
Portable Fast Platform-Aware Neural Architecture Search for Edge/Mobile

Computing AI Applications

Kuo-Teng Ding∗, Hui-Shan Chen∗, Yi-Lun Pan∗, Hung-Hsin Chen†, Yuan-Ching Lin‡ and Shih-Hao Hung∗
∗High Performance Computing Division, National Center for High-performance Computing

∗Hsinchu, Taiwan
∗email: {tony.ding,chwhs,serenapan,2003002}@narlabs.org.tw

†Department of Computer Science and Information Engineering, National Taiwan University
†Taipei, Taiwan

†email: r09922038@csie.ntu.edu.tw
‡Department of Computer Science, National Tsing Hua University

‡Hsinchu, Taiwan
‡email: s105062329@m105.nthu.edu.tw

Abstract—The recent rise and progress of neural network-
based artificial intelligence are obvious, and we have settled up
many traditional machine learning problems by deep learning.
However, problems were encountered when deploying neural
networks on diverse hardware platforms, which needs lots of
computational capability and time to “try out” the best archi-
tecture tipping the balance of model accuracy and execution
latency. The proposed Portable Fast Platform-Aware Neural
Architecture Search (PFP-NAS) system allows users to use
the trained neural network model easily without considering
the hardware architecture of the edge/mobile computing on
the client-side. The portable neural architecture search device
shrinks the data center and converts it to allow users to utilize
it on-demand and dynamically. This just-in-time, secure, and
portable neural architecture search method is mainly based on
the platform-aware client-side and applying the neural network
model trained on the data center. Another primary thing to
remember is that users use the expandable modules of this
device-Performance Prediction Module and Client Requirement-
oriented Module, i.e., Accuracy, Latency, Throughput floating
point operations per second (FLOPs), mean Average Precision
(mAP), Cost, etc. and then the device can detect hardware
architectures, such as Development Kit/Tensor Processing Unit
(TPU)/Graphics processing unit (GPU)/Field-programmable gate
array (FPGA) on edge/mobile computing. When detected, the
device will send signals to connect the data center and drive
the trained model in the data center for the corresponding
hardware architecture. The proposed technique has the following
characteristics: a. Only a boot medium is needed to detect and
determine the hardware and then get the most suitable neural
network from the server; b. Provide performance prediction
module and client requirement-oriented module; c. Automatically
match the model and the corresponding hardware architecture;
d. Designed with modular scalability, and there is no need
to configure any settings on the client-side. Consequently, the
proposed framework achieves a portable data center.

Keywords—Portable; Neural Architecture Search; Performance
Prediction.

I. INTRODUCTION

Neural architecture search (NAS) issues are attracting more
and more attention. Still, researchers try to cut into neural
network search methods with its extreme computing cost and
specific decentralized acceleration of neural network search.

Fig. 1. The demo of PFP-NAS

Fig. 2. Task-Aware Model Recommend and Platform-Aware Model Training

Acceleration methods from different aspects, such as Mathe-
matical Model, Empirical Rule, and other methods have been
proposed. However, these methods are often configured for
special tasks and require fine-tuning and actual experiment
feedback on the hardware platform. As we all know, it requires
powerful computing capabilities and repeated training for the
platform to get a good-quality model. This research places
high hopes to solve the practical problems of insufficient
computing power and data protection requirements.

Fig. 1 shows the simple demo of PFP-NAS. Users can install
the NAS Agent program with a Universal Serial Bus (USB)
device or download it from the internet and connect to its own
target device. Users can also manipulate the PFP-NAS flow

98Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Fig. 3. Pre-trained Task-Aware Model Recommend for different tasks

with a modified Microsoft NNI user interface. The portable
accelerated NAS service is proposed, which aims to split NAS
into two important parts: the Task-Aware Model Recommend
and the Platform-Aware Model Training, as shown in Fig. 2.
The concept of pre-training is applied to model search in this
architecture. The data center can learn in advance and discover
the best structure of task-aware model. Moreover, the type of
hardware architecture in the client-side can be paired with the
recommended model in the data center to filter and select a
suitable Platform-Aware model.

Fig. 3 shows that the data center will pre-train the model
in advance and the pre-trained model will vary against dif-
ferent tasks. The pre-trained model can provide users with
a hyperparameter recommendation set about a specific task.
The user will need to provide platform-aware results (model
accuracy and execution latency) to the data center, helping the
whole hyperparameter search meet the requirements (shown in
Fig. 4). In such a scenario, the client takes charge of network
fine-tuning, and the data center recommends the hyperparam-
eter. The communication process will take a few loops, and
finally, the outcome is a slim and efficient model. Users can
easily acquire the trained NAS model without considering
their own hardware architecture on edge/mobile computing
and without having to provide their own data sets. Through the
designed portable accelerated neural network search device,
the powerful computing power of the data center can be shrunk
and converted into a dynamic and easy use for the end-users.
Therefore, our design is the PFP-NAS framework to tackle the
above problems.

To effectively select a suitable Platform-Aware model, the
PFP-NAS can provide the Just-In-Time Performance module
and the Platform-oriented module to the data center. These two
modules can instantly evaluate the expected performance of
the selected model and detect the user’s hardware architecture.
After detecting edge/mobile computing hardware architecture,
such as TPU/GPU/FPGA, the user device will send relevant
signals to contact the data center and drive the corresponding
edge trained in the data center for mobile computing. There-
fore, this research will design and provide the following three
aspects of use scenarios and case solutions:

• Under the circumstance, when the client-side provides a
personal dataset, the PFP-NAS only needs the module’s
description without the users’ module. Then PFP-NAS
can easily provide forecasting of the time-consuming and
accuracy.

• When the client-side does not provide any personal
dataset, PFP-NAS can provide a platform-aware recom-
mendation service for protecting the client-side’s pri-
vacy. The Just-In-Time Performance Predict Module and
Platform-oriented module designed in this project can
be used. The server side of the portable accelerated
neural network search will be based on the existing
information of the model and the user through the high-
level description. The language interacts, and then the
candidate models are screened out. The remaining part is
to carry out portable training on the user device, allowing
the user device to return the reward value or weight to
adjust the recommendation logic.

The core concept of PFP-NAS is through portable accel-
erated NAS device services and NAS Agent to bring the
powerful computing power of the data center to the user
(Portable). Therefore, the following contributions are shown:

• Make computing resources portable: Through the de-
signed PFP-NAS framework, the data center with pow-
erful computing capability can be reduced and converted
into a portable application service for users.

• Make dataset protective: It does not require users to
upload datasets but allows users to interact and describe
through high-level language to generate similar data sets,
providing complete protection of user datasets.

• Make models speedup and optimized: The PFP-NAS
framework proposed in this research will use powerful
computing resources to automatically find and try every
possible model in advance so that each model can be
optimized to make full use of the back-end computing
resources and provide them to the front-end good user
experience.

• Make recommended models in real-time: With the benefit
of the Just-In-Time Performance Predict Module, it can
dynamically provide models that meet user needs.

• Make platform-as-a-service scalable: This research
framework can bridge data centers (such as TWCC and
AWS) to create tens of millions of portable computing
power so that these data centers can provide accelerated
NAS services.

The remaining of the paper is structured as follows: Section
2 presents backgrounds and related works. Section 3 presents
the whole system design and system components. Section 4
indicates the experiement results around the system. Section
5 concludes the works and future works.

II. RELATED WORKS

This section will cover the related works ranging from
automated machine learning and neural architecture search
to hyperparameter tuning. The implementation of this work

99Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

is based on Microsoft NNI opensource project which will
be mentioned in the automated machine learning part. The
proposed framework is mainly rose from the concept of
Once-for-All network [1] and will be described in the neural
architecture search part.

A. Automated Machine Learning (AutoML)

Automated machine learning [2] provides machine learning
technology that non-experts in this domain can also get started
quickly, such as data preprocessing, feature engineering, hy-
perparameter optimization and model post-processing, because
the complexity of these tasks often exceeds the knowledge of
non-experts in the domain of machine learning. The devel-
opment and research of traditional machine learning models
requires a lot of resources and cost. Therefore, AutoML
can greatly improve the efficiency of machine learning and
promote machine learning research. The following introduces
and analyzes three AutoML technology:

a) MLflow (Machine Learning Workflow): MLflow [3] is
an open-source project, which is created by the Apache Spark
technical team. It is a platform to manage machine learning
lifecycle. It can support a lot of existing machine learning
applications and libraries. The main components of MLflow
platform are MLflow Tracking-log and compare parameters,
code, and experimental data, MLflow Projects-package train-
ing models for reproducible runs using Conda and Docker,
MLflow Models-share and deploy the same training model on
different platforms, and MLflow Model Registry-manage the
full life cycle of MLflow models. MLflow UI adopts Flask’s
Web application framework to show visualization experimen-
tal results. In addition, in terms of model training alone,
MLflow supports a wide variety of tools, including scikit-learn,
PyTorch, Spark, TensorFlow, R, etc.; nevertheless, MLflow
cannot perfectly solve model incompatibility problems caused
by using different tools.

b) Microsoft NNI (Neural Network Intelligence): Mi-
crosoft NNI [4] is a lightweight toolkit for AutoML, which
is released by Microsoft, but it has powerful functions and
is easy to operate. It is one of the prevalent Automatic
Machine Learning (AutoML) open-source tools, which can
effectively help users to automatically tune and optimize the
neural network architecture of the machine learning model.
Its features include hyperparameter tuning, neural network
architecture search, model compression, feature engineering,
and provides many general-purpose NAS frameworks.

However, hyperparameter tuning and optimization is the
core and basic function of Microsoft NNI. It provides a lot
of popular auto-tuning algorithms (Tuner) to adapt to the
hyperparameter tuning of different machine learning and deep
learning applications; it also provides early stop algorithms
(Accessor). It is used to predict and evaluate that if each trial’s
performance is not as good as the expected value, the trial will
be terminated early. In this study, the research team integrated
the proposed algorithms to efficiently and robustly search
hyperparameters and NAS models in AutoML framework.

Based on the above discussion, only Microsoft NNI pro-
vides complete hyperparameter tuning and NAS technologies
and functions, therefore, Microsoft NNI is introduced as the
underlying infrastructure design for further development in this
research.

B. Neural Architecture Search (NAS)

Neural network training has evolved from the original hand-
made network to data extraction, and has developed into au-
tomated training and getting a suitable network structure with
the least resources. Furthermore, Google published the paper
- Neural Architecture Search with Reinforcement Learning.
They used reinforcement learning for NAS and surpassed
the previously hand-made network in image classification and
language modeling tasks. At present, the effect of NAS has
been comparable to the state-of-the-art model structure. More-
over, Nas-Bench-101 [5] emerged to evaluate the performance
of NAS objectively in the fields of semantic segmentation,
speech recognition, object detection, object classification, data
enhancement, etc.

However, there are still some problems with NAS, such
as the inability to find an objective method to compare NAS
effects and reuse NAS results efficiently because various NAS
methods have various different ways in search space and
hyperparameter optimization. For example, for the hardware-
aware NAS problem, the search space may be configured with
different hardware specifications. Still, these found structures
cannot be easily used for conversion learning on different tasks
or on tasks with different datasets.

The traditional hand-crafted methods or NAS methods often
require a lot of GPU resources. Han Cai1’s lab published
Once-for-All [1] and proposed the “Model Shrinking” method.
It trains a large model while also training a small model,
thereby reducing the cost of repeated training for the same type
of neural network with similar architectures in order to select
the best model. Model Shrinking will gradually reduce the
scale of the trained neural network, and finally perform Fine-
Tuning for each trained model. This paper proposes the neural
network search strategy used in Model Shrinking, including
Resolution, Kernel Size, Depth and Width in the convolutional
neural network structure.

C. Hyperparameter Tuning

With the continuous expansion of the importance and ap-
plication of machine learning tools, so does the demand for
non-experts to use AutoML tools. Hyperparameter tuning is
a common problem in many machine learning tasks, whether
supervised or unsupervised. Some research has provided sev-
eral different useful ways to solve these problems, such as
cross-validation and excessive scoring functions. However, the
scholars [6] discuss that some appropriate automated machine
learning framework would include the automation of modeling
and hyperparameters search which typically use black-box
gradient-free optimization.

In addition, the other researchers [7], [8] focus on the
information about the hyperparameter combination from the

100Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Fig. 4. Conceptual System Architecture Diagram

function f:X→R, and then output the data-generated model
through the Bayesian optimization framework. The above
method is also an effective method to search the hyperpa-
rameters. In AutoML setup, the f function may represent
some hyperparameter definitions and the metric of the model
that matches the given data, such as cross-validation residual,
likelihood function, or risk function.

In addition, Bayesian optimization can be used to simulta-
neously tune multiple aspects of the machine learning model,
such as data preprocessing and model hyperparameters [9].
Bayesian optimization can be utilized in various models, in-
cluding Gaussian process (GP) [10], random forests (RF) [11],
and tree-structured Parzen estimator (TPE); each of these
models has its strengths. In this study, our team used two
open-source hyperparameters tuning tools, Hyperopt [12] and
Optunity [13], which are most widely used recently. The main
purpose of applying the two above tools is to efficiently and
robustly search hyperparameters in an AutoML framework.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

The architecture of PFP-NAS can be divided into several
modules, which are the Just-in-Time Performance Prediction
Module, Once-for-All Pre-training Module, Network Architec-
ture Search Module, Network Architecture Searching Agent
Module, and Kernel Service Module.

The Fig. 4 is the conceptual system architecture diagram.
The main concept is to use the NAS Agent embedded on
the client-side hardware platform. The NAS agent is a mid-
dleware between the datacenter and users, and is responsi-
ble for communicating with the kernel service module. The
data center leverages its own powerful computing resources
with the Once-for-All Pre-training Module; the Just-in-Time
Performance Prediction Module will automatically suit the

client-side hardware, enabling a customized NAS task host
on the data center (server-side). A recommended model can
be generated for the client-side hardware platform, such as
USB/Tensor Processing Unit (TPU)/GPU/FPGA, but only
needs a mere little amount of computing power. Users do not
need to concern about dataset leaking.

When users actually use the PFP-NAS service, they only
need to provide specific requirements and specifications. PFP-
NAS will select the appropriate Just-in-Time performance
prediction module and the appropriate pre-trained Once-for-
All network to recommend the network structure.

Users use private data sets to test the recommended network
on the hardware architecture of the client-side and then report
the actual performance results to the server, as bottom left of
Fig. 5 is shown. The server will revise the original network and
further recommend the new network based on these results.
Since there is already a pre-trained Once-for-All network, fine-
tuning for different hardware is saved every time performing
a platform-aware NAS for a specific large-scale network
structure. It can save a lot of time because the user does not
need to retrain the network on the client-side. The network
scale of the Just-in-Time Performance Prediction Module is
small, so the revision will be completed in a few seconds, and
the calculation of the online model recommendation is fast and
real-time. This research organizes the entire PFP-NAS training
process and the interaction between the user and the server as
shown in Fig. 9. Therefore, the procedures of the designed
algorithm are shown as the following:

• Step 1. The user on the client-side submits the descrip-
tion file specifing the execution parameters and resouce
requirements through web-based interface or Restful API.
Kernel Service will perform data integration and create a
new Python program execution task. During the execution

101Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Fig. 5. The Interaction between the Once-for-All Pre-training Module, JIT Performance Predict Module and Client-side NAS Agent

of the Kernel Service, the related Input (Dataset, Criteria:
Accuracy, Latency, Throughput, etc.) will be stored in
MariaDB.

• Step 2. The python program and input parameters are sent
to the NAS Module for execution, and the combinations
of recommended hyperparameter of dedicated neural net-
work are dynamically generated. The hyperparamether
combinations will be stored in MariaDB performed by
Kernel Service Module and visualized with a web-based
interface which the client can browse on their device.

• Step 3. NAS Agent will gather performance metrics of
hardware and the model inference result on the user
platform, feedback to the server.

• Step 4. Kernel Service Module receives the user domain
information sent by NAS Agent. The Just-in-Time Perfor-
mance Prediction Module consists of the two three-layer
multilayer perceptron neural networks and a joint score
algorithm (shown in Alg. 1), and it will be automatically
updated according to model inference latency and accu-
racy under user platform with private dataset. A new NAS
task will be performed by Kernel Service following the
prediction.

• Step 5: Repeat steps 2 to 4.
• Step 6. Generate an optimized candidate neural network

model (NN) and send it back to the user.
• Step 7. (Optional) The client can effectively perform

a fine-tuning with a recommended model with few
epochs because the recommended model already has
high-accuracy and low-latency.

We will dedicate each module of our PFP-NAS below.

A. Just-In-Time (JIT) Performance Prediction Module

JIT Performance Prediction Module comprises two 3-layer
multilayer perceptron (MLP) prediction networks, divided into
latency and accuracy prediction networks. PFP-NAS will train

a set of specialized performances for each specific task’s Once-
for-All network and then predict the users’ hardware status.

When each online mission of PFP-NAS is performed, the
user will actually test the received recommended network
structure on the user’s hardware platform. Because there is
no backward propagation process but only inference process,
we can quickly get the actual performance results when the
user tests the network with the private data set on the hardware
platform. PFP-NAS will carry out the backward propagation
of the prediction network based on the user domain results.
Because of the networks in JIT Performance Prediction Mod-
ule is relatively small, it only takes a few seconds to update
the prediction network to obtain high accuracy during actual
operation.

To acquire the base unit for latency and accuracy magnitude,
we take both magnitudes into one base quantity - score (shown
in Alg. 1; As we want to avoid a high latency model primarily,
we will put a higher penalty coefficient to latency.

JIT Performance Predict Module will feed the score back
to Kernel Service, and tune NAS modules.

B. Once-for-All Pre-training Module

The main purpose of the Once-for-All network is to deploy
directly under different hardware restrictions without retrain-
ing and re-searching. Only the Lookup Table method is needed
to determine the network architecture. It can flexibly deal
with different depths, widths, kernel sizes, and resolutions,
as shown in the Fig. 6 below (Once-for-All). In this way,
continuous re-searching and continuous retraining can be
successfully avoided. The problem that the NAS algorithm
cannot handle the diverse hardware environment in the past
can also be solved. Furthermore, the core service will interact
with JIT Performance Prediction Module. When the Once-for-
All module generates a new subnet architecture, it will be one-
hot encoded and fed to the JIT Performance Prediction Module
to obtain the delay and accuracy. Then NAS module uses this

102Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Fig. 6. The Original Once-for-All Training Flow

Fig. 7. The Proposed Once-for-All Module Flow

set of results to perform parameter recommendation and then
hand it over to the Once-for-All module for model training
and search of the next round. The implementation of the
Once-for-All module is based on MobileNet V2, which mainly
implements 5 large blocks and 1 small block, and the depth
of each large block is 2-4 layers, as shown in the following
Fig. 7. The user-side only needs to evaluate (not fine-tuning)
the network and feedback the performance measure.

After integrating the Once-for-All Module into the system,
the process architecture provided is shown in the right top
of Fig. 5. Above all, we use many open data sets to train
the Once-for-All network for a specific model architecture in
the data center and pre-train a network of JIT Performance
Prediction Module suitable for different hardware platforms.
Considering the size of the open data set and the resources re-
quired to train a Once-for-All network, such a process requires
a lot of time and computing resources. We will distribute these
tasks to the computing center for preprocessing.

C. Neural Architecture Search (NAS) Module

This module can be easily replaced with any hardware-
measurement-based NAS, such as ProxylessNAS, ENAS, and
reinforce-learning-based NAS. The whole process of model
searching will automatically adapt the target according to
model performance (accuracy) and latency on hardware. In this
article, we use ProxylessNAS for the default network searching
algorithm, the ProxylessNAS adopts a method for making
accuracy and latency magnitude differentiable, which is the
loss function of a network model, and thereby use gradient
descent to optimize the network searching model for finding
a better network architecture.

D. Neural Architecture Search (NAS) Agent Module

NAS Agent Module is a client daemon for preliminary and
simplified detection of hardware information on the client-side.
At the same time, it collects the non-confidential performance
metrics of testing results and feeds them back to the Server
for prediction and optimization in the next cycle. The main
purpose of NAS Agent is to allow users to communicate with
the server easily. Users acquire the NAS model trained by the
Server without considering their own hardware architecture
on edge/mobile computing and without providing their own
data sets. The entire data center is transformed to allow users
to use it dynamically and easily through a portable fast NAS
device. The device (NAS Agent) of the client-side receives the
candidate models generated by the Kernel Service (Portable
Fast Platform-Aware NAS) of the server-site, and these models
can be tested on the client-side. Then, the following steps are
performed on the client-side:

• Step1. Run the candidate model generated by the kernel
service (Portable Fast Platform-Aware NAS) of the Server
Site , and process the models of AI Framework in
.prototext and .caffemodel formats;

• Step2. Execute Model Optimizer to output .xml and .bin
formats;

• Step3. Inference Engine interacts with User Application
and collects the information of hardware architecture;

• Step4. Automatically detect the hardware architecture
running the inference job and send it back to the server-
site.

E. Kernel Service Module

The Kernel Service Module provides the HTTP service with
Restful API, the web-based interface, and task scheduling. The
components of Kernel Service are introduced below.

1) Dispatcher: Dispatcher is responsible for the task
scheduling of Tuner and Assessor, which are parts of NAS
Module, and the generation of configuration files for each trial,
including hyperparameter combinations and specific neural
network architecture. During the training process, it analyzes
the intermediate result value of each trial, and evaluate whether
it should be terminated early.

2) NNI Manager: NNI Manager is responsible for each
training experiment. With interaction with NAS Module, it
can find the best hyperparameter combination and the best
neural network architecture for the training model through
experiments.

3) DBMS: The record of Once-for-All Pre-training Module
and user domain information of each feedback with trail ID
will be stored in MariaDB.

4) Training Service: The Training Service will gather and
synchronize parameters along with related programs with the
dispatcher, and perform the training task. The NAS Module
mentioned above will automatically incorporate the Training
Service as the computing resource for training.

Users can use built-in training services provided by Mi-
crosoft NNI to run trial jobs on the local machine, remote

103Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Algorithm 1 The designed joint latency and accuracy score

Input: latency and accuracy
Output: score

1: if latency > LATENCY THRES then
2: score ← accuracy - (latency / LATENCY THRES) ∗

PENALTY COEFF
3: else
4: score ← accuracy
5: end if

Fig. 8. The designed joint latency and accuracy score

machines, and on clusters like PAI, Kubeflow, AdaptDL,
FrameworkController, DLTS, and AML.

IV. EXPERIMENTS

Our experiments mainly focus on the effectiveness of AI
training with PFP-NAS on multiple hardware requirements.
In this section, we test the effectiveness of PFP-NAS on var-
ious hardware requirements with parallel multiple computing
nodes. Our experiments apply PFP-NAS with Imagenet [14]
as public dataset on five workstations with Intel(R) Xeon(R)
Gold 5118 CPU @ 2.30GHz and test 6, 12, 24 NVidia GeForce
GTX 1080 GPUs. The client task is Cifar-10 [15], and the pre-
trained once-for-all network is based on mobilenet V2.

To prove the effectiveness of designed architecture, we test
the PFP-NAS on the local workstation (the NAS agent and
kernel service modules are hosted on the single workstation)
and remote execution. We fix the hyperparameter search algo-
rithm on annealing and set the same hardware requirements
in this experiment. The results (Table I) show the top-1 and
top-5 accuracy do not have much difference.

To verify the effectiveness of PFP-NAS under different
hardware requirements, we set different latency, trial times,
number of dispatched process in treatment of our experiments.
We can see that the model performance will be better under
the some treatment settings in Table II, and the same results
(Table III) can be seen in treatment of hyperparameter search
method.

We compared different hyperparameter tuning methodolo-
gies in PFP-NAS, such as Anneal, TPE, and Random search,
and found that the result does not significantly differ; possible
reasons might be the experiment network size are too small
to have a large search space. Although the effectiveness of
PFP-NAS is proven, the combination relationship with tuning
methodologies still remains unclear, and the experiments of
larger-scale neural network are needed.

V. CONCLUSIONS

In the era of artificial intelligence, while gaining conve-
nience from advanced machine learning, deep learning, and

Fig. 9. The Model Recommendation Procedures

neural network search technology, it also faces data privacy is-
sues and the risk of data leakage. When the user wants to keep
its own private data set and does not provide it to the server,
how the server can automatically determine the hardware
architecture of the client-side and successfully recommend the
NAS model becomes a tall order. The mechanism designed
in this research solves this pain point. When the client-side
data set and hardware architecture are confidential information
and cannot be leaked, the kernel service of the server-side
recommends a corresponding neural network model based on
the preliminary information provided by the client-side. Then,
the user actually runs the neural network model on its own
hardware and feeds back the performance measurements to
the server to update information and generate a new model.

The experiments around the different hardware settings
show the effectiveness of our proposed PFP-NAS in the
lightweight network, and further investigation about other
network types and scales is ongoing. Also, through the de-
signed PFP-NAS, the time-consuming training workout that
originally required a lot of time is reduced to a few seconds for
recommended models. For privacy, the PFP-NAS leverages the
computing capability from the data center to help users create
their own model but deals with the dataset privacy issue: users
without powerful computing resources can utilize the cloud-
based computing service and have no worries about the data
leaking.

Next stage, we will leverage our proposed method into di-
versity experiments mainly to extend the Once-for-All module
with other popular networks (not only the MobileNet V2), and
apply the PFP-NAS to other application scenarios.

104Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

TABLE I
PFP-NAS PERFORMANCE IN SINGLE MACHINE AND MULTIPLE MACHINES

machine platform dispatched process tuner algorithm psuedo trial latency mape avg corr max latency top-1 (%) top-5(%)
local 2

anneal 0 0 1 85
94.22 94.16

local 4 94.39 94.18
controller 12 94.49 94.41

TABLE II
PFP-NAS PERFORMANCE IN DIFFERENT TUNER TRIAL REQUIREMENTS

dispatched process tuner algorithm psuedo trial latency MAPE avg corr max latency top-1(%) top-5 (%)

12

anneal

0 0 1

85

94.49 94.41
10

0.05 0.92

94.24 94.154
150 94.47 94.418
300 94.44 94.24
1000 94.11 94.088

24

300

94.49 94.358

6

125 94.01 93.822
165 93.96 93.886
205 94.18 93.89
245 94.08 94.036
285 94.14 93.918

TABLE III
PFP-NAS PERFORMANCE IN DIFFERENCT HYPERPARAMETER SEARCHING METHODS.

dispatched process tuner algorithm psuedo trial latency MAPE avg corr max latency top-1 (%) top-5 (%)

6
tpe

300 0.05 0.92 85
94.08 94.026

random search 93.99 93.762
anneal 94.24 94.16

REFERENCES

[1] H. Cai, C. Gan, and S. Han, “Once for all: Train one network and
specialize it for efficient deployment,” CoRR, vol. abs/1908.09791,
2019. [Online]. Available: http://arxiv.org/abs/1908.09791

[2] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,”
in Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28.
Curran Associates, Inc., 2015.

[3] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. Hong, A. Konwinski,
S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, F. Xie, and C. Zumar,
“Accelerating the machine learning lifecycle with mlflow,” IEEE Data
Eng. Bull., vol. 41, pp. 39–45, 2018.

[4] Microsoft Corporation, “Neural network intelligence,”
https://github.com/microsoft/nni , accessed: 2021-07-19.

[5] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“NAS-bench-101: Towards reproducible neural architecture search,” in
Proceedings of the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019, pp. 7105–
7114. [Online]. Available: http://proceedings.mlr.press/v97/ying19a.html

[6] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Automated selection and hyper-parameter optimization of classification
algorithms,” CoRR, vol. abs/1208.3719, 2012. [Online]. Available:
http://arxiv.org/abs/1208.3719

[7] W. Burgard, O. Brock, and C. Stachniss, Active Policy Learning for
Robot Planning and Exploration under Uncertainty, 2008, pp. 321–328.

[8] E. Brochu, T. Brochu, and N. de Freitas, “A bayesian interactive
optimization approach to procedural animation design,” in Proceedings
of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’10. Goslar, DEU: Eurographics Association,
2010, p. 103–112.

[9] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer
networks in unsupervised feature learning,” in Proceedings of the
Fourteenth International Conference on Artificial Intelligence and
Statistics, ser. Proceedings of Machine Learning Research, G. Gordon,
D. Dunson, and M. Dudı́k, Eds., vol. 15. Fort Lauderdale, FL,
USA: PMLR, 11–13 Apr 2011, pp. 215–223. [Online]. Available:
http://proceedings.mlr.press/v15/coates11a.html

[10] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in Neural Information
Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

[11] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in Learning
and Intelligent Optimization, C. A. C. Coello, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 507–523.

[12] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision
architectures,” in Proceedings of the 30th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
S. Dasgupta and D. McAllester, Eds., vol. 28, no. 1. Atlanta, Georgia,
USA: PMLR, 17–19 Jun 2013, pp. 115–123. [Online]. Available:
http://proceedings.mlr.press/v28/bergstra13.html

[13] M. Claesen, J. Simm, D. Popovic, Y. Moreau, and B. D. Moor, “Easy
hyperparameter search using optunity,” 2014.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[15] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

105Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

