
Strategy for Early Recognition and Proactive Handling of Disruptions Regarding the
Service of Computer Centres and IT Infrastructures Based on Statistical Methods

Martin Zinner, Kim Feldhoff, Wolfgang E. Nagel
Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden
Dresden, Germany

E-mail: {martin.zinner1, kim.feldhoff, wolfgang.nagel}@tu-dresden.de

Abstract—Ensuring smooth operations of data centres is key to
a company’s success. This endeavour is becoming more and more
difficult. Given the continuously increasing amount of data, real-
time demands and continuous system availability requirements,
the Information Technology (IT) infrastructure is increasingly
becoming more and more complex and unmanageable. Humans
are not able to manually identify in time the breakdowns of the
IT systems, let alone predict or avoid them. Hence, there is a
need for an overall strategy regarding the early recognition or
rather, the avoidance of outages. In the focus of our attention are
technologies in the area of artificial intelligence, data analytics,
anomaly detection, logging, and parsing, etc. We define an overall
strategy in this regard, such that by automating and/or reducing
routine activities the support team can concentrate its activity on
setting up leading edge technologies rather than relying on the
individual skills of some team members in fixing or preventing the
failures. To conclude, our strategy supports a paradigm shift from
more or less subjectively designed individualistic conceptions in
handling of disruptions regarding the service of computer centres
and IT infrastructures towards objectively established optimal
solutions.

Index Terms—Computer centre; Data Analytics; Statistical
methods; Anomaly detection; Artificial Intelligence; Trend anal-
ysis; Failure diagnosis; Failure prevention; Monitoring system;
Event logs.

I. INTRODUCTION

Given the continuously increasing amount of data, cloud
enabling of applications, virtualisation and software as a
service, the IT infrastructure is increasingly becoming more
and more complex, such that the Information Technology
(IT) departments lose the overview of their systems [1] [2].
Moreover, the aging legacy systems, which are critical to day-
to-day operations, but are based on outdated technologies,
additionally contribute to the confusions within the IT de-
partments. Hence, humans are not able to manually identify
in time the failures (breakdowns) of the IT systems, not
to mention their ability to identify the cause of the failure
and remedy the outage within the required time frame as
specified by the support agreements. An IT system includes
all hardware, software, and peripheral equipment, operated by
a limited group of IT specialists. Hence, the IT system can be
an application, a Virtual Machine (VM), a server, the whole
computer centre or IT infrastructure.

Moreover, cascading of failures should be avoided, since
they can cause a partial or a complete breakdown of the IT
systems, leading to production outages. Hence, by reacting in
time to failures, often far below the legal required response

time imposed by contracts, possible negative side effects and
subsequent failures can be avoided or their number can be
considerably reduced. The optimal functioning of the computer
centres can be measured by the Quality of Service (QoS) they
deliver [3]. The QoS describes the overall performance of a
service as seen by the users of the service or measured by
appropriate metrics. A metric is a quantitative measure used
to characterise, evaluate, and compare performance, whereas
measurement is the process by which numbers or symbols are
assigned to attributes of entities [4].

An experienced car driver knows that while the engine is
running and the oil pressure fails, after a short period of time,
the pressure control system stops the compressor and conse-
quently, – in order to avoid damage – shuts down the engine. A
much better strategy is to avoid low oil pressure by monitoring
the values of the sensors and by taking appropriate proactive
actions if these values reach some predefined thresholds.

Regarding our study, two major perspectives on the health
of a specified IT system have been identified:

a) Objective perspective - the view which the surrounding
system has on the specified IT system,

b) Subjective perspective - the view which the IT system has
regarding his own health.

For example, the event log files, which an application gen-
erates, are part of the subjective perspective of the application
regarding its own health. On the other hand, metrics like the
daily standard deviation of the Central Processing Unit (CPU)
load and Random Access Memory (RAM) usage regarding the
application, is part of the objective perspective, the operating
system has on the application. The subjective perspective, an
application has regarding his own health, may be inaccurate,
since for example, the log files may be incomplete or even
erroneous. On these grounds, it is essential to set up a proper
objective perspective. Within this article, we suppose that
the objective perspective is reliable and accurate. This is not
true per se, since the operating system, which gathers the
metrics, may also be buggy, but a discussion in this regard
is outside the scope of this article. Although, the objective
perspective is accurate, the default metrics delivered by the
usual applications like the operating systems do not deliver
enough information regarding the health of the IT systems.
The ultimate challenge is to set up an appropriate strategy
regarding the estimation of the health of the IT systems based

93Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

on the available basic information delivered by the operating
systems, log files, including the system log files, sensors, etc.

A. Motivation

1) Rapidly increasing data amount: The total amount of
data created, captured, and consumed globally is forecast to
increase rapidly, reaching more than 180 Zettabytes in 2025,
as opposed to 64.2 Zettabytes in 2020 and 15.5 Zettabytes
in 2015 [5]. Worldwide by 2022, over 50 billion Internet
of Things (IoT) devices including sensors and actuators are
predicted to be installed in machines, vehicles, buildings, and
environments and/or used by humans.

2) Real-time demands: Real-time information processing
has become a significant requirement for the optimal func-
tioning of the manufacturing plants [6]. Demand is also
huge for the real-time utilisation of data streams [7]. The
operations of a real-time system are subject to time constraints
(deadlines), i.e., if specified timing requirements are not met,
the corresponding operation is degraded and/or the QoS suffer
and it can lead even to system failure [8]. There is a general
tendency that real-time requirements are becoming crucial
requisites.

Travellers require current flight schedules on their portable
devices to be able to select and book flights; in order to
avoid overbooking, the flight plans and the filled seats must
be kept reasonably current. Similarly, people expect instant
access to their business-critical data in order to make informed
decisions. Moreover, they may require up-to-date aggregated
data or even ad-hoc requests. This instant access to critical
information may be crucial for the competitiveness of the
company [9].

3) 24/7/365 (round-the-clock) system availability: Con-
tinuous availability requirements for production-support IT
systems, for example in the semiconductor industry, are the
general rule. Many companies consider their tolerance for
factory non-scheduled downtimes, due to their revenue losses,
plain and simple to be zero. Manufacturing systems tend
towards fully automated production systems. Moreover, in the
semiconductor industry, in order to avoid chaotic situations,
even the outage of some central IT systems, like the Manufac-
turing Execution System (MES) leads to a graceful shutdown
of the production.

B. Aim

Our intention is to define an implementable strategy to
achieve Early Recognition and Proactive Handling of Disrup-
tions (ERPHD) regarding the service of computer centres and
IT infrastructures. Furthermore, the objective of our strategy
is to keep operational expenses low, such that by reducing
routine activities, the IT staff can focus mainly on innovation.
We need a strategy of maximising outcome through leading
edge technologies while minimising maintenance and support
effort.

In conclusion, our strategy is enabling a new overall per-
spective on handling the disruptions regarding the service of
computer centres and IT infrastructures, such that it contributes

to a paradigm shift from more or less subjectively designed
individualistic conceptions in handling of disruptions towards
objectively established optimal solutions.

C. Paper organisation

The remainder of the paper is structured as follows: Sec-
tion II gives an overview regarding existing work related to
the described problem. An informal description of our strategy
is presented in Section III. The presentation of the main
results and discussions based upon these results constitute the
content of Section IV, whereas Section V summarises our
contributions and draws perspectives for future work.

II. RELATED WORK

The focus of this section is primarily on the existing
industry-specific solutions. We are not aware of similar open
source implementations.

A. HPE InfoSight

Hewlett Packard Enterprise (HPE) helps customers address
potential infrastructure issues with HPE InfoSight, a cloud-
based Automated Infrastructure Operations (AIOps) platform,
that applies InfoSight Artificial Intelligence (AI) and advanced
machine learning to go beyond simple troubleshooting. HPE
InfoSight puts the focus on prevention. It uses predictive
analytics to predict, prevent, and auto-resolve problems from
storage to VMs. HPE InfoSight prevents customers from
ever seeing a known issue through advanced pattern-matching
algorithms. HPE InfoSight eliminates most of the pain of man-
aging HPE infrastructure alone by automatically predicting
and being able to resolve most of the issues automatically. For
example, InfoSight might identify performance issues between
the VMs and the storage system. This allows for increased
application availability and reduced costs, while avoiding the
typical headaches of manually digging into log files. In order
to achieve the above benefits, HPE must collect telemetry data
from the systems [10] [11].

B. Ironstream

Ironstream R© integrates machine data from traditional legacy
IBM systems into leading IT analytics platforms to work
seamlessly with Splunk R©, ServiceNow R©, Micro Focus R©,
Microsoft R©SCOM, Elastic, Apache Kafka R© [12] [13]. Hence,
organisations can monitor and manage their IT systems from
a single management console by integrating event and system
performance data from these traditional IBM systems into their
platforms.

C. Splunk

Splunk offers a central platform for analysing machine gen-
erated data by developing advanced analytics [14] [15]. It can
gather data from various log files including also applications
event logs. Splunk can collect data from various location and
combines it into centralised indexes and aggregates the log
files from many sources to make them centrally searchable.
It can drill down to the period when the problem occurred in
order to be able to determine its cause. Appropriate alerts can

94Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

be generated to avoid similar problems in the future. Moreover,
important patterns and data analytics can be derived. A Search
Processing Language (SPL) [16]–[18] has been developed in
order to filter, summarise, and visualise large amount of data.

D. SAP HANA Troubleshooting and Performance Analysis
Tool

In order to support its in-memory database HANA, the
software company SAP introduce onto the market a trou-
bleshooting and performance analysis tool [19]. This tool
fulfils the expected requirements, like performance and high
resource utilisation, has a section of common symptoms and
troubleshooting, root causes and solutions, etc. for the general
part. For example the section root causes and solutions has
a part regarding thread monitoring: “What and how many
threads are running, what are they working on, and are any of
these threads blocked?” or “Are any operations running for a
significantly long time and consuming a lot of resources? If
so, when will they be finished?”.

Moreover, the tool has a part corresponding to database
issues, like SQL statement analysis, query plan analysis,
advanced analysis, etc. For example, the advance analysis
comprises analysing column searches, analysing table joins,
etc. The troubleshooting and performance analysis strategy
of SAP regarding HANA is very complex and fulfils the
requirement and expectations of the users. Unfortunately, it is
built by considering the implementation and particularities of
a proprietary in-memory database. Of course, some concepts
as the importance of the thread monitoring can be considered.

E. Toward Resilience in HPC

High-Performance Computing (HPC) is a technology that
harnesses the power of supercomputers or computer clusters
to solve complex problems requiring massive computation.
In addition to parallel processing, HPC jobs also require
fast disks and high-speed memory. Therefore, HPC systems
include computing and data-intensive servers with powerful
CPUs that can be vertically scaled. HPC systems can also
scale horizontally by way of clusters. These clusters consist
of networked computers, including scheduler, compute, and
storage capabilities [20]. At the University of Technology
Dresden/Germany, “jam–e jam”, a prototype to analyse and
predict system behaviour based on statistical analysis has been
developed. It detects node-level failures on HPC systems, as
early as possible, in order to employ appropriate protective
measures in useful time. The main source of monitoring data
are the system log entries – data using the syslog protocol –
due to their availability and information richness [21].

In conclusion: the main focus of the existing industry-
specific solutions is primarily system performance data on
proprietary hardware like HPE InfoSight and Ironstream, and
software like SAP HANA. Additionally, Splunk focuses on
gathering and interpreting event log data based on a propri-
etary language (SPL), which increases the learning curve. In
contrast, our strategy comprises an overall solution, which is

vendor-independent, it does not need inside knowledge regard-
ing the implementation and functioning of the applications and
it is based on leading edge but harmonised technologies. It
can be conceived as a central monitoring and troubleshooting
environment. Additionally, it proposes a uniform event log
parsing and analysis strategy, which does not assume inside
knowledge of the structure. We are not aware of any commer-
cially available tool which uses this approach.

III. STRATEGY DESCRIPTION

In a nutshell, the strategy regarding the disruptions of the
services of computer centres and IT infrastructures might be:

a) Monitoring the health of the IT systems,
b) Predicting possible malfunctions, interruptions, and

downtimes,
c) Proactive actions in order to avoid possible degradation

of the QoS delivered by the IT systems,
d) Immediate alerts on failures,
e) Appropriate actions in order to avoid subsequent degra-

dation of the QoS delivered by the IT systems,
f) Corrective actions in order to facilitate the resumption

of the failed activity, automatic if possible, else manual
actions, including bypass solutions (workarounds),

g) Appropriate actions to avoid similar cases in the future.

A. Event logs

Generally speaking, an event log is an automatically pro-
duced, usually, but not necessary time-stamped documentation
of events relevant to a particular IT system. We analyse the
advantages and disadvantages of the event logs within the
ERPHD strategy and make proposals in order to be able to
use them advantageously.

1) Importance of the event logs: Event logs are semi-
structured text which are generated by logging statements
in software code [22]. Unfortunately, event logs may be
inaccurate, they may not unequivocally identify the cause of
the anomaly and the subsequent steps that have to be taken in
order to remedy the failure. According to at least two studies,
around 60% of failures due to software faults do not leave any
trace in event logs, and 70% of the logging patterns aim to
detect errors via a checking code placed at the end of a block
of instructions [22].

The event logs are written in general by application devel-
opers in order to facilitate the debugging and error finding
in their programs. The purpose of the event logs, especially
of those written by developers, is to support the development
process and not to ease troubleshooting once the product goes
productive. Ideally, the information delivered by the event
logs should be enough to unequivocally identify the cause of
the anomaly, and hence to enable the support team to take
appropriate corrective actions. Unfortunately, in real-world
systems this is not always the case. Hence, the findings in
the entries delivered by the event logs should be augmented
by additional sources of information.

The event log files are generally human readable, they are
either plain format text files, in XML or JSON format, etc.,

95Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

and enable an efficient and simple one way of communication
of the applications with the outside world and they probably
will still widely be used in the future. The biggest advantage
of the event log files represents also the major difficulty when
trying to parse them, namely their flexibility and designing
freedom. The effort to harmonise the information parsed from
the event log files should not be underestimated.

2) Parsing strategies: To parse signifies to break some-
thing into its parts, parsing comprises a syntactic analysis
of a string, such that it is separated into more easily pro-
cessable components by identifying tokens and looking for
recognisable patterns. It converts formatted text into a data
structure. When parsing the message, the footprint of the actual
text message – i.e., the identification mark of the message
without considering irrelevant numbers – should be stored
additionally. This is advantageous, since this way, the text
of the message can be uniquely identified independent of
the included numbers. Hence, to each message, an additional
Unique Text Identifier (UTID) is associated as its text part.
Additionally, some keywords like “error”, “warning”, etc., and
time stamps can/should be tracked. Thus, an Unique Identifier
(UID) can be defined by using the UTID and some additional
attributes. This way, the complexity of the event logs has been
reduced to a tuple of identifiers, including UTID, UID, and
additional keywords. These tuples can be historised/aggregated
and used for evaluations. Obviously, a mapping of the UID to
the original message should be set up, such that the stored
information can be human readable and interpretable.

Generally, multilingual event log files should not pose
difficulties, if the event log entry of a particular statement
of the monitored application does not switch the language
aleatorily. We are only interested in the footprint of the re-
spective message and are not analysing its content. Moreover,
keywords or key phrases such as “error”, “warning”, etc.,
which are evaluated, can be mapped to the corresponding
English idiom [23] [24].

In conclusion: event logs could/should be extensively used
within our strategy, but since they are highly unreliable,
they should be used with precaution in the classical sense.
Moreover, the history of their behaviour should be carefully
analysed and appropriate decision should be taken based on
deviation from the expected appearance. There is no set of
rules regarding the form and content of the event logs, which
makes the analysis of the logs even more difficult.

B. Failures

Generally, a failure is an issue with the IT system that
prevents it from functioning properly and it is an observed
property of the run-time behaviour of the system [25]. It
occurs when the “delivered service no longer complies with
the specifications, the latter being an agreed description of
the system’s expected function and/or service” [26]–[28]. The
IT system may end abnormally if a failure occurs [29]. We
analyse the types of failures which can occur within an IT
system and examine the high level strategies to address them.

1) General considerations: The handling of incorrect re-
sults, which do not produce abnormal termination is outside
the scope of this work. For example, if the mathematical
formula is incorrectly implemented and delivers wrong results,
but the programs terminates in the usual way then this is a
debugging issue for the development or for the testing team,
and it is considered a defect or a bug.

A crash is a serious software failure, such that the software
process terminates unexpectedly. Crashes can be reproducible
(e.g., triggering an unhandled exception) or non-reproducible
(e.g., accessing invalid memory addresses). We do not make
any difference between a failure and a crash which is re-
producible. It seems that the most difficult problem besides
preventing outages is troubleshooting, i.e., finding the cause
of the crash. Troubleshooting is the process of identifying
and resolving a problem, error or fault within a software
or computer system, whereas debugging requires finding the
cause of a problem related to software code and fixing it.
A fault is an incorrect part of an IT system, which leads to
unintended behaviour and in the end to its failure, whereas an
error describes any issue that arises unexpectedly that cause a
computer to not function properly [30].

Finding the cause for a non-reproducible crash may be a
very cumbersome problem, which is hard to debug or predict.
For example, dump analysis can help. In some other cases, the
cause is a consequence of traceable malfunctions, for example
memory leaks can cause the crash of a program.

An outage is a discontinuity in the provision of the service
of an IT system or group of IT systems including the computer
centre or the IT infrastructure. Analogously, a disruption is
an unplanned event that causes the general system or major
application to be inoperable for an unacceptable length of time
(e.g., minor or extended power outage, extended unavailable
network/equipment or facility damage/destruction) [31].

2) Detecting the cause of the crash: Using our strategy,
finding the cause of a crash becomes a routine activity, and
one does not have to rely on the “inside knowledge” of some
highly qualified IT personnel. Moreover, the time to restrict
the cause of the crash can be reduced to minutes instead of
hours.

Our aim is to avoid failures, but this intent is not realistic,
bearing in mind the complexity of the present-day computer
centres. Hence, methodologies should be set up, such that a
very fast reaction to overcome the drawback of failures is
generally possible:
a) Sound methods should unequivocally determine that a

failure has happened, i.e., the crash is instantly recognised
as such,

b) Within short time, reliable techniques should localise and
subsequently identify the cause of the failure,

c) Apply the predefined workaround (e.g., by deleting some
wrong data, etc.),

d) Restart the application, if necessary,
e) Setup a solution, such that similar failures can be avoided

in the future.
In conclusion: The collaboration of a couple of specialists in

96Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

order to narrow the cause of outages is not any more necessary.
We are seeking a paradigm change: from art (troubleshooting)
to very well founded rules.

C. Leading edge technologies

We provide a very general overview of the leading edge
technologies which can be applied within our strategy. A
detailed consideration would go beyond the size of this article.

1) Artificial Intelligence: There are many definitions of
Artificial Intelligence (AI) depending of the goals one is
trying to achieve with an AI system. Amazon defines AI as
“the field of computer science dedicated to solving cognitive
problems commonly associated with human intelligence, such
as learning, problem solving, and pattern recognition” [32].

2) Data Analytics: Data Analytics is the science of
analysing data in order to draw conclusions based upon the
analysed data. There are couple of basic types, as descrip-
tive, diagnostic, predictive and prescriptive. Their names also
suggest their functionality, e.g. predictive analytics forecast
possible events, the prescriptive analytics propose an action
plan [33].

3) Trend Analysis: Trend analysis attempts to predict future
events, it uses historical data in order to forecast future
directions [34]. It is based on the idea that what happened in
the past gives hints regarding the future. There is no guarantee
that the forecast will be correct.

4) Machine learning: Machine learning (ML) is a branch
of AI which focuses on the use of data and algorithms to
imitate the way that human learn [35]. For example, Amazon
builds a lot of its business on machine learning systems.
Machine learning is so important to Amazon, they stated,
“Without ML, Amazon.com couldn’t grow its business, im-
prove its customer experience and selection, and optimise its
logistic speed and quality” [32]. The roots of machine learning
dates back to Arthur L. Samuel 1959, see a revised version of
his research paper [36]. Nowadays, due to the technological
advances in storage and processing power, we are witnesses
of the revival and further development of innovative machine
learning technologies [35].

5) Anomaly Detection: Anomaly detection refers to finding
data instances that do not fit the established patterns. Outlier
detection is similarly defined. Detecting outliers or anomalies
in data has been studied in the statistics community since the
end of the 19th century [37] [38]. Outliers are not necessary
“bad” data, they are extreme data points within data. On the
other hand anomalies are outside what is defined as “good”
data. Hence, if the model is accurate, both anomaly detection
and outlier detection yield the same results, if this is not the
case, the model has to be adapted accordingly.

In conclusion: The fundamentals of the leading edge tech-
nologies in order to set up our failure prevention strategy
have been known in the statistics community for decades. The
importance and renaissance of these technologies is due to the
progress in the storage and computer processing power area,
such that a much higher amount of data can nowadays be
evaluated at lower costs.

D. Historisation

Historisation is the process of keeping data available over
time. It offers additional aggregation possibilities and hence
extended analysis possibilities. It is indispensable to consider
historical information in order to compare past and present
and therefore to be able to make predictions. Moreover, we
need appropriate strategies to detect the alterations due to
version upgrades and if possible avoid false alarms. Nowadays,
the monitoring possibilities of the technical parameters of
networks and VMs are very good. The primary goal of these
monitoring systems is to offer current information regarding
those metrics in order to support the production requirements.
But we need historisation of the data of the VMs to be able
to perform trend analysis.

In conclusion: Historisation is absolutely essential in order
to be aware of previous correct states, usually up to one year,
definitely as long as aggregated data is evaluated for trend
analysis, etc.

E. Strategies for failure recognition and troubleshooting

There is a need to recognise instantly that an application
has stopped functioning in the expected way. There should be
a method in place, such that crashed application can be un-
equivocally distinguished from the non-responding ones. The
latter can resume their normal activity after the cause of non-
responsiveness has been eliminated, for example high CPU
load or short network outage. Moreover, large SQL-queries
(e.g. full table scans) can block some database application as
long as the query is running. For example, an unusual number
of threads can be an indication that the application has crashed.

Troubleshooting an application crash may be sometimes
very difficult and time consuming. Using statistical methods,
the number of possible suspicions can be meaningfully re-
duced. Moreover, these methods can give hints for possible
malfunctions, such that the identification of the cause of the
failure should be more or less straightforward. All available
historised information including event log files, input/output
information, consumed resources, etc., can/should be evalu-
ated. This is advisable since the event log files are unreli-
able and for example outliers are not necessarily a sign of
malfunctions; the challenge is to deliver reliable results using
unreliable methods. Thankfully, there are reliable techniques,
such that a raised suspicion can be confirmed or not. For
example, for a database application, an unexpected or a corrupt
dataset value can cause a failure if there is no appropriate
catch mechanism in place, which detects the unexpected value
at the time of its first use. The error propagates, and finally,
when the exception is catched, there is no hint in the event
logs regarding the real cause of the failure. Hence, multiple
diagnosis methods can make the difference. For example,
machine learning strategies can be used to identify unusual
data sets in data entry.

In conclusion: Failure diagnosis can be a cumbersome issue,
since the event log files do not always contain accurate hints
regarding the cause of the failure. Multiple methods, like the
evaluation of the event log files, statistics based on the metrics

97Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

of the resource utilisation, etc., should be simultaneously used
in order to improve the accuracy of the failure suspicions and
exclude proper functioning IT systems.

F. Strategies for failure avoidance

Generally speaking, the strategies presented in Subsec-
tion III-E regarding failure diagnosis can be used for fail-
ure prevention. In fact, the technology of identifying non-
suspicious IT-systems and the strategy for failure prevention
are very similar. Strategies such as the rigour in the develop-
ment process, verification and validation activities, automated
testing using comprehensive test cases, etc., would go beyond
the scope of this study [39]. These strategies should be
deployed before the roll-out process of the application.

Setting up appropriate metrics and historisation of their val-
ues facilitates trend analysis, predictive analytics, and outlier
detection. As already mentioned, outliers are not necessarily
faulty data, but they can give hints regarding further out of
order functioning. Furthermore, a reliable notification infra-
structure should be set up in order to be able to react in a
timely manner if suspicions occur. For example, by setting
up the metric “memory consumption” on application level
and by applying trend analysis, potentially large memory
consumption, i.e., memory leaks can be detected. This way,
by taking appropriate actions, the deterioration of the QoS
delivered by the application can be prevented.

In conclusion: by applying statistical methods, the future
behaviour of an IT system can be anticipated. The major
challenge is to set up the appropriate metrics – i.e. quantitative
measures used to characterise, evaluate, and predict anomalies
– to best model trend analysis, anomaly detection, failure
diagnosis and prevention, etc.

G. Monitoring

Monitoring is the process of gathering metrics regarding
the activity of the IT systems. We give a general overview
of the overall monitoring strategy with subsequent detailed
explanations.

1) General considerations: Commercially available moni-
toring systems are expected to gather data necessary to be able
to decide whether an application is working correctly or not.
Unfortunately, while this may be usually the case, the default
vendor-delivered metrics are not fully suitable for solving the
problem as above. Additional effort is necessary for:

a) Resource monitoring on the application side,
b) Resource monitoring on the server side,
c) Event log monitoring,
d) Input/output monitoring,
e) Direct health validation including threads surveillance,
f) Historisation of the collected information,
g) Using leading edge technologies in order to establish

trends and pattern recognition,
h) Establishing strategies for error recognition and efficient

troubleshooting,
i) Appropriate strategy in order to avoid the occurrence of

crashes.

2) Strategy: The monitoring and evaluation strategy should
be set up such that it can be carried out with a medium
educated stuff. We are looking now in detail to each of the
above items.

a) In order to be able to identify the resources used by
the application, commercial or self-made solutions can
be used. These information should be historised, such
that comparison with successful completion can be done.
Every deviation which is behind some thresholds could
indicate an anomaly that can lead to failures.

b) Resource monitoring on the server side is similar to
resource monitoring on the application side, the additional
benefit is that if some resources on the server side surpass
for an extended time some threshold, the server may
become inoperable. For example, if the CPU is at 100%
utilisation, the application may become unresponsive,
although it is functioning correctly. If the application has
its own VM then the distinction as above is obsolete.

c) There is a need to parse and structure the event logs as
indicated above. Furthermore, the event log files along
with the newly created structure should be historised, such
that statistical evaluations can be performed on the newly
created structures.

d) Furthermore, of crucial interest is input/output monitor-
ing, although it is almost always neglected. Unfortu-
nately, unforeseen changes in the input stream can cause
unwanted behaviour of the application. For example,
for database application an unexpected input value can
cause unexpected application reactions, which is almost
impossible to predict, since no one counted with this
situation. This is also a good counterexample, where
possible crash prediction is improbable. To remedy issues
as above, an appropriate filter on the input data stream
can be set up, but the problem in principle remains.

e) Under the heading direct health validation we understand
the strategy of gathering direct information from the ap-
plication itself regarding his health status. For example, a
database application can automatically be queried by stan-
dard SQL statements within self-made tools. For example,
metrics like the response time of the application can
be tracked and historised. If the response time degrades
under some predefined thresholds then certainly the QoS
of the application will degrade accordingly. Furthermore,
the behaviour of the threads, possibly including their
resource use, can be further supervised. For example, if
an application alternates between 4 and 8 threads and the
Operating System (OS) detects only 2 threads, then the
application has crashed, although the OS does not classify
it as terminated.

f) Generally speaking, all of the collected information re-
garding the health of an IT system should be historised
in order to allow comparison with earlier behaviour.
Commonly, historisation for example using a Data Ware-
house (DWH) is not a primordial concern of the vendors
of monitoring systems, their primary focus is on the

98Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

operative part.
g) The leading edge technologies to establish trends, out-

liers, and pattern recognition have been summarised in
Subsection III-C. The presented technologies are com-
plementary, such that multiple technologies can be used
in order to achieve our goals.

h) Establishing strategies for error recognition and efficient
troubleshooting is one of the most ambitious phases of our
strategy. Since not all crashes are recorded in the event
logs, establishing whether an application has crashed
or not, is not always a straightforward task. Moreover,
application may be irresponsive having some residual
threads detectable by the operating system, compare
Subsection II-D. Well suited technologies are available
in the area of anomaly detection in order to identify
patterns, which are out of order and give hints regarding
application crash, see Subsection III-E for more details.

i) In order to anticipate malfunctions, trend analysis and
pattern recognition can be promising approaches, see
Subsection III-F for more details.

In conclusion: Monitoring is a complex activity, which in-
volves taking into account all available information regarding
the IT systems to be considered. But monitoring alone is not
sufficient, the collected data has to be historised in order to be
able to compare successful historical operational sequences
with the current ones. Additionally, methodologies have to
be set up on the historical data based on statistical methods
in order to automatically detect failures, their causes, and
forecasts malfunctions of the IT systems.

IV. OUTLINE OF THE RESULTS

The main achievement of this work is the cognition that an
overall strategy termed ERPHD regarding instant recognition
and preventions of failures of the IT systems of a computer
centre and/or the IT infrastructure using statistical methods
is realisable. This strategy also includes the evaluation of the
event log files using similar approaches as for machine or
system performance data. Thus, a central point of surveillance
can be set up. We give an overview of the pros and cons of
the ERPHD strategy and close the section with some general
remarks.

1) Advantages of ERPHD strategy: the strategy for early
recognition and proactive handling of disruptions provides the
technology, such that:
a) Involving almost the same effort, all event logs can be

taken into account due to harmonised parsing strategy,
b) All existing applications can be monitored regarding early

recognition and proactive handling of disruptions due to
the general properties of our strategy,

c) The routine support activity decreases, hence the actual
support team can be kept smaller due to the failure
prevention strategy,

d) A central monitoring system can be set up, versus many
monitoring tools due to our uniform strategy,

e) The learning curve of the support team is manageable due
to a central monitoring system,

f) There is an automated evaluation of the event log files,
long manual search is obsolete due to the harmonised
parsing strategy for all event logs,

g) It is based on reliable leading edge technology,
h) Enables real-time computer centres and IT infrastructure

due to our failure prevention strategy,
i) Supports straightforward design strategies due to clear,

easy understandable architectural and implementation
principles,

j) Avoids or reduces “hot working phases” at night for the
IT personnel due the failure prevention capabilities,

k) Ensures very good scalability due to uniform design
strategies,

l) Supports easy maintenance due to transparent and
straightforward software development process, and last
but not least,

m) Supports early detection of erroneous data sets due the
advanced statistical methods.

2) Difficulties of ERPHD strategy:

a) There is no open-source or commercially available out-
of-the-box product,

b) Difficult architectural set-up, i.e., new algorithms have to
be designed and implemented,

c) Longer development times due to a new architectural
design strategy,

d) IT staff has to be additionally trained due to unconven-
tional architectural and maintenance strategies,

e) Heterogeneous development teams including mathemati-
cians and data scientist should be built upon, i.e., the
algorithmic part of the development may be sophisticated,

f) Increased development costs due to the unconventional
development strategies, and last but not least,

g) Strong management commitment to overcome the diffi-
culties due to the anticipated challenges.

3) Final considerations: Assuring and/or improving the
QoS of a data centre is a very complex endeavour, in which
the human component also plays a very important role. There
should be rules set up, such that the actions or decisions taken
by the service team should not be based upon the individual
skills of its members, but on generally accepted guidelines.
In this respect, the experience and know-how of an individual
employee should not be lost if he leaves the company.

In conclusion: If the computer centre or the IT infrastructure
exceeds a certain size and importance, the advantages of the
ERPHD strategy may prevail over its disadvantages. Definitely,
if the computer centre supports a round-the-clock production,
if there are real-time requirements in place, or high require-
ments regarding the QoS then the advantages of the ERPHD
strategy outweigh the implementation costs.

V. CONCLUSION AND FUTURE RESEARCH PERSPECTIVE

A. Conclusion

There is an increased request for real-time application capa-
bility in the industry and research amid rapidly increasing data
amount. Furthermore, there is a need for round-the-clock IT

99Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

systems availability due to 24/7/365 production requirements.
If these requirements cannot be met then the outage of the
IT systems leads to production outages with catastrophic
consequences for the business. In addition, the complexity of
the present day computer centres and IT infrastructures makes
it very difficult to manually assure their reliable operability.
Hence, to overcome the difficulties as above, there is a need
for an overall failure and outage prevention strategy as well
as very fast failure detection and diagnosis methodology. Our
article is a contribution in this direction.

The existing industrial implementations focus primarily on
vendor dependent machine and system performance data, us-
ing inside knowledge of the respective IT systems. In contrast,
our strategy relies on well-established leading edge statistical
methods and takes into account all data generated by the IT
systems, including the event logs. The main advantage of
our strategy, termed ERPHD is the possibility to centrally
monitor the computer centre and IT infrastructure using vendor
independent technologies. Moreover, all IT systems including
all applications can be monitored using the same technology,
hence once the technology has been set up, the effort to
extend the monitoring by additional IT systems should pose
no problems. This way, once the technology is in place, the
QoS of all applications can be substantially improved, raising
the QoS of non-production relevant applications with minimal
additional effort. Our contribution is a step away from an
artisanal approach in handling disruptions towards objectively
established optimal solutions. The real challenge is to set up
the metrics to best model the IT system.

B. Future research perspectives

A substantial question one can ask himself is the mean-
ingfulness of the objective (e.g. system performance data)
versus subjective (e.g. event log files) approach. Additionally,
the relevancy of the statistical approach applied on event
logs versus the classical approach, where the event logs are
content-wise analysed, is of utmost interest. Identifying the
weak points of statistical approaches including the limits
of applicability, may be of advantage. Last, but not least,
the question arises whether there are alternative approaches,
which do not rely on proprietary information regarding the IT
systems.

REFERENCES

[1] C. Schinko, “Künstliche Intelligenz im Rechenzentrum: So
vermeiden Sie IT-Störungen proaktiv [in English: Artificial
intelligence in the data center: How to proactively prevent
IT disruptions],” CANCOM.info, 2018, retrieved: September 2022.
[Online]. Available: https://www.cancom.info/2018/11/kuenstliche-
intelligenz-rechenzentrum-it-stoerungen-vermeiden/

[2] E. E. Ogheneovo, “On the Relationship between Software Complexity
and Maintenance Costs,” Journal of Computer and Communications,
vol. 2, pp. 1–16, 2014, retrieved: September 2022. [Online]. Available:
https://doi.org/10.1016/j.procir.2020.05.012

[3] M. Zinner et al., “Techniques and Methodologies for Measuring
and Increasing the Quality of Services: a Case Study Based on
Data Centers,” International Journal On Advances in Intelligent
Systems, volume 13, numbers 1 and 2, 2020, vol. 13, no. 1 &
2, pp. 19–35, 2020, retrieved: September 2022. [Online]. Available:
http://www.thinkmind.org/articles/intsys_v13_n12_2020_2.pdf

[4] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC press, 2014.

[5] Statista, “Volume of data/information created, captured, copied, and
consumed worldwide from 2010 to 2025,” 2021, retrieved: September
2022. [Online]. Available: https://www.statista.com/statistics/871513/
worldwide-data-created/

[6] R. Sousa, R. Miranda, A. Moreira, C. Alves, N. Lori, and J. Machado,
“Software tools for conducting real-time information processing and
visualization in industry: An up-to-date review,” Applied Sciences,
vol. 11, no. 11, p. 4800, 2021, retrieved: September 2022. [Online].
Available: https://www.mdpi.com/2076-3417/11/11/4800

[7] K. Yasumoto, H. Yamaguchi, and H. Shigeno, “Survey of real-time
processing technologies of iot data streams,” Journal of Information
Processing, vol. 24, no. 2, pp. 195–202, 2016, retrieved: September
2022. [Online]. Available: https://doi.org/10.2197/ipsjjip.24.195

[8] I. Sommerville, “Software engineering 9th edition,” ISBN-10, vol.
137035152, p. 18, 2011.

[9] Zinner et al., “Real-time information systems and methodology
based on continuous homomorphic processing in linear
information spaces,” 2015, retrieved: September 2022. [On-
line]. Available: https://patentimages.storage.googleapis.com/ed/fa/37/
6069417bdcc3eb/US20170032016A1.pdf

[10] R. Sheldon, “How HPE InfoSight AI proactively spots, solves
infrastructure issues,” SearchStorage, 2019, retrieved: September 2022.
[Online]. Available: https://www.techtarget.com/searchstorage/tip/How-
HPE-InfoSight-AI-proactively-spots-solves-infrastructure-issues

[11] “HPE InfoSight for Servers User Guide,” Hewlett Packard Enterprise,
2021, retrieved: September 2022. [Online]. Available: https://www.hpe.
com/psnow/doc/a00061446en_us

[12] “Unlocking Real-time Mainframe Operational Intelligence,” Syncsort
Ironstream, 2015, retrieved: September 2022. [Online]. Available:
https://www-50.ibm.com/partnerworld/gsd/showimage.do?id=41083

[13] Precisely Ironstream, 2022, retrieved: September 2022.
[Online]. Available: https://www.precisely.com/product/precisely-
ironstream/ironstream

[14] D. Carasso, “Exploring Splunk Search Processing Language (SPL)
Primer and Cookbook,” CITO Research New York, NY, 2012, retrieved:
September 2022. [Online]. Available: https://www.splunk.com/pdfs/
exploring-splunk.pdf

[15] J. Miller, “Mastering Splunk Optimize your machine-generated data
effectively by developing advanced analytics with Splunk,” PACKT
Publishing, 2012, retrieved: September 2022. [Online]. Available:
https://www.splunk.com/pdfs/exploring-splunk.pdf

[16] S. Luedtke, “Power Of Splunk SPL,” splunk, 2016, retrieved:
September 2022. [Online]. Available: https://conf.splunk.com/files/
2016/slides/power-of-spl.pdf

[17] “Quick Reference Guide,” splunk, retrieved: September 2022. [Online].
Available: https://www.splunk.com/pdfs/solution-guides/splunk-quick-
reference-guide.pdf

[18] K. Subramanian, “Practical splunk search processing language: A guide
for mastering spl commands for maximum efficiency and outcome.”
Springer, 2020, p. 349.

[19] SAP HANA, “Troubleshooting and Performance Analysis
Guide,” SAP Help Portal, 2018, retrieved: September
2022. [Online]. Available: https://help.sap.com/docs/
SAP_HANA_PLATFORM/bed8c14f9f024763b0777aa72b5436f6/
7d28bc8c4e54413caf2716731494da88.html?version=2.0.03

[20] IBM, “What is high-performance computing (HPC)?” IBM Homepage,
2022, retrieved: September 2022. [Online]. Available: https://www.ibm.
com/topics/hpc

[21] S. Ghiasvand, “Toward resilience in high performance computing: A
prototype to analyze and predict system behavior,” Ph.D. dissertation,
Dresden University of Technology, Germany, 2020, retrieved: September
2022. [Online]. Available: https://tud.qucosa.de/api/qucosa%3A72457/
attachment/ATT-0/

[22] S. He et al., “A survey on automated log analysis for reliability
engineering,” ACM Computing Surveys (CSUR), vol. 54, no. 6,
pp. 1–37, 2021, retrieved: September 2022. [Online]. Available:
https://arxiv.org/pdf/2009.07237.pdf

[23] M. R. Ghorab, J. Leveling, D. Zhou, G. J. Jones, and V. Wade,
“Identifying common user behaviour in multilingual search logs,”
in Workshop of the cross-language evaluation forum for European
languages. Springer, 2009, pp. 518–525, retrieved: September 2022.

100Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

http://www.thinkmind.org/articles/intsys_v13_n12_2020_2.pdf

[Online]. Available: https://doras.dcu.ie/16037/1/Identifying_Common_
User_Behaviour_in.pdf

[24] G. M. D. Nunzio, J. Leveling, and T. Mandl, “Multilingual log analysis:
Logclef,” in European Conference on Information Retrieval. Springer,
2011, pp. 675–678, retrieved: September 2022. [Online]. Available:
https://doras.dcu.ie/16438/1/Multilingual_Log_Analysis_LogCLEF.pdf

[25] L. Hatton, “Characterising the diagnosis of software failure,” IEEE
Software, vol. 18, no. 4, pp. 34–39, 2001, retrieved: September 2022.
[Online]. Available: https://www.leshatton.org/Documents/Diag_IS799.
pdf

[26] J.-C. Laprie, “Dependability: Basic concepts and terminology,” in De-
pendability: Basic Concepts and Terminology. Springer, 1992, pp. 3–
245.

[27] D. V. L. Bartlett, “The failure phenomenon: a critique,” International
Journal of Performability Engineering, vol. 6, no. 2, p. 181, 2010,
retrieved: September 2022. [Online]. Available: http://www.ijpe-online.
com/EN/article/downloadArticleFile.do?attachType=PDF&id=3362

[28] B. Randell and M. Koutny, “Failures: Their definition, modelling and
analysis,” in International Colloquium on Theoretical Aspects of Com-
puting. Springer, 2007, pp. 260–274.

[29] S. Dalal and R. S. Chhillar, “Case studies of most common
and severe types of software system failure,” International
Journal of Advanced Research in Computer Science and Software
Engineering, vol. 2, no. 8, 2012, retrieved: September 2022.
[Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.1073.5008&rep=rep1&type=pdf

[30] “E-Definitions,” ComputerHope, 2021, retrieved: September 2022.
[Online]. Available: https://www.computerhope.com/jargon/e/error.htm

[31] “CNSSI 4009-2015 [Superseded] from NIST SP 800-34 Rev. 1
- Adapted,” 2015, retrieved: September 2022. [Online]. Available:
https://csrc.nist.gov/glossary/term/disruption

[32] B. Marr, “The Key Definitions Of Artificial Intelligence
(AI) That Explain Its Importance,” Enterprise Tech,
2018, retrieved: September 2022. [Online]. Available: https:
//www.forbes.com/sites/bernardmarr/2018/02/14/the-key-definitions-of-
artificial-intelligence-ai-that-explain-its-importance/?sh=7a87d4734f5d

[33] J. Frankenfield, “Data Analytics,” Investopedia, 2022, retrieved:
September 2022. [Online]. Available: https://www.investopedia.com/
terms/d/data-analytics.asp

[34] A. Hayes, “Trend Analysis,” Investopedia, 2021, retrieved:
September 2022. [Online]. Available: https://www.investopedia.com/
terms/t/trendanalysis.asp

[35] “Machine Learning,” IBM Cloud Education, 2020, retrieved: September
2022. [Online]. Available: https://www.ibm.com/cloud/learn/machine-
learning

[36] F. Gabel, “Artificial Intelligence for Games: Seminar,” , 2019, retrieved:
September 2022. [Online]. Available: https://hci.iwr.uni-heidelberg.de/
system/files/private/downloads/636026949/report_frank_gabel.pdf

[37] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[38] ——, “Outlier detection: A survey,” ACM Computing Surveys, vol. 14,
p. 15, 2007.

[39] ScienceDirect, “Fault Prevention,” Elsevier, 2022, retrieved:
September 2022. [Online]. Available: https://www.sciencedirect.com/
topics/computer-science/fault-prevention

101Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

http://www.ijpe-online.com/EN/article/downloadArticleFile.do?attachType=PDF&id=3362
http://www.ijpe-online.com/EN/article/downloadArticleFile.do?attachType=PDF&id=3362

	Introduction
	Motivation
	Rapidly increasing data amount
	Real-time demands
	24/7/365 (round-the-clock) system availability

	Aim
	Paper organisation

	Related work
	HPE InfoSight
	Ironstream
	Splunk
	SAP HANA Troubleshooting and Performance Analysis Tool
	Toward Resilience in HPC

	Strategy Description
	Event logs
	Importance of the event logs
	Parsing strategies

	Failures
	General considerations
	Detecting the cause of the crash

	Leading edge technologies
	Artificial Intelligence
	Data Analytics
	Trend Analysis
	Machine learning
	Anomaly Detection

	Historisation
	Strategies for failure recognition and troubleshooting
	Strategies for failure avoidance
	Monitoring
	General considerations
	Strategy

	Outline of the results
	Advantages of ERPHD strategy
	Difficulties of ERPHD strategy
	Final considerations

	Conclusion and future research perspective
	Conclusion
	Future research perspectives

	References

