
A Test Concept for the Development of Microservice-based Applications

Michael Schneider, Stephanie Zieschinski,
Hristo Klechorov, Lukas Brosch,

Patrick Schorsten, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Zirkel 2, 76131 Karlsruhe, Germany

email: (michael.schneider | sebastian.abeck)@kit.edu
(stephanie.zieschinski | hristo.klechorov | lukas.brosch)@student.kit.edu

Christof Urbaczek
xdi360 GmbH

Leopoldstraße 252b, 80807 München
email: (christof.urbaczek@xdi360.com)

Abstract—A microservice-based application is composed of
several distributed microservices. When developing the microser-
vices of the application, it is important to test that the re-
quirements are met and that the application works as intended.
Especially end-to-end tests require all involved microservices to
be available for testing. A common way is to execute the tests
via a continuous integration / continuous delivery pipeline. In
this paper, we present a test concept for developing microservice-
based applications which covers the different test types according
to the test pyramid, from end-to-end, integration tests, and
consumer-driven contract to unit tests. The test concept considers
the entire test pyramid as part of the microservice engineering
process. Furthermore, we show how the test concept can be
executed during the development process using a continuous
integration / continuous delivery pipeline by the example of a
PredictiveCarMaintenance application.

Keywords—microservices; development process; behavior-driven
development; test pyramid; test concept; code quality; CI/CD.

I. INTRODUCTION

A microservice-based application is composed of several
independently developed and deployed small services. The
microservices are loosely coupled into business-related cohe-
sive functionalities that do one thing well [1]. Microservices
communicate with each other via technology-independent
interfaces to solve the more extensive business tasks. The
architectural style Representational State Transfer (REST) by
Roy Fielding [2] provides a lightweight way to define the mi-
croservices’ web Application Programming Interfaces (APIs).
As a result, each microservice can be developed separately
by different development teams using different programming
languages, and can be tested and deployed independently from
each other. At the same time, testing the whole application
becomes far more complex, since the microservices are dis-
tributed. Testing an application itself has to consider the whole
test pyramid [3] and the different tests types. This includes
unit, integration, Consumer-Driven Contract (CDC), and End-
to-End (E2E) tests. However, especially E2E tests are impor-
tant, since the interaction of microservices fulfill the business
functionality of a microservice-based application which has to
be tested [4]. In addition, all involved microservices need to
be available for testing. To simplify the test process, a pipeline
for Continuous Integration / Continuous Deployment (CI/CD)
has to be set up to assist the development process and the use

of the test concept. This enables the regression testing of the
application on the level of the business requirements in form
of user acceptance tests.

The development of microservice-based applications re-
quires a systematic development approach so that developers
know what to test. For the test concept, a systematic microser-
vice engineering approach is followed. Therefore, the test
concept is integrated into the microservice-based development
process [5]. Testing is considered during the whole engineering
process, including the requirements analysis, design and the
implementation phase. Figure 1 displays an overview of the
development process and the resulting test artifacts. In the
requirements analysis, the required functionality is specified
by several artifacts. For testing purposes, the acceptance
criteria is specified as Gherkin features according to Behavior-
Driven Development (BDD) practices, which are used for the
development of end-to-end tests. Gherkin features embrace the
natural language which simplifies the communication with the
stakeholders requirements.

Figure 1. Development and Test Artifacts.

The design phase utilizes the artifacts from the analysis
phase and forms the microservice architecture of the applica-
tion by applying Domain-Driven Design (DDD) [6]. Important
artifacts for the integration tests are the application architecture

88Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

and the API specifications of the microservices. The design
artifacts, especially the API specification, are important for
the CDC tests. The implementation phase utilizes the arti-
facts created in the analysis and design phase for the test
implementation. The applicability of the test concept and the
different tests is shown in detail by the example of a concrete
microservice application, PredictiveCarMaintainance (PCM).

The main contributions of the article are: (i) a systematic
test concept considering the test types of the test pyramid,
E2E, integration and unit tests, extended with CDC tests
and considering all test types during development; (ii) the
integration of the test concept into a CI/CD pipeline.

The article is structured as follows: Section 2 presents the
state-of-the-art in the area of testing microservices. Section 3
introduces the system under test (i.e., PCM) and the required
artifacts. In Section 4, the test concept is introduced and
explained by the example application PCM. The problem of
test automation through the use of a CI/CD pipeline is tackled
in Section 5. Results of the test concept are presented in
Section 6. Section 7 summarizes the main results of our test
concept and the main research issues we currently work on.

II. RELATED WORK

Software tests are well introduced by several sources and
placed into software engineering processes. O’Regan [7] pro-
vides an introduction to the field of software testing which
contains a broad spectrum of related aspects, and further topics
including software processes, and requirements engineering.

A reusable testing architecture is introducing by Rahman et
al. [8] and proposes a dedicated application for automated ac-
ceptance testing. The concept provides separation of concerns
among developers, testers and business analysts and is part of
the test concept that is presented in this paper.

Savchenko et al. [9] provide a general testing process
which extends the microservice development by several test
steps, e.g., (internal functional) component testing, integration
testing, and continuous system testing.

The conclusion that a microservice-based architecture re-
quires more high-level testing especially on the end-to-end-
side is discussed by Faragó et al. [4]. The reasoning behind
this is that the interaction of microservices is the key to a
working application.

John F. Smart [10] provides a more technical coverage of
BDD practices and showcases a number of tools for different
languages and frameworks, which aid developers in creating
robust and sustainable tests. BDD can be seen as further
development of Test-Driven Development (TDD) [11].

A case study was conducted to examine how a microservice-
based application can be tested effectively by Lehvä et al. [12].
They do so by extending the traditional test pyramid with
Consumer-Driven Contract (CDC) tests between integration
and component tests. The study suggests that CDC tests
could even replace integration tests, as they provide similar
feedback, but only have a fraction of the development effort
and execution time.

Wang et al. [13] present an API testing process which auto-
matically gathers the API specifications from cloud websites
and transforms the interpreted syntax and semantics of service
data and operations into internal semi-formal representations
from which the test cases are derived. This may be considered
in further versions of the test concept.

Microservice-based applications require additional consid-
erations during development because the applications are dis-
tributed and the services may be developed independently by
different teams. Related work has influenced the result of the
systematic microservice engineering approach that considers
the entire test pyramid.

III. APPLICATION UNDER TEST

The application under test is the microservice-based applica-
tion PredictiveCarMaintenance (PCM) which provides insight
about a vehicle health. The application is developed using a
systematic microservice engineering approach conceptualized
specifically for the test concept.

During the requirements analysis, the cohesive functional-
ities are grouped into capabilities. The requirements of such
a capability are described by User/System Interactions (USI)
which are further represented as graphical USI flows. For
acceptance testing, the end-to-end tests are systematically
derived using Behavior-Driven Development (BDD) and the
specified user interactions. Each step within the scenarios
has a corresponding step definition, implemented during the
development of the end-to-end tests. Furthermore, the scenar-
ios describe the USIs under test. Smart [10] illustrates how
unit tests can be derived from step definitions. Utilizing the
approach, the application logic contained within a scenario can
be developed in an iterative way.

Figure 2. PCM Architecture Overview.

Figure 2 shows an overview of the derived architecture for
the PCM application. The architecture was modeled during
the design phase by applying Domain-Driven Design (DDD)
concepts by Eric Evans [6]. The PCM application consists
of the frontend, the API gateway, the application microser-
vice VehicleMonitor, and the domain microservices Vehicle
and Driver. Additionally, the application also communicates
with the domain microservice SensingDevice. We differenti-
ate between microservices which are only relevant for one
application (the application microservices) and the application-
agnostic microservices (domain microservices) which provide
funcionality that can be reused by other applications. The

89Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

frontend of PCM allows the user to interact with the system
and presents the information provided by the VehicleMonitor
by requesting all data via the API gateway. The application
microservice VehicleMonitor needs to authenticate the user by
sending the corresponding requests to the microservice Driver.
If the authentication is successful, VehicleMonitor gathers the
required information by the domain microservice Vehicle and
executes the application logic needed to support the USIs.
To retrieve the sensor data, the VehicleMonitor communicates
with the microservice SensingDevice. The microservices need
to be orchestrated to fulfill the desired functionality. Therefore,
the orchestration of the services for an application microser-
vice is specified by task processes which describe a chain
of service calls. The task processes itself are based on the
concepts of the Business Process Executing Language (BPEL)
[14] and the Service-oriented architecture Modeling Language
(SoaML) [15].

The test concept is exemplary applied on the USI ”Monitor
the Vehicle State”. The frontend calls the API gateway, which
in turn calls the application microservice VehicleMonitor to
receive the state of a vehicle. The application microservice
first calls the microservice Driver for authentication and then
calls the microservice vehicle for the information about a
vehicle and its components. The detailed sensor data for each
component is requested from SensingDevice. This information
is used to derive a vehicle component’s health state and the
result is returned to the frontend.

IV. TEST CONCEPT

The development of tests follows a logical order, bottom-
up. An overview of different types of tests used and the
related artifacts is shown in Figure 3. As the development

Figure 3. Overview of the Test Concept and Artifacts.

of microservice-based applications starts with the domain mi-
croservices, the tests for these microservices are created early.
We differentiate between domain and application microservice
unit testing, since domain microservices mostly contain simple
functionality, i.e., CRUD operations. Therefore, corresponding
tests are directly derived from the domain constraints. On
the other hand, while implementing application microservices,
two types of tests are developed: the backend acceptance
and unit tests, which are derived from the former. After the
implementation of, at least, one domain microservice, the
development of one or more application microservices starts,
including their tests, while deriving the functionality from

the capabilities. When there are at least two microservices
that communicate, Consumer-Driven Contract (CDC) tests
can be applied, where the two most important artifacts are
the task process and the API specification. The task process
shows which microservices communicate and which data they
access, whereas the API specification reveal how requests and
responses are specified. The end-to-end tests form the highest
layer of tests where great parts of the application under test
are needed and are derived from the User/System Interactions
(USI).

The BDD principle concentrates on the behavior and not on
the concrete implementation of the software. The acceptance
tests are written in the language Gherkin as features, that
enable a common understanding of the software by using
natural language. The Gherkin features formally specify the
requirements of an application. The creation of those fea-
tures involves a discussion between developers, testers and
domain experts. The use of a ubiquitous language in those
features helps additionally. For each capability, an application
microservice is developed. The features are derived from the
capabilities and contain scenarios comprised of steps. We
derive the scenarios of a feature from the USIs which are
further modeled as so-called USI flows. Figure 4 displays an
example of the USI flow for monitoring a vehicle state.

Figure 4. USI Flow for Monitor the Vehicle State.

Each path through a USI flow (one path is shown by the
grey line) leads to a scenario. One of the resulting scenarios
is shown in Figure 5.

1. Scenario: Monitor Component State (Success)
2. Given I am logged in as a vehicle owner,

fleet manager or garage
3. And the vehicle state overview is

displayed
4. When I open the vehicle state overview for

the motor
5. Then I see the detailed summary of the motor
6. And a status message is displayed

Figure 5. Scenario for Monitor Component State.

90Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

A. Development of the Unit Tests for Domain Microservices
Due to the differences between domain and application

logic, unit test development for domain microservices differs
from the development of unit tests for an application mi-
croservice. Instead of application functionality, domain logic
focuses on the application-agnostic domain logic which should
be reusable by many applications from the same domain.

The domain knowledge of a bounded context can be ex-
pressed in an entity relation view which contains the domain
objects and their relationships similar to a class diagram [16].
Figure 6 displays the entity relation view for the bounded
context Vehicle. The entity relation view displays the entities
Vehicle, VehicleComponent, Observation and Manufacturer.
The vehicle is the most central domain entity. A vehicle con-
sists of several vehicle components, such as brakes, tires and
motor. These components are monitored by sensors. Sensors
create observations that specify the time of the measurement
and the observed measurement. Using the example of the
method getObservationFromTimePeriod(), the constraints are
defined and implemented in the following. This method makes
it possible to display the observations of a sensor in a certain
period of time.

Figure 6. Entity Relation View of the Bounded Context Vehicle.

An observation is a measurement of a component value
such as motor temperature at a specific time. The desired
information may include only the latest observation or multiple
observations for a specified time interval. The vehicle bounded
context has no active influence on the observations itself.
These observations are providedby a microservice SensingDe-
vice.

The domain logic itself contains constraints which define
the boundaries of the domain objects. The constraints of a
domain are stated when the domain is modeled. This domain
knowledge can be added formally to further specify the
UML diagrams [17], e.g., the entity relation view of the
bounded context vehicle, by the use of the Object Constraint
Language (OCL). This leads to the advantage, that the model
can be implemented and tested later. Constraints are derived
from the domain knowledge (e.g., physical world constraints),
gathered in the analysis phase and need to be enforced by
implementation. Furthermore, the constraints need to be tested
and therefore, are a valuable input for the unit tests of a domain
microservice.

Figure 7 shows an excerpt of the constraints for the
bounded context Vehicle. Using the method getObservation-

FromTimePeriod() and pre- and postconditions, the allowed
transitions can be formally expressed with OCL. Lines 1-2
define the context and the considered method. In line 3, a
precondition is specified. Here it is important that the end date
of the observation is not before the start date. In lines 4-6, a
postcondition is specified which ensures that the observations
are not outside of the specified period.

1. context VehicleComponent::
getObservationsFromTimePeriod(start:
Date, end: Date):

2. pre: start.before(end)
3. post: forAll(o:Observation | (start.after(

start)
4. or start.equals(start))
5. and (end.before(end) or end.equals(end)))

Figure 7. Excerpt of the Domain Constraints.

These constraints are implemented in the vehicle microser-
vice’s domain logic. Based on the underlying domain con-
straint the implementation of the method getObservationsFor-
TimePeriod() is done, which is part of the VehicleComponent
entity.

The pre- and post-conditions must be valid before and after
the method is invoked, respectively. Therefore, each pre- and
postcondition is checked through if statements. An example
of a postcondition implementation is shown in Figure 8. If a
condition is violated when a method executes, the method will
throw an exception, which is an object that indicates that an
error occurred.

Similarly, to guarantee that the requirements of the
postconditions are met when the method has been called,
the method uses an if statement in line 4. Only if all these
conditions are met, the method returns a list with observations
with regards to the specified time frame.

1. List<Observation> result = new ArrayList<>()
;

2. for (Observation o : this.observations) {
3. ZonedDateTime t = o.getTimeOfMeasurement

();
4. if((t.isAfter(start) || t.equals(start))

&&
5. (t.isBefore(end) || t.equals(end))) {
6. result.add(o);
7. }
8. }

Figure 8. Postcondition Implementation.

Test cases are derived from each constraint. There are two
kinds of test cases and unit tests respectively: (i) the first
kind asserts the method under test behaves as expected by
feeding it with correct input and matching the output with
expected output and (ii) the second kind asserts the input data
is validated correctly by feeding the method under test with
incorrect input and awaiting an exception to be thrown.

91Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

Test cases of type (i) use test data which conforms to all
domain constraints. For the constraints presented in Figure 7,
type (i) unit tests are going to test whether the correct set of
observations is delivered as output by the method getObser-
vationsFromTimePeriod(). Hence, two argument providers are
presented in Figure 9 and 10. One serves as example for an
arguments provider for unit tests of type (i) and the other -
for unit tests of type (ii). It is good practice to develop one
arguments provider class per unit test type.

ArgumentsProviderTypeI initializes the arguments for the
test case (see lines 1-3) where the observations for the last
month are requested. Those are a start date of one month ago,
followed by an end date of today and the expected output
which is provided by a separate class where expected result
data is initialized or loaded from external files such as a test
database or CSV table.

1. OutputProvider op = new OutputProvider();
2. ZonedDateTime start = ZonedDateTime.now().

minusMonths(1);
3. ZonedDateTime end = ZonedDateTime.now();

4. return Stream.of(
5. // Test Case 1: Last month
6. Arguments.of(start, end, op.getOutput(1))
7.);

Figure 9. Class ArgumentsProviderTypeI.

The test data for type (ii) unit tests aims to violate the
domain constraints. Each test case violates one specific con-
straint, thus accelerating the fault discovery process.

ArgumentsProviderTypeII initializes a test case that violates
the time period constraint by having a start date after the end
date (see lines 1-2). A minimal test suite must have at least
one violating test case per domain constraint. Advanced test
suites have multiple violating test cases.

1. ZonedDateTime start = ZonedDateTime.now();
2. ZonedDateTime end = ZonedDateTime.now().

minusMonths(1);

3. return Stream.of(
4. // Test Case 2: Time period violation
5. Arguments.of(start, end)
6.);

Figure 10. Class ArgumentsProviderTypeII.

The resulting unit tests in Figures 11 and 12 receive the test
data as a stream from the respective arguments provider class.
The first unit test exemplifies unit tests of type (i). It receives
input for the method under test and the expected output from
the arguments provider. The expected output must abide by
the constraints defined in the postcondition.

The second unit test is an example of type (ii) unit tests. Its
arguments provider delivers the input and the unit test asserts

1. List<Observation> result =
2. validTestComponent.

getObservationsFromTimePeriod(start,
end);

3. assertEquals(result, expectedResult);

Figure 11. Unit Test Type I.

1. assertThrows(IllegalArgumentException.class,
() ->

2. validTestComponent.
getObservationsFromPeriod(start, end)
);

Figure 12. Unit Test Type II.

that the proper exception is thrown. A method that throws
multiple exceptions requires multiple type (ii) unit tests.

B. Backend Acceptance and Unit Tests of an Application
Microservice

An application microservice is developed to support USIs
for a specific capability. In order to ensure that the test
suite exercises every bit of functionality developed for the
capability, the BDD outside-in approach is adopted for the
development of acceptance and unit tests for the application
logic. First, the acceptance criteria is specified. Then, it is
automated as backend acceptance tests. Unit tests are derived
from the backend acceptance tests, whereby the behavior of the
code is specified further. Finally, the application logic needs to
satisfy the acceptance criteria and the tests are implemented.

The step definitions differ from those created for end-to-end
tests in the way that UI step definitions manipulate frontend
components (e.g., through page objects), whereas backend step
definitions manipulate application code directly. Furthermore,
these backend acceptance tests support the outside-in develop-
ment approach, since unit tests can be derived from them. The
implementation of a feature starts with the acceptance criteria
and advances through the lower levels as illustrated by Figure
3. Backend Gherkin features are derived from the frontend step
definitions. Figure 13 presents the backend scenario equivalent
of the scenario in Figure 5.

There are multiple benefits from introducing backend ac-
ceptance tests. They provide assurance of the backend system
functionality independent of the frontend. If an end-to-end test
fails but its corresponding backend acceptance test is passed
successfully, then the problem is located in the frontend. Back-
end acceptance tests execute faster than frontend acceptance
tests, because UI slows down tests significantly [10]. Hence,
testing the system without the UI layer allows for more tests in
a shorter amount of time being both developed and executed.

The Gherkin features [11] are the central artifact for the
testing of application microservices. For each of the (Given,
When, Then) steps, the backend step definitions are specified
by coding the function calls on the backend side. To fulfill the
backend step definitions, the application logic is implemented

92Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

1. Scenario: Monitor Component State (Success)
2. Given the component with uuid "123..."

exists
3. When the state of a component with uuid

"123..." is requested
4. Then latest sensor information about the

component is fetched

Figure 13. Scenario for Monitor Component State (Backend).

by writing the required unit tests in a first step and the
application code to pass the unit tests in a second step.
Smart [10] illustrates how unit tests can be derived from
step definitions. Adopting this approach, in Figure 14, a step
definition for the When step in Figure 13 is implemented.
During the implementation of the step definitions, initial con-
siderations for the application code are made. In the example,
an operations class is modelled, which provides a method
that fetches component information. The information itself is
modelled as a list containing the various values provided by
the domain microservice.

1. @When("When the state of a component with
uuid <string> is requested")

2. public void request_component_info(String id
) throws Throwable {

3. List componentInfo = operations.
getComponentInfo(id);

4. }

Figure 14. Backend Acceptance Test Step Definition.

BDD treats unit tests as low-level executable specification,
meaning the main focus is the behavior of the system, not
the functionality of the separate methods. By following the
method from Figure 3, this paradigm is enforced further. The
unit tests are derived from the backend acceptance tests. Figure
15 illustrates the unit test derived from the When step in Figure
14. Infrastructural software units (e.g., database repositories,
mappers, etc.) require unit tests as well.

1. public class StateOperationsTests {
2. private StateOperations operations;
3. ...
4. @ParameterizedTest
5. @ArgumentsSource(ArgumentsProvider.class)
6. public void getComponentInfo_
7. ShouldGatherComponentInfo(
8. componentId, List expectedInfo) {
9. assertThat(expectedInfo,

samePropertyValuesAs(
10. operations.getComponentInfo(

componentId)));
11. }
12. }

Figure 15. Unit Test Example.

C. Consumer-Driven Contract Tests

One of the main problems when dealing with a
microservice-based application is the integration of microser-
vices [18].

The main goal of integration tests is to find out whether
changes break the application or not. For this, the affected
services would need to be deployed which leads to slow
tests. Testing the integration of microservices in an isolated
way by using Consumer-Driven Contracts (CDC) can decrease
the number of integrated tests and therefore decrease the
duration of running all tests [18]. Those contracts document
the communication between two services, where the caller of
a service is called consumer and the callee is the provider.
In this paper, the contract testing tool Pact is used for the
CDC tests [19]. Pact offers implementations in many different
programming languages, including Go and Java, meaning that
Pact can directly be used for all of PCM’s microservices. CDC
tests in Pact consist of two steps: in the first step the contract
is created by the consumer, by creating a Pact mock of the
provider under test and specifying the expected response. In
the second step, the previously defined request is sent to the
provider and the real provider’s response is compared to the
expected response in the contract [20].

The needed contracts, where the microservice under test is
the consumer, are derived from the task process of each of
its microservice operation. An example for the microservice
operation Monitor the Vehicle State is shown in Figure 16.
Here, the microservice VehicleMonitor is the consumer and
all the other microservices are providers.

Figure 16. Contracts for the Microservice VehicleMonitor.

D. End-To-End Tests

The approach from [8] is adapted for the integrated tests,
i.e., integration and end-to-end tests. As a result, a separate
repository is used for those tests. Having those in each
microservice repository would lead to high maintenance test
suites, because step definitions cannot be reused across repos-
itories. The test repository cannot access the internal code of
the microservices, which means the whole application needs to
be treated as a black box. Before the end-to-end tests can run,
every required microservice needs to be deployed. The two

93Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

main questions to answer when end-to-end testing are what
and how is tested. The end-to-end tests should not be used to
reach a high coverage for all paths in an application, instead
they should describe examples for the software’s behavior [10].
To find such examples, USI flows are used. From a USI flow
every path through the application for the considered user
interaction can be derived. For the user interaction in Figure
4 twelve different paths can be found: two different states
for both, brakes and tires and there are three different roles
involved. Taking into account more components or adding
additional decisions would drastically increase the number
of application paths. This means, not every path should be
mapped to a test, as many slow end-to-end tests would also
slow down development [21]. As the user interaction is exactly
the same for every role, it is sufficient to run this test only for
one of the roles. This decreases the number of tests to four. By
choosing one component for the test, only two test cases are
left: (1) the component is okay and (2) the component is not
okay. The data for the other component(s) as well as the access
for the other roles can be tested in the integration tests. The
resulting Gherkin feature is depicted in Figure 17. To increase
readability both tests are combined into one scenario outline.

1. Feature: Monitor the Vehicle State
2. As a vehicle owner, fleet manager and

garage
3. I want to see the overall state of a

vehicle
4. So that I can continuously monitor its

state

5. Scenario Outline: Display correct tire
state

6. Given I have opened PCM
7. And I am logged in as a vehicle owner
8. And the tire pressure is <tire pressure

state>
9. When I open the overview for the tires

10. Then I see the tire state is <tire state>

11. Examples:
12. | tire pressure state | tire state |
13. | not okay | not okay |
14. | okay | okay |

Figure 17. Feature derived from the USI Flow.

In the following, the question of how the application should
be tested is answered by using guidelines for creating end-to-
end tests to ensure a good quality of the tests. Quality of tests
has to be considered on two aspects: the test specification, i.e.,
Gherkin features, and the test implementation, i.e., the step
definitions. End-to-end tests often have a high maintenance
effort when they are written in an imperative way, because
the features contain UI-specific or other irrelevant information.
When the UI changes, both the step and its step definition
need to change. To improve this, declarative features should
be written, so a UI change would lead to a change only in
the step definition, in case of a declarative feature [21]. In the

example above, one could instead specify which exact inputs
the user makes in order to log in. In this case, every time
this user needs to login the step would need to update if the
credentials would change.

Tests should provide feedback for the developers whether
a change broke the application or not. When they need to
wait very long for the test execution to finish, it affects
the productivity. Moreover, not every edge case needs to be
verified by an end-to-end test, those should be tested with unit
tests [21].

Another problem that could occur in the test above could
be inaccuracy. This problem is often indicated by imprecise
language (e.g., ”a user”) or the use of the word “or“.

Figure 18 shows a scenario that violates these guidelines.
This scenario is inaccurate as it does not specify which user
is logged in to the application (line 2). To get this information
one would need to look into the step definition, which defies
the purpose of BDD. The same applies to lines 4 and 5, where
the concrete component is not specified.

1. Scenario: Monitor the Vehicle State (Success
)

2. Given I am logged in as a vehicle owner,
fleet manager or garage

3. And The vehicle state overview is
displayed

4. When I open the vehicle state overview for a
"component"

5. Then I see the detailed summary of the "
component"

Figure 18. Example of a Flawed Scenario.

An improved version of this scenario is displayed in Figure
19. It is now clear which user is logged in for the test case and
which component is viewed. If the scenario needs to be tested
for the other roles as well, this can be easily accomplished by
using a scenario outline.

1. Scenario: Monitor the Vehicle State (Success
)

2. Given I am logged in as a vehicle owner
3. And the vehicle state overview is

displayed
4. When I open the vehicle state overview for

the motor
5. Then I see the detailed summary of the motor

Figure 19. Example of an Improved Version of the Scenario.

Software should be easy to change, therefore especially the
end-to-end tests should be robust against changes, as they take
a lot of time to implement [10]. To realize this, the Gherkin
features should not contain implementation details that are
prone to changing and leave out irrelevant information. When
an application’s implementation changes, only the correspond-
ing step definition needs to be updated, the step can remain
the same.

94Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

For the automation of the Gherkin features, step definitions
need to be written. For those there are also guidelines defined
to support automated testing. To increase maintainability,
useful selectors should be chosen. A poor selector is one
that is likely to change and is difficult to understand, an
example is XPath. It is recommended to use IDs or similar
attributes. By using the page object model maintainability can
be even further increased. The page object model implements
all interaction with the applications into classes called page
objects. The page objects hide UI details from the test code
[22].

One common problem for automated end-to-end tests are
tests that sometimes pass or fail without an apparent reason.
The reason could be race conditions. In web applications many
things happen asynchronously, so often the order in which calls
return cannot be known beforehand. A quick fix could be using
fixed-length waiting times. This is not a suitable solution,
as this increases the test execution time and on the other
side it does only decrease the possibility of a race condition.
Conditional waiting times should be applied instead [21].

A similar problem could occur when tests change persistent
state, but do not reset it. In this case the success of a test would
depend on the execution order. These side effects can lead to
false negative test results, i.e., the functionality works, but the
test fails. To prevent this, such a state should always be reset.

V. PIPELINE INTEGRATION

The pipeline considers all types of tests that are used.
Each microservice’s repository includes all of its isolated
tests (i.e., unit and Consumer-Driven Contract (CDC) tests),
the integrated tests (i.e., integration and end-to-end tests) are
stored in a dedicated test repository, following the approach
of the reusable automated acceptance test architecture from
[8], where the end-to-end tests are extracted into their own
repository. An example of executed pipeline jobs on a change
in the microservice VehicleMonitor is shown in Figure 20.
On a commit in a repository all of its pipeline stages are
executed, starting with the unit tests. The next tests that are run
are the CDC tests. These tests are split into separate pipeline
jobs ConsumerContract and ProviderContract. In the job Con-
sumerContract new contracts are created or existing ones are
updated by sending them to the Pact broker. If contracts are
changed in this stage, the affected providers are tested by
running their pipeline through Pact’s webhooks, where only
the provider tests are executed. Therefore, a pipeline trigger
token is created in the corresponding providers’ repositories to
start their pipeline from Pact. This also enables differentiating
how the pipeline was started. After the VehicleMonitor’s
consumer tests are finished, its provider contracts are retrieved
from the Pact broker and the microservice is tested. If the jobs
for unit and contract testing were successful, the new version
of the changed microservice is deployed. This will trigger the
test repository pipeline in the pipeline job Downstream with
its two jobs that run integration and end-to-end tests.

One of the most important aspects of a continuous integra-
tion pipeline is to have a short build time [23]. This leads to

Figure 20. Pipeline for a Change in the VehicleMonitor Microservice.

quick feedback about breaking changes to the developers. One
way to decrease the pipeline’s build time is to test as much
as possible on the lower levels of abstraction [24], without
external dependencies that slow down testing. Typically, in-
tegration tests are used to test the communication between
microservices, that often need to be deployed beforehand,
and are therefore slow [9]. The communication between the
microservices is tested with the much faster Consumer-Driven
Contracts (CDC) that can greatly reduce the needed integration
tests by replacing those [19]. The CDC tests are more stable
than the integration tests as less moving parts are involved
[12]. Error localization is simplified as in a CDC test only
two services are considered at a time. By stopping pipeline
execution on every failure and running the tests ordered by
execution time, feedback times are additionally reduced: if
there is an error in the unit tests this functionality will not
work in the tests of higher level. Another important feature of
a continuous integration pipeline is to run tests in a clone of the
productive environment [23]. There are two deployment envi-
ronments, called test and prod. Both deployment environments
mirror the contents of one branch each. The test environment
contains the state from the corresponding branch develop, and
the contents of the branch master get deployed to the prod
environment. As only those two branches get deployed, the
integration and end-to-end tests are only applicable to those.

1. .no-trigger-token:
2. rules:
3. - if: ’$CI_PIPELINE_SOURCE != "trigger"’

4. unit:
5. extends: .no-trigger-token
6. script: ...

Figure 21. Pipeline Configuration.

As GitLab is used, which only permits one pipeline per
repository, a solution needed to be found that allows this
structure with one single pipeline. Additionally, a goal was
decreasing duplicates in this pipeline configuration as much
as possible. This was achieved by the use of hidden pipeline
jobs that contain the needed rules for all pipeline jobs and
extend those as described in [25]. An excerpt for the pipeline

95Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

configuration is shown in Figure 21.
The job .no-trigger-token is hidden and contains a rule to

execute a job only if the pipeline was not started by a trigger.
There exists another hidden job, which contains the rule to
make sure a job is only executed when the current branch
corresponds to one of the two deployment environments, i.e.,
master and develop, and when the pipeline was not started
by a trigger token. This hidden job is extended by all jobs
that require a deployed microservice, i.e., ConsumerContract,
ProviderContract, Deploy and Downstream.

VI. RESULTS OF THE TEST CONCEPT

In the context of unit testing, the domain constraints provide
a structured approach. These constraints describe in a formal
way, which values for attributes or parameters for method calls
are permissible, before starting the implementation. Further-
more, the constraints are used as a reference during the im-
plementation and writing of unit tests. This has the advantage
that during the implementation the already defied edge cases
(within the constraints) can be used. Because the constraints
are created separately from the implementation, the unit tests
are correspondingly less influenced by the implementation.
The constraints provide a golden thread, which is helpful when
writing the unit tests.

Constraints can be efficiently utilized to create test cases for
edge cases. Edge cases are on one side of the constraint and
thus cover the area of the constraint. As a result, test cases
which do not increase the test coverage, are minimized.

During the implementation of the domain microservice
Vehicle, we applied the test concept. The structured approach
and the domain constraints were helpful for the developers.
This is because the systematic procedure by the test concept
subdivides the unit testing of the domain microservice in
several tasks. Therefore, we were able to assign these tasks
among us appropriately and thus work on some tasks in
parallel. When writing the unit tests, it was still an open topic
which test data should be used for the tests. Furthermore, these
can be systematically derived from the other existing artefacts
of the domain microservice.

The test concept distinguishes between domain and ap-
plication microservices. Therefore, the test concept with its
artifacts supports the scope of the respective microservices.
For example, the focus of an application microservice is more
on testing the behavior (e.g., through Gherkin features). This
was an advantage during the development of the application
PCM because a more targeted procedure to writing unit and
integration tests is possible.

Moreover, by shifting the tested functionality to tests of
lower layers whenever possible, the development time of the
tests as well as their execution time is minimized. Especially
CDC tests are important in a microservice-based application
to verify that different parts of the tested application can
communicate.

The guidelines for end-to-end tests (E2E) can help im-
proving the maintainability of those tests, by enabling faster

development and reducing test cases as much as possible. The
application of the guidelines leads to more stable tests.

The introduction of the uniform pipeline structure presented
in this paper will simplify the application of Continuous Inte-
gration / Continuous Deployment, especially when it is used as
a template, where only the microservice-specific scripts need
to be customized.

VII. CONCLUSION AND FUTURE WORK

We have introduced a test concept for the development
of microservice-based applications and showed its applica-
bility by the example of an excerpt of the microservice-
based application PredictiveCarMaintenance (PCM). One of
the main goals was to systematically test the application
by using the artifacts and different test types (end-to-end,
integration, consumer-driven contract, unit tests) and assist
the developers in this process. By starting with the domain
and its constraints, we test the domain microservices with
unit test by deriving the test from the constraints. Testing
the application microservice and its operations is done by
a systematic derivation of backend acceptance tests which
are transferred to unit tests. Next, we test the integration
of the microservices with consumer-driven contract tests to
test the microservices in an isolated way. Finally, end-to-end
tests are developed using the guidelines provided to test the
whole application at once. BDD simplifies the communication
with the stackholders. Overall, the test concept provides what
should be tested with which tests.

In addition, we integrated the different tests into a CI/CD
pipeline and described how the different pipelines need to be
triggered. The pipeline approach can be reused for further
projects with minor configuration adjustments. As a result,
we are convinced that applying the test concept leads to well
tested microservice-based applications with a small effort. At
the same time, the development of the application is simplified.

A further point to look at is that the test issues a determin-
istic request to the system under test and expects a predefined
output or response from the system. A request usually requires
concrete values and parameters. Therefore, a suitable selection
of the test data is necessary, for example, to cover edge cases.

In addition, a systematic representation of the test data needs
to be researched. The goal here is to arrange the test data into
an orderly format for the representation of the test data. One
goal of further research is to assist the developer with even
more support for writing tests by providing additional guide-
lines for applying the test concept. This includes optimizations
and enhancements of the presented test concept. In the future,
the test concept needs to be applied to more applications which
may lead to further insights to adapt the approach.

Moreover, the versioning of the CDC tests needs to be
revised in the future, as the tests are currently only executable
in master and development branches. The developers can
benefit from guidelines that will be created in the future and
can simplify the development of CDC tests.

96Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

REFERENCES

[1] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic Map-
ping Study in Microservice Architecture,” in 9th International
Conference on Service-Oriented Computing and Applications
(SOCA). IEEE, 2016, pp. 44–51.

[2] R. T. Fielding, “Rest: Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation, Uni-
versity of California, 2000.

[3] A. S. Bueno, A. Gumbrecht, and J. Porter, “Testing Java
Microservices: Using Arquillian, Hoverfly, AssertJ, JUnit, Se-
lenium, and Mockito,” 2018.

[4] D. Faragó and D. Sokenou, “Keynote: Microservices Testen
Erfahrungsbericht und Umfrage,” Test, Analyse und Verifika-
tion von Software (TAV) der Gesellschaft für Informatik (GI),
Stuttgart, 2019.

[5] B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and
S. Abeck, “Designing Microservice-Based Applications by Us-
ing a Domain-Driven Design Approach,” in International Jour-
nal on Advances in Software. IARIA, 2017, pp. 432–445.

[6] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, 2004.

[7] G. Regan, Concise Guide to Software Testing. Springer, 2019.
[8] M. Rahman and J. Gao, “A Reusable Automated Acceptance

Testing Architecture for Microservices in Behavior-Driven De-
velopment,” in IEEE Symposium on Service-Oriented System
Engineering, 2015, pp. 321–325.

[9] D. Savchenko, G. Radchenko, T. Hynninen, and O. Taipale,
“Microservice Test Process: Design and Implementation,” in
International Journal on Information Technologies and Security,
2018, pp. 13–24.

[10] J. F. Smart, BDD in Action. New York, NY, USA: Manning
Publications, 2015.

[11] D. North, “Introducing BDD— Dan North & Associates,” 2006.
[12] J. Lehvä, N. Mäkitalo, and T. Mikkonen, “Consumer-driven

contract tests for microservices: A case study,” in International
Conference on Product-Focused Software Process Improvement,
2019, pp. 497–512.

[13] J. Wang, X. Bai, H. Ma, L. Li, and Z. Ji, “Cloud API Testing,”
in 10th IEEE International Conference on Software Testing,
Verification and Validation Workshop (ICSTW), 2017.

[14] M. B. Juric, “A Hands-on Introduction to BPEL,” Oracle
(white paper), p. 21, 2006, [retrieved 30/08/2021]. [Online].
Available: https://www.oracle.com/technical-resources/articles/
matjaz-bpel.htm

[15] B. Elvesæter, A.-J. Berre, and A. Sadovykh, “Specifying Ser-
vices using the Service Oriented Architecture Modeling Lan-
guage (SoaML) - A Baseline for Specification of Cloud-based
Services,” in CLOSER, 2011, pp. 276–285.

[16] M. Schneider, B. Hippchen, P. Giessler, C. Irrgang, and
S. Abeck, “Microservice Development Based on Tool-
Supported Domain Modeling,” in Conference on Advances and
Trends in Software Engineering (SOFTENG), 2019.

[17] Object Management Group, “Object Constraint Language,”
[retrieved 30/08/2021]. [Online]. Available: https://www.omg.
org/spec/OCL/2.4

[18] S. Newman, Building Microservices: Designing Fine-grained
Systems. O’Reilly Media, Inc., 2015.

[19] Pact, “Introduction,” [retrieved 01/09/2021]. [Online].
Available: https://docs.pact.io/

[20] ——, “How Pact works,” [retrieved 30/08/2021]. [Online].
Available: https://docs.pact.io/getting started/how pact works

[21] M. Wynne and A. Hellesøy, The Cucumber Book: Behaviour-
Driven Development for Testers and Developers. Pragmatic
Bookshelf, 2012.

[22] M. Fowler, “PageObjects,” https://martinfowler.com/bliki/
PageObject.html, 2013.

[23] ——, “Continuous Integration,” https://martinfowler.com/
articles/continuousIntegration.html, 2006.

[24] H. Vocke, “The Practical Test Pyramid,” https://martinfowler.
com/articles/practical-test-pyramid.html, 2018.

[25] GitLab, “Keyword reference for the .gitlab-ci.yml file:
Extends,” [retrieved 30/08/2021]. [Online]. Available: https:
//docs.gitlab.com/ee/ci/yaml/#extends

97Copyright (c) IARIA, 2021. ISBN: 978-1-61208-894-5

ICSEA 2021 : The Sixteenth International Conference on Software Engineering Advances

