
Towards a Smart

Feature Model Evolution

Abstract— With the proliferation of new technology

platforms, new operational requirements, different contexts

and so on, agility remains more and more solicitated for

software evolution. For software evolution of Software

Product Line Engineering (SPLE), the Feature Model (FM)

is the basic instrument that supports the evolution of SPL at

the variability level. We would like to improve FM diagrams

to make them understandable during the evolution of the

corresponding product lines. More precisely, FM evolution

can become more systematic and more intelligent. In our

work, we aim to evolve FMs by means of smart techniques.

Hence, we represent feature models by an ontology. This

latter will permit, among others, the inference of knowledge

about the evolution of the FMs. By obtaining different

versions of the FMs, these can be used as a learning base of

a learning algorithm. So, for a given FM, a new version can

be predicted as being an evolution version of the FM. In this

paper, we present the FM metamodel extension necessary

to represent the semantics of the evolution rules. Thus, with

a model driven approach, FMs are transformed into FM

ontologies. A running example about an Electric Brake

Parking System extracted from the SPLOT repository is

presented.

Keywords- Software Product Line Engineering; Variability

Modeling; Feature Models (FM); Feature Oriented

Domain Analysis (FODA); non-functional features.

I. INTRODUCTION

 “A software product line is a set of software-intensive
systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or

mission and that are developed from a common set of core
assets in a prescribed way” [19]. In the SPLE approach,
variability is seen as a key concept in its processes and
artifacts, and it is usually defined in terms of features,
variants, variation points (Variation Point (VP) and the
relationships among them. According to Bosh, “a feature is
a logical unit of a behavior defined by a set of functional
and non-functional requirements” [17] while variants (VA)
represent the different possibilities that exist to satisfy a PV
[5] and [23]. Kang et al. [2] define a (VP) “as being
identification at one or more locations at which variation
may occur”. A FM is a tree with the root representing a
concept, and its descendent nodes are features, see Figure
1 as an example. A FM is a compact representation of all
possible products of an SPL. In the Feature Oriented
Domain Analysis (FODA) [2], features can be mandatory or
optional, and be related through choice (alternative or
multiple), requires and excludes relationships. Feature
models are feature diagrams plus additional information
such as feature descriptions, binding times, priorities,
stakeholders, and so forth. The purpose of using FM is to
express the existing relationships between the different
features of the product line. A FM is a tree– like structure
and consists of: i) relations between a parent feature and
its child features. ii) cross–tree constraints that are typically
inclusion or exclusion statements of the form “if feature F is
included, then feature X must also be included (or
excluded)” [12].

Software product lines are long-lived systems that
undergo significant evolution throughout their lifespan. This
latter concerns domain engineering (development for reuse)

Olfa Ferchichi
1

1
 Laboratoire de Recherche en Génie Logiciel,

Applications distribuées, Systèmes décisionnels et
Imagerie intelligentes (RIADI), Université de

Manouba
Tunisie

 Email:olfaferchi@yahoo.fr

 Raoudha Beltaifa²
1
 Laboratoire de Recherche en Génie

Logiciel, Applications distribuées, Systèmes
décisionnels et Imagerie intelligentes

(RIADI), Université de Manouba
Tunisie

Email :raoudha.beltaifa@ensi.rnu.tn

Lamia Labed Jilani
3

1
 Laboratoire de Recherche en Génie Logiciel,

Applications distribuées, Systèmes décisionnels et
Imagerie intelligentes (RIADI), Université de

Manouba
Tunisie

 Email : lamia.labed@isg.rnu.tn

 Raúl Mazo⁴

Lab-STICC,

ENSTA Bretagne,

Brest, France.

GIDITIC, Universidad Eafit, Medellin - Colombia.

Email: raul.mazo@ensta-bretagne.fr

149Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

mailto:olfaferchi@yahoo.fr
mailto:raoudha.beltaifa@ensi.rnu.tn
mailto:lamia.labed@isg.rnu.tn

and application engineering (development with reuse)
processes. This evolution allows companies to align their
products with new technological platforms, the evolution of
commercial strategies, the emergence of new customers
operational needs and new technological challenges in
general. Therefore, a product line development process must
make evolve the whole product line taking into account the
changes at the Domain Engineering level. The evolution of
domain assets, as for example the feature models, has
received a great attention from researchers as it represents a
key success aspect of SPLs. It does not only consist in
adding, modifying or deleting features in the FM, but also
adding semantics about the features’ characteristics. Given
a feature, it can represent a quality feature, a software
feature, a structural feature, a hardware feature, etc. and can
be in constantly evolution. Some studies propose to improve
FM models [11] [20] [22] and [27] but despite these various
attempts, the semantics extension of FMs remains limited
and no promising approach has been proposed to develop
FMs as part of a common evolution approach.

In our work, we aim to evolve FMs by means of smart
techniques. In this paper, we present the FM metamodel
extension necessary for representing semantics important for
the evolution rules. Thus, with a model driven approach, FMs
are transformed into FM ontologies. This is a first attempt to
define a smart FM evolution approach in a knowledge-based
framework. Thus, ontology of a FM will permit among
others, the inferring of knowledge about FM evolution. Our
running example of feature model is about an Electric
Braking Parking system shown in Figure 1.

The remainder of this paper is structured as follows:

section 2 presents the related work of modeling variability
with FM. Section highlights the issues treated in this paper.
In section 4, the metamodel of an extended feature model
(EVO-FM metamodel) is presented in the context of a
model driven approach. It enriches the FM semantics in
order to better handle evolution concerns. In the same

section we present the transformation rules between the
EVO-FM metamodel and the ontology metamodel to enable
reasoning on the enriched models. Section 5 is devoted to
present the implementation of the proposed approach under
the Eclipse Framework. This operational aspect serves as a
proof of concept. A conclusion summarizes the work and
presents future work as perspectives in section 6.

II. RELATED WORKS AND ISSUES

Concerning the literature review on modeling feature

models, several works have been done for making

improvements and extensions to FM. The variability in the

product family is represented by feature cardinality

[1][2][5][14][16] and [25], a cardinality group of features

[7][14][16][17][23] and [25], cardinality-Based feature

models with constraints and feature attributes [17]. In our

case, we also make extensions to FM for enriching its

semantic. This latter is essential for evolution rules.

Bhushan and al. [27] present the managing of Software

Product Line using an Ontological Rule-Based Framework.

Nieke and al [28] provide an ontology to check FM

evolution. This latter is defined by feature models

supporting temporal concepts. Rincón, Giraldo et al [29]

propose an ontological rule-based approach to analyze dead

and false optional features in FM as well as identifying

certain causes of these defects, and explaining these causes

in natural language. Our approach is also based on an

ontology but it provides more semantic to FM features and

relationships. In our work, we have temporal evolution

rules. Feature modeling is the most popular technique to

represent domain requirements variability in SPLs.

However, FMs have several limitations related to the lack of

means to represent explicitly the semantics of features and

their relationships. In fact, it needs improvements to

provide semantics to its components for dealing with agility.

Figure 1: Electric Brake System FM [16]

150Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

In order to better understand the problem, we present in the

sequel, some limitations of feature models [14] and [21].

 Lack of distinction between behavioral and structural
features. In the running example presented in Figure 1, we
need to precise that “electronic_Sensor” and
“Type_Electronic_Actuators” are structural features, but
“adaptElectricSignal”, “TransforElectricSignal” and
“ApplyMecanicalForce” are behavioral features. Evolution
rules can need the feature semantics in order to decide how
to make changes in the FM.

 Evolutions of features in time and in space are not
expressed. Variants of a feature may represent its evolution
in time or space. For instance, in Figure 1, “Manual”,
“Assisted” and “Automatic” features represent the evolution
of the “Parking_Brake_Service” feature.

- Features such as quality attributes are rarely specified
in feature models and their variability is neglected. QoS
feature can have different attributes such as response time,
availability, reliability, throughput, etc. For a given product
line, quality attributes can change during time so evolving
from one kind to another.

 Distinguishing the nature of each feature; for
specifying software concerns. This kind of information can
be helpful for expressing evolution rules and/or inferring
knowledge about evolution.

 Dependencies between a parent feature (variation
point) and its children features (variants) should be more
precise. For instance, a (VP) can represent an aggregate
feature or a super-feature. To select features correctly, the
semantics of these relationships have to be defined
explicitly. In the running example, the
“adaptElectricSignal”, “TransforElectricSignal” and
“ApplyMecanicalForce” features are mandatory regarding
their corresponding father (i.e., “apply_force”). It is clear
that “apply_force” aggregates these three variants; however,
this information is not explicitly represented in the feature
model and we consider that this information is useful to
represent evolution rules.

III. MODEL DRIVEN APPROACH FOR EVO-FM

CONSTRUCTION

EVO-FM is a feature model that represents knowledge and
information for its evolution. Thus, EVO-FM is a feature
model enriched with some concepts to support its evolution.
In order to construct the EVO-FM, we adopt a model driven
approach as shown in Figure 3. Hence, EVO-FM metamodel
be transformed into an ontology metamodel supporting
semantics information and allowing intelligent reasoning. In
the sequel, we first recall some aspects of the model driven
approach. Then, we present the EVO-FM metamodel
conforms to ecore meta metamodel. This is done in the
syntactic domain level and then as we will see in the next
section, the Eclipse environment offers an ATL
transformation facility to defined the transformation rules
between EVO-FM metamodel and the ontology metamodel
(semantic domain) [15].

A. Modeling and metamodeling

A well-defined language is a language with well-defined
form (syntax), and meaning (semantics), which is suitable
for automated interpretation by a computer. For a model to
be useful, OMG [9] and [13], recommends that: "A model
needs to be expressed in a way that communicates
information about a system among involved stakeholders
that can be correctly interpreted by the stakeholders and
supporting technologies. This requires the model to be
expressed in a language understood by these stakeholders
and their supporting technologies."[8].

 Figure 2: Meta model, model and concrete model

As illustrated in Figure 2, a modeling language is defined by
an abstract structure, a concrete model and a model
representing a real case enriched with additional semantics,
which is in fact an instance of the concrete model [16].

B. Model transformation

Another key activity of model driven engineering [10] is

the concept of model transformation, which is the automatic
process to transform a source model into a target model.
According to Bézivin et al [9] transformation is done by a
collection of transformation rules that are "a description of
how one or more constructs in the source language can be
transformed into one or more constructs in the target
language". More precisely, there are different levels of
transformations as illustrated in Figure 3. Once the FM
metamodel is created, a transformation to the FM ontology
metamodel [15] is done. The extended metamodel (level 2)
is consistent to the corresponding meta metamodel (level 3)
and the FM model (level 1) is consistent to its
corresponding metamodel (level 2). The transformations can
be done horizontally in each level. The final real case
ontology (level 0) can be obtained by instantiation of the
meta ontology in OWL language and SWLR for the
reasoning rules to be added manually [15]. The meta-model
specification uses the TOPCASED ECORE editor. We
checked the correctness of that transformation by verifying
that each item in the source model has its corresponding
item(s) in the target model. These are some transformation
rules :

-- @path MM=/ATL_FM/Papier.ecore
--@path MM1=file:/C:/Users/HP/Desktop/OCTA_2019
/onto_FM/Ontology_FM.owl
module FM;
create OUT : MM1 from IN : MM;
rule Concept_Feature { from f : Feature!Feature
to out : Feature!Feature (
name <- f.name,
FeatureID <- f.FeatureID()
)}
rule Concept_Hardware_Feature{ from b : Feature!Feature
to out : Hardware_Feature!Hardware_Feature ()}

151Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

C. EVO-FM: Extended Feature Model Meta-Model

To help evolving feature models, we extend the FM
metamodel using the UML notation [10] and [13]. In
particular, we improved FM with three aspects: 1) the
semantics of the features so that each feature of a FM can be
characterized in one of the following four categories:
software, hardware, structure and behavior, 2) the possibility
to represent non-functional requirements (i.e., security,
performance and accuracy) in the features of each FM and
3) the semantics of three new relationships: “compose”,

“aggregate” and “is_a”. The concepts we integrate into
the FM language are represented by the colored boxes in
Figure 5. A non-functional feature represents the quality that
the product family must have in order to meet the requested
needs. We use the notion of stereotype [1] to specify the
new concepts to the extended FODA language. Creating a
non- functional feature should add the «stereotype_name» to
the feature. For example, a feature that represents security

will be stereotyped «Security» and similarly for the
«Structural», «Behavioral», «Hardware» and «Software»

features. The sample model shown in Figure 4 shows how to
use the new relationships and quality requirements in our
Electric Brake Parking System example.

IV. IMPLEMENTATION FRAMEWORK

In order to be able to construct EVO-FM, we implement
our model driven approach with the Eclipse family of

integrated development environments, FeatureIDE and
Xtext that we present in the sequel..The Eclipse community,
withsupport from the Eclipse Foundation, provides
integrated development environments (IDEs) targeting
different developer profiles. It is a framework and code
generation facility for building Java applications based on
simple model definitions. Among the development tools
provided by the IDE we used three complementary Eclipse
frameworks: EMF, Xtext and FeatureIDE..

Figure 3 : Model-driven approach for EVO-FM construction

Figure 4: EVO-FM extended Feature model

152Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

The Eclipse Modeling Framework (EMF) [6] provides a
modeling and code generation framework for Eclipse
applications based on structured data models. Although
EMF supports the key MDA concept of using models as
input to development and integration tools, it does not use
however any one of the MOF compliance points previously
described. Instead, EMF uses ECore, a not fully
alignedvariant of OMG’s EMOF. Essentially, among other
elements, an ecore meta-model allows to define an EClass,
an EAttribute, an EReference. To overcome this issue, EMF
supplies model transformation and grammar capabilities.
Model transformation can be model-to text (M2T) by the
Textual Modeling Framework (TMF) [26]. It is an EMP’s
project aiming to support the development of textual
concrete syntax. TMF is based on a meta-model and syntax
specification, offering several functionalities that include a
parser that reads the textual representation of the model and
instantiates the corresponding EMF model, an eclipse text
editor that supports syntax highlighting, code completion,
navigation, and other features.

Xtext is a framework for development of programming
languages and domain- specific languages. With Xtext
you define your language using a powerful grammar
language. With Xtext, we define grammars that implement
stereotyped non-functional features.

FeatureIDE [24] and [25] is an Eclipse-based IDE that
supports all phases of feature-oriented software development
for the development of SPLs: domain analysis, domain
design, domain implementation, requirements analysis,
software generation, and quality assurance.
Different SPL implementation techniques are integrated

such as feature- oriented programming (FOP), aspect-
oriented programming (AOP), preprocessors, and plug-ins.
Full infrastructure, including parser, linker, type checker,
compiler as ell as editing support for Eclipse, any editor
that supports in [15] shows the ontology that we obtained
for our running example.

V. CONCLUSION

In this paper, we have proposed EVO-FM, an
extension to the FODA metamodel, which enriches it with
knowledge and information to support the evolution phase
of the models created with this engineering language. In
particular, we enrich the feature models with quality and
semantic features. Hence, we also add support for new
types of feature relationships and extensions with
stereotypes. We have adopted a model driven approach
for constructing EVO-FM with also the possibility to
transform them to ontologies that enforce the feature
model semantics and intelligence by inferring new
information. The obtained ontologies are not just enriched
with SWRL rules for checking the EVO-FM consistency
but also with the mechanisms to run the evolution rules
[15]. To implement our approach, we advocate the
adoption of metamodeling tools such as Eclipse modeling
Framework and Xtext. Thus, the main contributions of our
approach are:

- Add semantic features in the form of stereotypes such

as «software», «hardware», «structural» and
«Quality»

- Add quality features in the form of stereotypes such

as «security», «Performance», «Flexibility».
- Import a textual specification into grammars using

t h e Xtext framework to process it and transform it into

XML;

- Import the EVO-FM in XMI, XML and Java format

and so enhance reuse of it.
The main perspectives of our work are: 1) apply our

model driven approach to different system families

and validate the evolution rules that are behind the EVO-
FM ontology 2) enable a smarter evolution of feature
models by using different versions of EVO-FM feature
model, these can be used as a learning base of a learning
algorithm. So, for a given EVO-FM, a new version can be
predicted as being a new FM evolution version. More
specifically, suppose that we have the trace (history) of

Figure 5: FM with evolution

153Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

the 50th previous versions of the EBP where the feature
“Type-electronic-actuator” feature was “electric-actuator”
in 10th first versions and after the 11th version becomes
always “calipers_integrated_actuator” so the Type-
electronic-actuator feature will evolve to become
mandatory “calipers_integrated_actuator” instead of
having two optional features. Also, we can have an
aggregation of features that evolve to a composition of
features because the learning algorithm find that after a
certain number of FM versions, this happens. A quality
feature can also evolve from performance to agility
because this was learned from previous versions. We
would like to investigate these concerns in the near future.

REFERENCES

[1] H. Papajewskiand D. Beuche and W. Schroder-Preikschat.
Variability management with feature models. Science of
Computer Programming, December 2004, vol. 53, no 3,
pages333{352, 2004..

[2] K-C. Kang, S-G. Cohen, J-A. Hess, W-E. Novak, and A-S.
Peterson,“Feature Oriented Domain Analysis FODA
Feasibility Study”, Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh,PA, USA, November 1990.

[3] J. Christophe, “ The Reuse and Variability software
product lines ”, Periodic publication smals,Junary 2009

[4] N. Noda, and T. Kishi,”Aspect oriented Modeling for
Variability Management”, 12th International Software
Product Line Conference, September 2008.

[5] B. Frank, E.Raymond, S.David G.Timothy M.Ed
.Eclipse modeling framework: a developer's guide.
Addison-Wesley Professional. December 2004

[6] A. Classen, P. Heymans, and P. Schobbens,”What's in a
Feature: A Requirements Engineering Perspective”, In J.
Fiadeiro and P. Inverardi (Eds.): FASE 2008, LNCS 4961
.Proceedings of the 11th International Conference on
Fundamental Approaches to Software Engineering, held as
part of ETAPS, Budapest, Hungary, pp.4-- 30,April, 2008.

[7] L. Moigne, Jean-Louis. Modeling of complex systems.

Paris: Bordas,1990

[8] J Bézivin, O Gerbé. Towards a precise definition of the
OMG/MDA framework. Proceedings 16th Annual
International Conference on Automated Software
Engineering,pp 273—280, IEEE , November 2001.

[9] OMG, “Unified Modeling Language TM (OMG
UML)”,Superstructure ,2011.

[10] M-A. Laguna, B. González-Baixauli, J-M. Marqués, and
R. Fernándezet,“Feature Patterns and Multi Paradigm
Variability Models”,GIRO Technical Report 2008/01,
v0.91, 2008.

[11] E-A.Oliveira, I-M. Gimenes, E. Hatsue, and M. Huzita,
“A Variability Management Process for Software Product
Lines”,In Proceedings conference of the Centre for
Advanced Studies on Collaborative research , IBM Press,
pp.225-241,October 2005

[12] OMG Unified Modeling Language (OMG UML, OMG
Document Number:formal/2007-11-04Standard
document:URL:http://www.omg.org/spec/UML/2.1.2/Infra
structure V2.1.2/PDF, Associated Schema Files.

[13] R. Mazo, Advantages and limitations of feature models in

modeling variability requirements., Software engineering

NO 11, Paris France, January 2015

[14] O. Ferchichi. R.beltaifa , L.Elabed. , An ontological Rule-

Based Approach for Software Product Lines Evolution.

International Multi-Conference on: “Organization of

Knowledge anddvanced Technologies” (OCTA), IEEE,

Tunisie. September 2020

[15] http://www.splot-research.org/Decenber 2010,

[16] J. Bosch, G. Florijn, D. Greefhorst, and J. Kuusela,
“Variability issues in software product lines”, In Software
Product-Family Engineering (pp. 13-21). Springer Berlin
Heidelberg,pp. 13-21, April 2001.

[17] D. Beuche, H. Papajewskiand, and W. Schroder-
Preikschat, “Variability management with feature models”,
Science of Computer Programming, vol. 53, no 3,
pp.333—352, 2004.

[18] P. Clements and L. Northrop. Software Product Lines:

 Practices and Patterns. SEI series in software engineering.

 Addison- esley,2002.

[19] D. Benavides, P.Trinidad, and A. Ruiz-Cortes, “Using
Constraint Programming to Reason on Feature Models”, In
The Seventeenth International Conference on Software
Engineering and Knowledge Engineering (SEKE05),
Juillet, 2005.

[20] J. Christophe, “ Reuse and variability software product
lines “, Publication périodique smals , March 2009.

[21] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortes,” Using Java CSP Solvers in the Automated
Analyses of Feature Models”, LNCS, to be asigned,
TIC2003-02737-C02-01 (AgilWeb), January 2006.

[22] D.Benavides, “Automated Reasoning on Feature
Models”,In The 5th Conference on Advanced Information
Systems Engineering (CAiSE05), LNCS,
3520:491503,Juin, 2005.

[23] T. Kastner, C.Benduhn, et al. FeatureIDE: An extensible
framework for feature-oriented software
development. Science of Computer Programming, vol. 79,
p. 70-85. January 2014.

[24] K. Christian, T. Thomas, S.Gunter, et al. FeatureIDE: A
tool framework for feature-oriented software
development .

[25] W .Edward D aniel. "Re-en gineering eclipse MDT/OCL
for xtext." Electronic Communications of the EASST 36 .
March 2011.

[26] K. Czarnecki,”Generative Programming”,Principals and

Techniques of Software Engineering Based on Automated

Configuration and Fragment Based Component Models,

Tools, and Applications, Addison Wesley,ISBN

0201309777, Mai, 2000.

[27] M. Bhushan, S. Goel, A. Kumar and A. Negi. Managing
Software Product Line using an Ontological Rule-Based
Framework. International Conference on Infocom
Technologies and Unmanned Systems (2017).

[28] M. Nieke, C. Seidl, T. Thum. ,Back to the future: avoiding

paradoxes in feature-model evolution, SPLC (2), 2018.

[29] L. Rincón., G. Giraldo, R .Mazo and C. Salinesi. An

ontological rule-based approach for analyzing dead and

false optional features in feature models. Electronic notes

in theoretical computer science, 302(0): 111 – 132. 2013.

154Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

http://www.omg.org/spec/UML/2.1.2/Infrastructure
http://www.omg.org/spec/UML/2.1.2/Infrastructure
https://ieeexplore.ieee.org/xpl/conhome/9142125/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9142125/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9142125/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9142125/proceeding
http://www.splot-research.org/Decenber

