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Abstract—Metaprogramming or automated code generation
has been pursued for a long time, and is often considered crucial
to increase programming productivity. It has been argued in
previous work that evolvability of software is equally important,
and that a meta-circular metaprogramming architecture may be
crucial to addressing some fundamental evolvability issues in
metaprogramming. At the same time, the field of software engi-
neering struggles to provide firm technical guidance to computer
programmers, and often reverts to heuristics and documented
patterns. As metaprogramming is in general more complex than
traditional programming, it seems even more crucial to provide
technical guidance to metaprogrammers. In this contribution, the
bootstrapping of an elementary meta-circular metaprogramming
environment is investigated. Its main purpose is to serve as a
pathfinder for the development of design patterns and techniques
that can support and guide metaprogramming.

Index Terms—Evolvability; Metaprogramming; Design Patterns;
Meta-Circularity.

I. INTRODUCTION

Metaprogramming or automated code generation has been
pursued for a long time. Among other things, it is often
seen as one of the most promising approaches to increase
the productivity in computer programming. We have argued
in our previous work that it is equally important to increase
the evolvability of software systems [1], although this receives
less attention within the Information Systems (IS) research
area [2]. We have also argued that some fundamental issues
hamper the evolvability of metaprogramming software [3], and
that a meta-circular architecture seems suitable to address this.
At the same time, it seems hard to provide strict guidance to
computer programmers [4], and the field of software engineer-
ing often reverts to heuristic design patterns and craftsmanship
practices. As metaprogramming is in general more complex
than programming, and meta-circular metaprogramming even
more complex, it seems imperative to provide some solid
design patterns for such metaprogramming environments. In
this contribution, we investigate the bootstrapping of a basic
meta-circular metaprogramming environment, that could serve
as a pathfinder to extract such envisioned design patterns, or
even more fundamental techniques.

The remainder of this paper is structured as follows. In
Section II, we briefly discuss automatic or metaprogramming,
and its relationship with the broader field of software engi-
neering. In Section III, we describe the overall architecture and

the implementation setup of our elementary metaprogramming
environment. Section IV presents the detailed procedure to
bootstrap the meta-circular and autogenous metaprogramming
environment. The details and characteristics of this environ-
ment are discussed in Section V. Finally, we present some
conclusions in Section VI.

II. METAPROGRAMMING AND SOFTWARE ENGINEERING

In this section, we give a brief overview of the field of
metaprogramming, and discuss its importance and position in
the discipline of software engineering.

A. Automatic or Metaprogramming

The automatic generation of code, i.e., writing code that
writes code, is probably as old as coding or software pro-
gramming itself. Not unlike many other areas in information
technology, several different terms are used to describe this
activity, and their associated meanings may vary both over
time and between authors. We briefly go through some terms
and concepts, which we have explained in more detail in [3].

Though it has been argued for a long time that the mech-
anisms are quite similar [5], a distinction is often made be-
tween code generation, where a compiler generates executable
code from a high-level programming language, and automatic
programming, where source code is generated from a model
or template. Related terms include generative programming,
highlighting the similarity to automated manufacturing in the
industrial sector [6], and metaprogramming, emphasizing the
fact that this is a meta-level activity, and often defined as a
programming technique in which computer programs have the
ability to treat other programs as their data [7].

One of the main goals of automatic programming has
always been to improve programmer productivity. Therefore,
several terms in software development methodologies and
tools are closely related to automatic programming. Method-
ologies like Model-Driven Engineering (MDE) and Model-
Driven Architecture (MDA) focus on the creation and exploita-
tion of conceptual domain models and ontologies, and assume
the presence of software tools for the automatic generation of
code. Such model-driven code generation tools that provide an
environment for programmers to create application software
through graphical user interfaces and configuration, are now
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often referred to as Low-Code Development Platforms (LCDP)
or No-Code Development Platforms (NCDP). Despite all the
terms and tools, the realization of automatic programming on
an industrial scale remains not straightforward [8].

B. Engineering Metaprogramming

Software engineering is sometimes considered to be
an eclectic field. To guide software developers, various
paradigms, techniques, process models and tools exist. Even
a vast amount of software development methodologies, i.e., a
comprehensive guide to developing a system [9], have been
available for decades. Though this resulted in a widespread
belief that adherence to systems development methodologies is
beneficial [10], the adoption of systems development methods
remained limited [9] [10]. This led to more pragmatic strate-
gies for concrete guidance, like the use of design patterns [11],
solutions to common development problems that have proven
their quality empirically, agile methodologies like SCRUM
[12] that value self-organizing teams and adaptive collabora-
tion with customers over strict planning and comprehensive
processes, and software craftsmanship practices like clean
code [13]. It seems that we have not found the fundamental
laws of software that would play the role that the fundamental
laws of physics play for other engineering disciplines [4],
which could explain the renewed emphasis on best practices
and heuristics in postmodern software engineering.

Though metaprogramming would seem in general to be
more complicated than standard programming, structured tech-
niques and guidance seem even scarcer for metaprogramming.
Nevertheless, we have argued in our previous work that
some fundamental issues need to be addressed to achieve
productive and scalable adoption of automatic programming
techniques [3]. First, to cope with the increasing complexity
due to changes, we have proposed to combine automatic
programming with the evolvability approach of Normalized
Systems Theory (NST) providing (re)generation of the re-
curring structure and re-injection of the custom code [1],
[3]. Second, we have proposed a meta-circular architecture
to regenerate the metaprogramming code itself as well [14],
[15]. The term meta-circularity dates back to Reynolds [16],
and is related to the concept of homoiconic languages [17],
enabling a program to be manipulated as data using the same
language, and allowing the program’s internal representation
to be inferred just by reading the program itself.

Such a meta-circular architecture offers several potential
benefits. It could avoid the growing burden of maintaining
the often complex meta-code and continuously adapting it
to new technologies [3], and could facilitate a more scalable
collaboration between metaprogrammers through the exchange
of meta-models. At least, a unified view on both the metapro-
gramming code and the source code being generated would
reduce the cognitive load for the metaprogrammers, and would
enable us to apply advancements in programming techniques
simultaneously to both the generative and generated code.

Figure 1. Representation of meta-circular and autogenous generation.

As one could expect meta-circular metaprogramming to be
even more complicated than standard metaprogramming, it
seems imperative to provide guidance to the metaprogrammers
through structured concepts, techniques, and patterns. In this
contribution, we investigate the bootstrapping of an elementary
meta-circular metaprogramming environment in a very basic
Java programming environment. The main purpose of such
an elementary environment is to clarify the basic concepts,
and to serve as a pathfinder to extract some future design
patterns — and maybe even more fundamental techniques or
basic primitives — to guide metaprogrammers.

III. AN ELEMENTARY METAPROGRAMMING
ENVIRONMENT

In this section, we explain the scope, purpose, architecture,
and implementation environment of the elementary metapro-
gramming environment presented in this paper.

A. Purpose and Overall Architecture

The scope of the code generation needs to be very basic
but nevertheless realistic. As data models such as Entity
Relationship Diagrams (ERD) are common and widespread,
we decided to use basic representations of data entities as the
models of the metaprogramming environment. The generated
code needs to be able to represent such basic data entities,
featuring both data attributes and relationships or references,
and to import or read instances of these data entities. An
example of such a data entity would be an invoice, having
an invoice number and client as attributes, and references to
the various invoice lines as relationships.

The goal is to create an elementary metaprogramming envi-
ronment with a clear and simple structure, completely devoid
of unnecessary complexities. At the same time, we want
the metaprogramming environment to exhibit two additional
fundamental characteristics. These fundamental properties are
schematically represented in Figure 1.

• Meta-Circular generation:
The generator code needs to be able to generate itself.
This requires, of course, a bootstrapping process, i.e., the
generator code needs to be handcrafted first before it can
be enabled to (re)generate itself.
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Figure 2. Instantiating a coding template with model parameters.

• Autogenous generation:
The generated code itself needs to be able to generate.
The artifacts that the generated code could generate
should in general be related to the domain entity, e.g.,
invoice classes could generate an invoice document.

B. A Basic Implementation Environment

To represent data, both the model parameters such as entities
and attributes, and the actual instances of the data entities such
as invoice numbers, we decided to use the extremely simple
and widespread format of Comma-Separated Values (CSV). As
templating engine, we have opted for StringTemplate [18], as
it allows hardly any logic in the templates [19]. In this way,
we ensure that the templating engine serves as a plain off-the-
shelf tool to replace parameter strings with actual values.

To feed the data of the model into the templating engine,
we use an elementary kernel function of the metaprogramming
environment described in [3]. Based on this functionality, the
model consisting of linked data instances is made available to
the coding templates through Object Graph Navigation Lan-
guage (OGNL) expressions [20] using the Apache Commons
OGNL library [21]. More specifically, every model data entity
is passed as a linked data tree to the template, where we can
select individual properties like name by entity.name, or
access a linked list of attributes by entity.attributes and
loop through them. The templating engine simply replaces the
parameters in the template with the actual values from the
linked data tree. This procedure, a kind of convolution between
a template and a linked data tree, seems to us one of the most
basic mechanisms for code generation.

Figure 2 provides a schematic representation of such an el-
ementary code generation. An instance of a model entity, with
name Invoice and belonging to a package net.palver.invoice,
is fed into a coding template for a base class. In this template,
the values of the model entities are represented as parameters.
The generator code will resolve these parameters and replace
them with the actual values of the model entity, resulting in
real source code for that domain entity.

IV. TOWARD META-CIRCULAR AND AUTOGENOUS
EXPANSION IN TEN STEPS

In this section, we present a detailed procedure to bootstrap
in ten steps an elementary meta-circular and autogenous
metaprogramming environment. The ten steps are grouped in
four cohesive subprocedures.

A. Create Basic Generator Code

1) Read basic entity model: We create a base DTO (Data
Transfer Object) class EntityComposite to represent the indi-
vidual entities with basic attributes like name and package
name, and an EntityReader that reads a CSV file Entitys.csv,
and makes a list of DTO instances based on the entries. As a
test, we print the list of instances after reading.

2) Expand basic entity class: We introduce a base class
expander template CompositeExpander for a DTO class repre-
senting a domain entity, and a generator class EntityGenerator
that reads the entities using the EntityReader, and feeds them
to the template to create the DTOs. We check whether the
base classes, similar to Figure 2, are correctly generated.

B. Generate Viable Data Entities

1) Support entity attributes: We provide support for at-
tributes having a type and name through an AttributeComposite
and AttributeReader class, include a variable list of attribute
composites in the EntityComposite DTO, and introduce get-
set-methods in the CompositeExpander template. The Enti-
tyReader is extended to read for every entity the list of
attributes from a <Entity.name>Attributes.csv file. As a test,
we define number and client as invoice attributes, and read
some sample data.

2) Generate an entity reader: We introduce a Reader-
Expander template based on the reader class that we have
programmed, and extend the EntityGenerator to instantiate for
every entity a reader class together with a composite class. The
generated classes are compiled for an invoice entity, and tested
by reading some sample data.

3) Introduce linked entities: We introduce list type at-
tributes and extend the CompositeExpander template to sup-
port the variable definition and get-set-methods for such list
fields. We also extend the ReaderExpander template to read
these linked entities, in the same way that the EntityReader
supports invoking the AttributeReader. We test this by defining
an InvoiceLine entity, an invoiceLines attribute in the invoice
entity, and reading some sample invoices and invoice lines.
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C. Regenerate the Generator Code

1) Generate the meta-entities: The model to represent
data models is implicitly based on data entities itself, being
Entity and Attribute. So, we define them in the CSV files
Entitys, EntityAttributes, and AttributeAttributes, and run the
EntityGenerator to regenerate the composite and reader classes
for entity and attribute. After comparing the generated classes
with the origonal ones, we make them available.

2) Replace original base code: We now retire the original
composite and reader classes, and replace them in our test
setup. Using the newly generated composite and reader classes,
and the still original EntityGenerator class, we perform regres-
sion testing by reading the models for invoice and invoice line,
and generating their composite and reader classes.

3) Replace the generator code: We are now ready to
generate the generator class itself through a GeneratorEx-
pander template. To avoid hardcoding the specific expander
templates to be used, we introduce an additional model entity
ExpanderPath and define the actual expander templates to be
used for the entity Entity in a CSV file EntityExpanderPaths.
The generated EntityGenerator class will use this CSV file
to guide the instantiation fo templates. We also introduce an
expandable attribute on the entity, as this generator class does
not need to be generated for the traditional domain entities.
Figure 3 represents the code template for the generator class
and its instantiation for the Invoice entity, similar to the base
class instantiation represented in Figure 2.

D. Enable Autogenous Generation

1) Create autogenous generator: All Java source code has
now been retired. A traditional domain entity like invoice
can now be enabled to perform generation itself, i.e., auto-
genous generation, by simply setting the expandable attribute,
resulting in the generation of an InvoiceGenerator class. This
generator class will use the list of templates through a CSV
file InvoiceExpanderPaths, and instantiate these templates.
The artifacts to be created by these domain entities are not
necessarily programming files. As a test example, we used an
InvoiceTexExpander template, generating a Latex file for every
invoice instance.

2) Generate derived artifacts: We are now able to generate
additional artifacts for instances of domain entities like Invoice
by simply defining additional templates and defining them in
the InvoiceExpanderPaths CSV file. For instance, we have in-
troduced HyperText Markup Language (HTML) and Universal
Business Language (UBL) expansion templates to instantiate
and exchange invoices.

V. RESULTS AND DISCUSSION

Figure 4 presents a schematic overview of the various
artifacts and their interrelationships. These artifacts include
model parameter data files, domain entity data files, (gen-
erated) source code classes, runtime object instances, source
code templates, and artifacts generated by the domain classes.

TABLE I.
SIZE OF THE REMAINING TEMPLATE SOURCE CODE.

Expander LOC #Bytes
Composite 29 735
Reader 35 1180
ExpansionContext 26 726
Generator 34 1230

Total 124 3871

The green area filling symbolizes the fact that the artifacts
are generated, and the light blue contours indicate run-time
objects instantiated by classes.

At the upper or meta-level, an EntityReader reads the
entities and their attributes, and instantiates object instances
of the EntityComposite class. These object instances of the
domain entities are used by the EntityGenerator to instantiate
the code templates and to generate domain classes like In-
voiceComposite and InvoiceReader. At the central or domain
level, a generated reader class like InvoiceReader reads the
invoices and their invoice lines.

This basic code generation or metaprogramming framework
has been extended to include the two additional characteristics.

• The metaprogramming becomes meta-circular by repre-
senting and reading the meta-entities in the same way as
the domain entities, enabling the generation of the various
classes at the meta-level itself.

• The metaprogramming becomes autogenous by generat-
ing a generator class for the domain entities as well,
allowing to generate various artifacts for the instances
of the domain entities themselves.

In the resulting meta-circular and autogenous code gener-
ation environment, there is not a single line of actual Java
source code left. The only remaining source code consists of
the four Java coding templates. Table I presents an overview of
the size of the Java code in the four coding templates, detailing
both the number of Lines Of Code (LOC) and the number of
bytes. The ExpansionContextExpander template has not been
mentioned yet, as it is a small technical helper class used
mainly to setup some basic technical details, including the file
paths for the CSV input files and the generated artifacts.

The small number of artifacts, and the very limited size
of the final codebase, indicates that we have indeed created
a quite elementary metaprogramming environment, that nev-
ertheless exhibits meta-circular and autogenous code gener-
ation. The complete absence of any remaining source code
is another confirmation of the elementary nature and limited
complexity of the environment. In our opinion, this shows that
the instantiation of coding templates through the evaluation
of OGNL expressions in object data trees is a valuable
metaprogramming pattern, and may even be close to being
a fundamental technique for metaprogramming.

As mentioned before, the meta-circular nature of the
metaprogramming environment avoids the complexity of two
programming environments, i.e., one for the generator code
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Figure 3. Representation of the instantiation of the generator code template for the Invoice entity.

Figure 4. A graphical representation of the overall expansion.
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and one for the generated code, and enables the simultaneous
introduction of improved and/or extended programming tech-
niques in both generator code and the code that is generated.
Moreover, it fundamentally decreases the barrier to port such
a (meta)programming environment to another programming
platform and/or language. Indeed, porting the coding templates
and target systems to another language would automatically
port the metaprogramming software as well.

VI. CONCLUSION

Automated code generation or metaprogramming is often
seen as an important, and maybe even crucial, approach
to increase programming productivity. We have argued in
previous work that, for reasons of software evolvability and
scalable collaboration, such a metaprogramming environment
should preferably exhibit a meta-circular architecture. As
meta-circular metaprogramming might entail additional com-
plexity, it seems desirable to provide guidance to metapro-
grammers through structured concepts and techniques.

In this contribution, we have presented a detailed proce-
dure to bootstrap an elementary but realistic meta-circular
metaprogramming environment. Its purpose was to serve as
an architectural pathfinder to clarify some basic concepts, and
to support the future extraction of metaprogramming design
patterns, or even more fundamental techniques.

The bootstrapping of this meta-circular metaprogramming
environment is believed to make some contributions. First,
the elementary nature of the environment offers a clear and
structured view on both the concept of meta-circularity in code
generation environments, and on the bootstrapping process that
is needed to realize such an architecture. Second, we have also
presented the emergence and basic mechanism of autogenous
code generation, i.e., the generated code itself being able to
generate artifacts. Third, the rather straightforward realization
of meta-circular and autogenous code generation seems to
indicate that replacing variables in coding templates through
OGNL expressions in data instance trees might be a valuable
pattern for metaprogramming.

Next to these contributions, it is clear that this paper is also
subject to a number of limitations. The bootstrapping is per-
formed for a single elementary metaprogramming in a single
language environment. Additional work needs to be performed
to extract and formulate more general design patterns and
structured techniques for (meta-circular) metaprogramming.
Nevertheless, we believe that this is a worthwhile pursuit, and
we are planning to further explore this approach.
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