
A Developer Portal for DevOps Environment

Niklas Sänger, Stefan Throner,
Simon Hanselmann, Michael Schneider, Sebastian Abeck

Research Group Cooperation & Management
Karlsruhe Institute of Technology (KIT)

Zirkel 2, 76131 Karlsruhe, Germany
email: (niklas.saenger | stefan.throner | michael.schneider | sebastian.abeck)@kit.edu

Abstract—A good microservice architecture divides a complex
system into separate microservices, which can then be reused in
several applications. To achieve efficient reuse of components,
it is necessary to provide the developers with the required
information on how they can use the running microservices
and their application programming interfaces (APIs). A tool
for this kind of information is the developer portal, which
enables the administration of the interfaces and documentation
of individual microservices and makes them available to all
developers on a central platform. The diversity that arises from
multiple teams and different environments makes it difficult to
manage the information in the developer portal manually and in
a central location. In this paper, we describe the development of a
developer portal and focus on the following aspects: (i) designing
a domain that represents a service environment, (ii) requirements
for the developer portal to support the developer workflow, (iii)
environment-agnostic approach for automated data gathering
for the developer portal, (iv) microservice monitoring during
runtime.

Keywords—DevOps; microservices; api; development; developer
portal.

I. INTRODUCTION

Agile methods and microservices are the main concepts
to deal with today’s complexity of modern software systems
[1]. This is achieved by splitting a monolithic system into
microservices [2], allowing to reduce the overall complexity
of single components. Additionally, a good microservice archi-
tecture, designed according to the principles of Domain-Driven
Design (DDD), results in reusable microservices which can be
consumed by other microservices and applications [3]. Due to
the use of APIs and the separation of functionality, microser-
vices can be developed and maintained by small individual
development teams as it is common in agile development.
To enable efficient reuse of microservices and their APIs,
the microservice information and API specifications have to
be accessible to all developers. One solution for APIs is a
developer portal [4].

A developer portal allows the provisioning of API specifi-
cations and documentation of the corresponding services and
provides access to the data in a central spot. However, this
requires that developers provide the data and publish them to
the developer portal manually. While this approach is suitable
for the classical use of the developer portal, the offering and
marketing of APIs, it can lead to problems when the data
(e.g., API specification) should be provided continuously in
larger projects, with multiple distributed teams during the
development process. Since agile methods aim to deliver new

features and bug fixes on a daily basis, manually updating data
can lead to an overhead for the developer, potential data incon-
sistencies (e.g., different API specifications), and distributed
knowledge (i.e., teams have a different understanding of an
API specification).

To overcome these problems, we propose an automated
solution for a developer portal, which uses a development
and operations (DevOps) approach to automate the process
of service registration and lifecycle management of API
specifications and service documentation, thus providing a
continuous source of truth. The automated provision of data
is supported by a template-based pipeline approach [5], which
allows central adaptation and extension of the Continuous
Integration / Continuous Deployment (CI/CD) pipelines.

The requirements on the developer portal are formally
specified and implemented by applying a microservice en-
gineering process. This results in a microservice-based ap-
plication, called MicroserviceDeveloperPortal (MDP) and a
business domain called ServiceEnvironment. In the context
of this application, microservices play two different roles,
which must be distinguished: on the one hand, the MDP
application provides support to develop microservices, and on
the other hand, the MDP itself is built as a microservice-based
application.

This present article is structured as follows: Section II
presents the state-of-the-art in microservices and DevOps. Sec-
tion III provides our approach to the domain and application
engineering. Section IV describes the microservice registration
process. Section V introduces our health monitoring approach
for microservices. Section VI describes the use of the MDP
in our environment. Lastly, Section VII summarizes the main
results of our approach and future work.

II. RELATED WORK

The term microservice goes back to the year 2011. A group
of software architects chose it as an appropriate name in 2012.
Among them, Lewis was the first researcher using the term in a
presentation [6]. Three years later, Lewis and Fowler published
the first description of microservices and the microservice
architecture style [1]. Based on this work, Newman published
a well accepted and often cited book on microservices [7].

A strong motivation for the microservice architecture style is
provided by the disadvantages of a monolithic software archi-
tecture in regard of change cycles and complex deployments
[2]. This is because even small changes require a complete

121Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

rebuild and redeploy of the monolith. This aspect is especially
important for companies wanting to reduce the time-to-market
or improve robustness of the provided services [2].

A microservice architecture reduces the complexity for each
service but increases the overall amount of microservices [8].
When compared to a monolithic application, the urgent need
for a service orchestration arises. A common solution for
this problem is to use Kubernetes which is a widely used
container orchestration system developed by Google [9] [10].
While Kubernetes can solve the orchestration of microservices,
Kubernetes is inherently complex and introduces its own tools
and paradigms [11].

The complexity of microservice architectures requires ad-
ditional communication and contracts among development
and operations teams. To overcome these obstacles, DevOps
principles can be used. While there is no general definition of
DevOps, various authors tried to define the term. Lwakatare et
al. [12] perform a study to define the term DevOps and come
up with five dimensions: collaboration, automation, culture,
monitoring, and measurement. Erich et al. [13] find that
companies have different definitions on DevOps but share a
common understanding that team, culture, and automation are
key aspects.

Moreover, Wilsenach [14] stated that the DevOps culture
should have no silos between Dev and Ops. This is where
agile methods, such as a CI/CD pipeline can be efficiently
used [8]. It allows for cross-functional teams which are re-
sponsible for the development, deployment, and operation of
their microservice. One aspect of this work is to use DevOps
for the automation of data provisioning which in turn ensures
up to date data for a developer.

In general, a developer portal must provide the developer
with all necessary information required for the development
of an application. De [4] refers to a developer portal in the
context of API management which is a common use-case
for a developer portal. It supports a developer by providing
API documentation, API access, or API analytics information.
The counterpart of a developer portal is the provider portal
in which a service developer provides information (e.g., API
specifications, API version) of a service. Generally, the API
specifications Examples can be found in the developer portals
by Amazon Web Services (AWS) [15] or Mercedes-Benz [16].
Existing solutions, such as the developer portal offered by
AWS, work best with products of the same vendor, creating
a vendor lock-in effect. They also neglect information about
the backing services (i.e., microservices) and require manual
data upload. We propose a microservice-based solution, which
can be deployed in an arbitrary Kubernetes environment able
of running Docker containers. Moreover, a CI/CD pipeline is
used to automate the provisioning of data including the state
of microservices running in a cluster.

The microservice engineering process we have applied to
systematically implement the requirements on a developer
portal into a microservice-based application is based on the
Domain-Driven Design (DDD) from Eric Evans [3] and has
been described by us in several publications. In [17], the

process is introduced and applied to the domain of connected
cars to provide a solution for the charging of electric cars
(i); [18] describes the microservice architecture based on the
domain-driven design concept of a context map in detail
(ii); and [19] shows how we use the profiles of the Unified
Modeling Language (UML) to formally specify the domain
model by different types of UML diagrams (iii).

III. DOMAIN AND APPLICATION ENGINEERING

The development of the MDP follows a previously men-
tioned microservice engineering process. Therefore, the first
step is to develop a suitable domain in which the application
is located. The difficulty lies in placing the components needed
for a microservice environment in the domain.

A. ServiceEnvironment Domain

Since the MDP touches a variety of aspects related to mi-
croservices, DevOps, and container orchestration, we decided
to name the domain ServiceEnvironment. The ServiceEnvi-
ronment domain should further include everything that is
required for the deployment and operation (e.g., orchestration
and monitoring) of microservices.

After setting the scope of the domain ServiceEnvironment,
the engineering process requires a definition of a ubiquitous
language and a context map. The ubiquitous language defines
terms that are relevant (i.e., because they are frequently used)
for the domain and its applications. This ensures that devel-
opers have a common understanding of the terms throughout
the engineering process. Hence, the ubiquitous language must
follow a previously fixed set of guidelines in order to be
consistent. In case of the ServiceEnvironment domain, an
extract of the ubiquitous languages defining terms such as
Service, HealthState or Observation can be found in Table
I.

TABLE I
EXCERPT OF THE UBIQUITOUS LANGUAGE OF THE DOMAIN

SERVICEENVIRONMENT.

Term Definition
HealthState Data which describes the availability state

of a service (e.g., latency, liveness).
Observation Part of the domain that observes services

after the deployment
Service Part of the domain that represents a de-

ployed application that can be accessed by
the user

The next artifact for the ServiceEnvironment domain is a
context map that defines the domain, its subdomains, and
bounded contexts. The development of the artifact is motivated
by DDD. Figure 1 illustrates the context map of the ServiceEn-
vironment domain, which includes the subdomains Observa-
tion, MicroserviceManagement, and Deployment. Each sub-
domain provides a bounded context that the MDP can interact
with. To reduce the overall complexity of the ServiceEnvi-
ronment, the domain currently only includes subdomains that
the MDP requires. If the functionalities of the MDP would be

122Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

extended or another application would require additional data
from the domain, the ServiceEnviornment should be extended
accordingly.

Typically, bounded contexts are implemented as domain mi-
croservices. This means that they must have no dependencies
on other services. We decided that a domain microservice
should only provide Create, Read, Update, and Delete (CRUD)
operations to handle data requests (e.g., monitoring data) and
not contain any application logic. This makes the microser-
vices, and thus the data, reusable for multiple applications.
Moreover, it allows the application microservices to be state-
less since the data is stored within the domain microservices
following the 12 Factors App paradigm [20].

«domain»
ServiceEnvironment

«subdomain»
 Observation

«subdomain»
 MicroserviceManagement

«subdomain»
Deployment

«bounded context»
Logging

«bounded context»
Pipeline

«bounded context»
Repository

«bounded context»
Monitoring

«bounded context»
Service

Figure 1. ServiceEnvironment Context Map.

The subdomain Observation includes everything regard-
ing the observation of a microservice. The bounded context
Monitoring is implemented as a domain microservice that
stores monitoring events (e.g., if a container has been cre-
ated). Logging data can be stored within the bounded context
Logging. If tools such as Prometheus were to be used, they
would be located in the subdomain Observation and replace
or complement the domain microservice Monitoring.

The subdomain Deployment includes a bounded context
Pipeline, which represents a CI/CD pipeline including its
steps that are used across the ServiceEnvironment domain
(e.g., build or test). Furthermore, the bounded context Reposi-
tory stores the microservice source code, documentation, API
specification dependencies, or design artifacts. Such bounded
contexts are later not implemented as domain microservices.
Instead, the functionalities are provided by GitLab.

Finally, the subdomain MicroserviceManagement includes
a bounded context called Service which should store infor-

mation about a deployed microservice (e.g., API, deployment
name, version, or dependencies). This bounded context is also
implemented as a domain microservice.

The context map and the ubiquitous language are not
final. Another application, requiring additional subdomains,
bounded contexts or terms can add them to the domain and
reuse existing subdomains.

B. MicroserviceDeveloperPortal

The MDP is the first application in the ServiceEnvironment
domain. The basic idea of the MDP is to have a single source
of truth for developers and operators alike. For example,
whenever a developer wants to find out which microservices
are currently running in a Kubernetes cluster or find the API
specification of a specific microservice, the portal should be
the first place to look for this information. Figure 2 presents
the application sketch, which defines how a developer interacts
with the ServiceEnvironment to get the information they are
looking for. These interactions lead to two distinct capabilities
which must be provided by the MDP.

(running)
Microservices

requests

requests

(re)uses

Monitoring
provides

GitLab

Provision of CompileTimeData

Documentation

API
Specification Dependencies

Repository

organized in

Health

Provision of RuntimeData

interacts with

built and
deployed toMeta

Data
monitors

Developer

Figure 2. Application Sketch of the MDP.

1) Provision of CompileTimeData: Data already present
during the compilation of a microservice should be
collected and provided to the user. This data includes
information of the repository provided by Git (e.g.,
commit reference or name of the branch), API data
in form of OpenAPI specifications or dependencies on
other microservices (e.g., databases). This information is
of particular interest to developers who plan on reusing
existing microservices and therefore are looking for their
documentation.

2) Provision of RuntimeData: This data can only be
collected while the microservice is running. For now,
the MDP is only capable of monitoring a simple health
state of microservices. This information of the health
state is interesting to developers who are troubleshooting
problems that occur during runtime.

While the introduced application sketch captures interac-
tions between various actors and objects, a relation view
captures the data entities, called shared entities, that are used

123Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

for these interactions. Figure 3 shows the entity relation
view of the MDP, which contains the entities shared by the
bounded contexts of the domain ServiceEnvironment (i.e.,
shared entities) relevant for the MDP. Furthermore, the shared
entities are set into a relationship with one another.

0..1

1
<<shared entity>>

Health

<<shared entity>>

Microservice

1

<<shared entity>>

CompileTimeData

<<shared entity>>

Repository

<<enum>>

HealthState

1

0..1

+ healthState: HealthState

+ logs: String

+ hostname: String

+ version: String

+ address: String

+ codeOwner: String

+ apiSpec: String

+ dependencies: String[]

+ links: String[]

+ gitStatus: String

+ pipelineInformtaion: String

+ repositoryToken: String

+ repositoryUrl: String

+ metaData: String

+ sourceCode: String

+ confgiuration: String

+ documentation: String

UP

DOWN

Figure 3. The Entity Relation View of the MDP.

The shared entity Repository represents a Git repository pro-
vided by GitLab. Thus, it contains source code, configuration
artifacts, and documentation. The CompileTimeData entity
represents all data that is available during the compilation
of the microservice source code. Furthermore, the Compile-
TimeData contains a reference to a Repository and data about
the event (e.g., Git commit) that triggered the pipeline that
executed the compilation. This data is then combined into the
shared entity Microservice. Each shared entity Microservice
has an associated shared entity Health. This entity contains
the most recent HealthState of a microservice, which can be
UP or DOWN, together with logs that were written when the
health state was observed.

Different services are responsible for creating and storing
these data entities. The application sharing view in Figure
4 visualizes relations between shared entities and bounded
or application contexts. Bounded contexts represent reusable
services that are part of the ServiceEnvironment domain.
Applications contexts provide the application specific logic
for the MDP and are not reusable by other applications in
the ServiceEnvironment.

MicroserviceDeveloperPortal SharingView

<<application context»
RegisterStep

«shared entity»
CompileTimeData

«application context»
ServiceRegistry

«application context»
HealthMonitor

«shared entity»
Health

«shared entity»
Repository

«shared entity»
Microservice

«bounded context»
Service

<<shares>>

<<uses>>
<<uses>>

<<shares>>

<<uses>>

<<bounded context»
Pipeline

<<shares>>

<<shares>>
<<uses>>

<<uses>>

«bounded context»
Monitoring

<<bounded context»
Repository

<<uses>>

<<uses>>

Figure 4. The Application Sharing View of the MDP.

While the bounded contexts Pipeline and Repository are
already present in the system, the bounded contexts Service
and Monitoring are implemented as domain microservices.
The domain microservice Service stores the currently reg-
istered microservices and provides the data through CRUD
operations. The domain microservice Monitoring stores the
monitoring events for the currently registered microservice and
provides the data through CRUD operations. The application
contexts HealthMonitor, ServiceRegistry and RegisterStep per-
form specific tasks for the MDP. Hence, they are placed in the
application layer instead of the domain layer.

The general flow of data starts with the bounded context
Repository, which triggers the Pipeline. The bounded context
Repository shares the shared entity Repository, which is used
by the bounded context Pipeline and each of its steps (e.g.,
build, test, deploy). An application context RegisterStep is
added to the CI/CD pipeline, which creates and shares the
shared entity CompileTimeData with the application context
ServiceRegistry. The application context ServiceRegistry uses
the shared entity CompileTimeData and the shared entity
Repository to create a shared entity Microservice which is
persisted by the bounded context Service. The application
context HealthMonitor uses the shared entity Microservice
to determine which microservices in the cluster have to be
monitored. The shared entity Health is created from the results
of the application context HealthMonitor and persisted and
shared in the domain by the bounded context Monitoring.

The application contexts Pipeline, RegisterStep, Ser-
viceRegistry and bounded context Service fulfill the capability
to provision CompileTimeData, while the remaining two con-
texts HealthMonitor and Monitoring are needed to fulfill the
capability provision of RuntimeData.

IV. MICROSERVICE REGISTRATION

Each deployed microservice in a Kubernetes cluster should
be represented by a shared entity Microservice. To create these
entities, either the current state of the ServiceEnvironment
has to be observed at all time or the deployments and un-
deployments have to be monitored. Because the pipeline can
be used to perform a job after each successful deployment, the
latter approach was chosen. Thus, an extension for the pipeline
was developed with the goal of automatically registering
a microservice after a successful deployment. The pipeline
extension represents the application context RegisterStep.

To use the RegisterStep, the pipeline receives two new
stages. First, the register stage is triggered after a successful
deployment of a microservice. Second, the unregister stage
is executed parallel to the undeployment of a microservice.
The RegisterStep is a Docker image that contains Python
scripts for each stage. Depending on the stage, either the
register or the unregister script is executed. The scripts send
a HTTP request to the representational state transfer (REST)
endpoint of the ServiceRegistry to either register or unregister
the microservice.

Figure 5 shows the process for registering a new microser-
vice. The Repository triggers the execution of the Pipeline (1)

124Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Register
Step

manual
trigger

notify

store

notify

Service
Registry

Repository

1

2

4

5 Health
Monitor

Service

request
data

6

Application Context
Bounded Context

Figure 5. The Service Registration Process.

which notifies the ServiceRegistry that a new microservice has
been successfully deployed (2). This notification includes data
about the name of the deployment and the URL to the Git
repository. The ServiceRegistry then requests relevant infor-
mation from the repository such as the API specification and
the dependencies to other microservices (3). After gathering
all relevant information, the data is passed to the domain
microservice Service which persists it in a database (4). In
the last step, the HealthMonitor is notified about the new
deployment (5). This will cause the HealhMonitor to request
an updated list of the currently running microservices from
the domain microservice Service (6).

The process to unregister a microservice is similar to the
registration process with three essential differences. First, the
pipeline is not necessarily triggered by the repository but
can also be triggered manually by a developer. Second, after
the ServiceRegistry is notified, it will not request data from
the repository. Finally, the ServiceRegistry will delete the
microservice entity from the domain microservice Service
instead of saving it.

Figure 6 presents an excerpt of the GitLab pipeline. The
columns specify the different stages of the pipeline and the
boxes specify the tasks which should be executed in each
stage. The lines between the boxes visualize a dependency
relationship between the tasks. A microservice is only regis-
tered after a successful deployment. A microservice is unreg-
istered when the undeploy stage is executed. In this step, the
connected entry will be deleted from the domain microservice
Service and the HealthMonitor is notified about the update.
The undeploy stage should be executed whenever the base
branch for the deployment is deleted or the microservice is
not needed anymore.

Figure 6. Extract of the GitLab Pipeline.

This workflow ensures that the domain microservice Service
always holds an up-to-date list of the shared entities Microser-
vice which represent the microservices that are running in the

cluster. The name of the deployment in the Kubernetes cluster
is used as a unique identifier for the running instances of the
microservice and its dependencies (e.g., database container).
Other services can now request a list of deployments and
collect further information with a reference to the deploy-
ment. The dashboard can request the list of all registered
deployments and get more detailed information by querying
data from other data sources using a specific deployment
name. This process is described in the following section with
the example of a service that monitors the health states of
deployed and registered microservices.

V. HEALTH MONITORING

One of the MDP’s capabilities is the provisioning of runtime
data. In the initial version of the MPD, the focus is set on
the health data of running microservices that are registered
with the MDP. In the ServiceEnvironment, microservices are
running in a Kubernetes cluster which offers a pod lifecycle
that is used to determine the health state of containers running
inside a pod. The health state is stored in a health data entity,
which includes the current state of the pod (e.g., running or
terminated) and a log message.

Two microservices are responsible to track the current
state of a deployed microservice and storing the health data.
Those are the application microservice HealthMonitor and the
domain microservice Monitoring, which can also be found in
Figure 4. Since the microservice Monitoring is part of the
ServiceEnvironment domain, it offers CRUD functionalities
and is responsible for storing health data. The stored health
data can later be displayed in a dashboard. HealthMonitor is
responsible for extracting the health data from the microser-
vices and is implemented as a Kubernetes operator in Go. An
operator is a software extension for Kubernetes and has access
to Kubernetes cluster resources such as pods and events. If the
status of a pod changes (e.g., container running or container
stopped), an event is created. The operator works in a control
loop and will receive the new event. Afterward, the operator
can process the event accordingly.

An overview of the operator process can be found in Figure
7. HealthMonitor fetches a list of registered services from
the domain microservice Service. This list determines which
deployed microservices must be monitored. The list is fetched
whenever the ServiceRegistry registers a new microservice and
notifies HealthMonitor through an API endpoint (see Figure
5). If the state of a microservice in the cluster changes,
HealthMonitor is notified and will check if the microservice
is registered with ServiceRegistry (i.e., the microservice is in
the fetched list of registered microservices). If this is the case,
HealthMonitor will process the event and store the data in
the domain microservice Monitoring. The dashboard can then
access the health state for a microservice through REST calls
to the domain microservice Monitoring.

125Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

HealthMonitorMicroservices

monitors

Monitoring

stores data

Service

fetches list of registered
microservices

Domain Microservices

- Microservice A
- State: UP
- Log: Test1

- Microservice B
- State: DOWN
- Log: Test2

Figure 7. Overview of HealthMonitor.

VI. USE OF THE MDP APPLICATION IN A REAL SERVICE
ENVIRONMENT

Currently, the MDP is deployed in a Kubernetes cluster and
is used by up to 20 users including academic staff and students.
The cluster runs five containers for the MDP including the
domain microservices Service and Monitoring, as well as the
application microservices ServiceRegistry, HealthMonitor, and
a container for the front-end. The Git repositories as well as the
pipeline and the pipeline runner are provided by GitLab. Each
academic semester, students develop microservice-based appli-
cations using DevOps templates which configure and set up
the CI/CD pipeline [5]. The DevOps templates automatically
include the additional register and unregister step. Hence, the
microservices are all automatically deployed to the Kubernetes
cluster and registered to the MDP.

Figure 8. Excerpt of the MDP Dashboard.

In the context of a practical lecture, students (i.e., develop-
ers) fluctuate throughout the semesters. This makes the contin-
uous development of microservice-based applications difficult.
The MDP provides an entry-point for new students to see
which microservices are currently running in the cluster, who
developed them, how they can be accessed (i.e., API specifica-
tion), and other microservices they depend on. Therefore, they

can get into the actual microservice development work faster.
In Figure 8, an extract of the dashboard of the MDP shows
a selected registered microservice (i.e., cm-api-management).
The user can see which version of the microservice is deployed
and can automatically open it if a Kubernetes Ingress resource
is created (i.e., HTTP traffic from outside the cluster is
allowed). Moreover, the user is presented with information
about the code owner, dependencies (e.g., Helm dependencies)
and links to the repository, the executed pipeline, the API
specification, and a Swagger UI (if available). Finally, the
user can see the health status of the deployed instances of
the microservices.

While the MDP currently works in a real microservice en-
vironment, further validation of the results has to be done. Es-
pecially regarding the correctness of the stored data including
the API specifications and information of a deployed microser-
vices (i.e., CompileTimeData and RuntimeData). Moreover,
analyzing if the MDP does support developers and improve
their workflow should be performed through a questionnaire
or case study.

VII. CONCLUSION AND FUTURE WORK

Reusing existing software components should be a high
priority in a sustainable software development environment.
Microservice-architectures offer a good opportunity to reuse or
exchange individual components in the form of microservices.

Before an existing microservice can be reused, a developer
has to know where a microservice is located and how it
can be accessed. Keeping track of the currently deployed
microservices in a cluster can be difficult once the amount
of microservices increases. Therefore, we developed an appli-
cation called MicroserviceDeveloperPortal (MDP) to provide
users with all necessary information.

A key contribution of our approach is a first solution for the
architecture of an environment which contains everything that
is necessary to build, deploy, run, and operate microservices
and its dependencies. We call this environment ServiceEnvi-
ronment. The ServiceEnvironment provides domain microser-
vices which offer operations to store and retrieve relevant data.
The domain microservices are used by the MDP but can also
be reused by other applications.

The data is differentiated in CompileTimeData and Run-
timeData. CompileTimeData contains data generated during
the build process and is sent by the pipeline step to the MDP.
The RuntimeData contains health information and is collected
by the MDP through a Kubernetes operator. Finally, the user
can retrieve the data through a front-end. Since the MDP is a
microservice-based application running in Docker containers,
it can be deployed in any Kubernetes environment. Although
the paper used GitLab as a solution for a Git repository and
CI/CD solution, exchanging GitLab for another solution such
as AzureDevops or Jenkins should be easily possible.

The future development of the MDP includes an improve-
ment of the architecture and the additions of new capabili-
ties. Currently, the RegisterStep is modeled as an application
context. Logically, the RegisterStep is closer to the bounded

126Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

context Pipeline and thus should be part of the ServiceEn-
vironment domain. Moreover, the monitoring aspects of the
MDP uses a custom solution to monitor the Pods running in
the cluster. The monitoring aspects of the MDP should rather
be replaceable by an arbitrary existing monitoring solution
(e.g., Prometheus) which has to be modeled accordingly. Then,
the application microservice HealthMonitor has to perform
a mapping to the existing monitoring solution rather than
performing the monitoring itself.

Future research will focus on the management of APIs,
which includes researching what is required for the manage-
ment of APIs and how it can be done by creating a reusable
microservice architecture. The management of APIs is mostly
neglected in the current version of the MDP and should
be added in a future version. Since APIs and microservices
depend on each other, the information about APIs could also
be stored within the ServiceEnvironment domain. Ideally, the
RegisterStep is extended to store the API specification of a
registered microservice. This would also allow further API
management capabilities such as the versioning of APIs as
well as the configuration of API gateways to directly allow
developers to access a microservice.

REFERENCES

[1] M. Fowler and J. Lewis, “Microservices,” Thouhtworks,
Tech. Rep., 2014, [retrieved 21/08/2021]. [Online]. Available:
http://martinfowler.com/articles/microservices.html

[2] S. Newman, Monolith to Microservices: Evolutionary Patterns
to Transform Your Monolith. O’Reilly Media, Inc., 2019.

[3] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, 2004.

[4] B. De, API Management: An Architect’s Guide to Developing
and Managing APIs for Your Organization. Apress,
2017. [Online]. Available: http://link.springer.com/10.1007/
978-1-4842-1305-6

[5] S. Throner et al., “An advanced devops environment for
microservice-based applications,” in 2021 IEEE 16th Interna-
tional Conference of System of Systems Engineering (SoSE),
2021, in press.

[6] J. Lewis, “Micro services - the java way,” Thouhtworks,
Tech. Rep., 2012, [retrieved 21/08/2021]. [Online]. Available:
http://2012.33degree.org/talk/show/67

[7] S. Newman, Building Microservices: Designing Fine-grained
Systems. O’Reilly Media, Inc., 2015.

[8] L. Chen, “Microservices: Architecting for continuous delivery
and devops,” in Proceedings - 2018 IEEE 15th International
Conference on Software Architecture, ICSA 2018, 2018, pp. 39–
46.

[9] Sysdig, “2019 container usage report,” Sysdig, Tech. Rep.,
2019, [retrieved 21/08/2021]. [Online]. Available: https:
//dig.sysdig.com/c/pf-2019-container-usage-report

[10] Portworx and Aqua Security, “2019 container
adoption survey,” Porworx and Aqua Security,
Tech. Rep., 2019, [retrieved 21/08/2021]. [Online].
Available: https://portworx.com/wp-content/uploads/2019/05/
2019-container-adoption-survey.pdf

[11] Cloud Native Foundation, “CNCF survey
2020,” Cloud Native Foundation, Tech. Rep.,
2020, [retrieved 21/08/2021]. [Online]. Available:
https://www.cncf.io/wp-content/uploads/2020/11/CNCF
Survey Report 2020.pdf?utm source=thenewstack&utm
medium=website&utm campaign=KCCNC-NA-2020-Referral

[12] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “An exploratory study
of devops extending the dimensions of devops with practices,”
ICSEA 2016, vol. 104, pp. 91–99, 2016.

[13] F. Erich, C. Amrit, and M. Daneva, “A qualitative study of
devops usage in practice,” Journal of Software: Evolution and
Process, vol. 29, no. 6, p. e1885, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1885

[14] R. Wilsenach, “Devops culture,” Tech. Rep., 2015, [retrieved
21/08/2021]. [Online]. Available: https://martinfowler.com/
bliki/DevOpsCulture.html

[15] Amazon Web Services, “Aws for developers — programming
languages, tools, community — aws developer center,” AWSb,
Tech. Rep., 2021, [retrieved 21/08/2021]. [Online]. Available:
https://aws.amazon.com/de/developer/

[16] Mercedes-Benz, “Mercedes–benz /developers – the api
platform by daimler,” Mercedes-Benz, Tech. Rep.,
2021, [retrieved 21/08/2021]. [Online]. Available: https:
//developer.mercedes-benz.com

[17] S. Abeck et al., “A context map as the basis for a microservice
architecture for the connected car domain,” in INFORMATIK
2019, 2019, pp. 125–138.

[18] B. Hippchen, M. Schneider, I. Landerer, P. Giessler, and
S. Abeck, “Methodology for splitting business capabilities into
a microservice architecture: Design and maintenance using
a domain-driven approach,” in Conference on Advances and
Trends in Software Engineering (SOFTENG), 2019, pp. 51–61.

[19] M. Schneider, B. Hippchen, P. Giessler, C. Irrgang, and
S. Abeck, “Microservice development based on tool-supported
domain modeling,” in Conference on Advances and Trends in
Software Engineering (SOFTENG), 2019, pp. 11–16.

[20] A. Wiggins, “The twelve-factor app,” 12factor, Tech. Rep.,
2012, [retrieved 21/08/2021]. [Online]. Available: https:
//12factor.net/

127Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

