of the
considered understandability aspects.

The paper mentioned above dealt with evaluating the effec-
tiveness of CoCo (a measure of internal code properties) as
an indicator of understandability (an external code property).
To our knowledge, nobody performed an analysis dealing with
how internal code properties only are correlated with CoCo.

Nonetheless, CoCo has been used in some evaluations.
CoCo is provided by SonarQube [9] together with many
other measures and indicators, so some researchers that
used SonarQube to collect code measures ended up using
CoCo together with other measures. Among the papers that
have used CoCo are the following.

Kozik et al [14] developed a framework for analyzing
software quality dependence on code measures and other

data. Using their framework they found that CoCo affects the
analyzability and adaptability of code.

Papadopoulos et al. [16] investigated the interrelation be-
tween design time quality metrics and runtime quality metrics,
such as cache misses, memory accesses, memory footprint and
CPU cycles. Papadopoulos et al. observed a trade-off between
performance/energy consumption and cognitive complexity.
However, having used CoCo as the only design time quality
metric, it is unknown whether the same kind of trade-off would
be observed with respect to other design-time metrics, like
McCabe’s complexity, for instance. Our study suggests that
this doubt is well funded.

Crespo et al. [17] used both the Cognitive complexity rate
(defined as CoCo/LOC) and the Cyclomatic complexity rate
(defined as McCabe complexity/LOC) as part of an assessment
strategy concerning technical debt in an educational context.
The found that the Cognitive complexity rate and the Cyclo-
matic complexity rate provide the same results, or lack of
results, actually. Given the strong correlation that we observed
between CoCo and McCabe’s complexity, the result by Crespo
et al. is not surprising.

VII. CONCLUSIONS

The “Cognitive Complexity” measure (CoCo throughout
the paper) was introduced with the aim of improving the
capabilities of McCabe complexity in indicating code that is
difficult to understand and maintain [2]. Rather than a proper
measure, CoCo is an indicator, whose definition accounts for a
few characteristics of source code. Among these characteristics
are the number of decision points (e.g., if, for, while and switch
statements) and the level of nesting of control statements.

When CoCo was proposed, no evaluations were published
concerning the relationship between CoCo and traditional
measures that directly address the aforementioned characteris-
tics of code. In this paper, we have reported about an empirical
study aiming at evaluating the correlation between CoCo and
several traditional measures, including those addressing the
same characteristics of code taken into account by CoCo. To
this end, we measured a few open source projects’ code, ob-
taining the measures of 3,610 methods. We then performed sta-
tistical analysis using both correlation tests (namely, Kendall’s
and Spearman’s rank correlation coefficients) and regression
analysis.

We found that CoCo appears strongly correlated to Mc-
Cabe’s complexity and slightly less strongly correlated to
several other code measures. We found several regression
models of CoCo as a function of traditional measures. Not
surprisingly, one of the most accurate models involves Mc-
Cabe’s complexity, NLE (Nesting Level Else-If) and LLOC
(the number of logical lines of code) as independent variables.
Considering that the most accurate models have MAR=1.7,
while the mean CoCo is 12, we may conclude that—at least
for the considered software projects—CoCo does not appear
to convey additional information with respect to traditional
measures.

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

In conclusion, the study reported here casts the doubt that
CoCo does not provide appreciable new knowledge than the
measures of code that are traditionally accociated with the
notion of complexity.

We plan to extend this work by 1) analyzing additional
code, 2) using different statistical instruments (e.g., Pricipal
Components Analysis), 3) using Machine Learning techniques.

ACKNOWLEDGMENT

The work reported here was partly supported by Fondo per
la Ricerca di Ateneo, Università degli Studi dell’Insubria.
The author thanks Anatoliy Roshka for developing the tool
that was used to measure CoCo.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, 1994,
pp. 476–493.

[2] G. A. Campbell, “Cognitive complexity - a new way of measuring under-
standability,” https://www.sonarsource.com/docs/CognitiveComplexity.
pdf, 2018, [Online; accessed 7-September-2021].

[3] M. M. Barón, M. Wyrich, and S. Wagner, “An empirical validation of
cognitive complexity as a measure of source code understandability,”
in Proceedings of the 14th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2020, pp.
1–12.

[4] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC press, 2014.

[5] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, 1976, pp. 308–320.

[6] “SourceMeter,” https://www.sourcemeter.com/, [Online; accessed 7-
September-2021].

[7] M. H. Halstead, Elements of software science. Elsevier North-Holland,
1977.

[8] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s
maintainability,” in Proceedings Conference on Software Maintenance
1992. IEEE Computer Society, 1992, pp. 337–338.

[9] “SonarQube,” https://www.sonarqube.org/, [Online; accessed 7-
September-2021].

[10] M. G. Kendall, “Rank and product-moment correlation,” Biometrika,
1949, pp. 177–193.

[11] C. Spearman, “The proof and measurement of association between two
things,” The American journal of psychology, vol. 100, no. 3/4, 1987,
pp. 441–471.

[12] R. D. Cook, “Detection of influential observation in linear regression,”
Technometrics.

[13] M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, 2012, pp. 820–827.

[14] R. Kozik, M. Choraś, D. Puchalski, and R. Renk, “Q-rapids framework
for advanced data analysis to improve rapid software development,”
Journal of Ambient Intelligence and Humanized Computing, vol. 10,
no. 5, 2019, pp. 1927–1936.

[15] G. A. Campbell, “Cognitive complexity: An overview and evaluation,”
in Proceedings of the 2018 International Conference on Technical Debt,
2018, pp. 57–58.

[16] L. Papadopoulos, C. Marantos, G. Digkas, A. Ampatzoglou, A. Chatzi-
georgiou, and D. Soudris, “Interrelations between software quality met-
rics, performance and energy consumption in embedded applications,”
in Proceedings of the 21st International Workshop on software and
compilers for embedded systems, 2018, pp. 62–65.

[17] Y. Crespo, A. Gonzalez-Escribano, and M. Piattini, “Carrot and stick
approaches revisited when managing technical debt in an educational
context,” arXiv preprint arXiv:2104.08993, 2021.

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

