
Automated Testing: Testing Top 10 OWASP
Vulnerabilities of Government Web Applications in

Bangladesh
Azaz Ahamed

Computer Science & Engineering
Independent University, Bangladesh

2120637@iub.edu.bd

Nafiz Sadman
Silicon Orchard Ltd.

Bangladesh
nafiz@siliconorchard.com

Touseef Aziz Khan
Computer Science & Engineering

Independent University, Bangladesh
2120638@iub.edu.bd

Mahfuz Ibne Hannan
Computer Science & Engineering

Independent University, Bangladesh
2120635@iub.edu.bd

Farzana Sadia
Dept. of Software Engineering

Daffodil International University, Bangladesh
sadia swe@diu.edu.bd

Mahady Hasan
Computer Science & Engineering

Independent University, Bangladesh
mahady@iub.edu.bd

Abstract—With an increase in the popularity of the Internet,
there is also a rise in the number of security threats and vulner-
abilities. The Open Web Application Security Project (OWASP)
is an online community-driven project that provides a set of
10 most crucial security vulnerabilities to monitor and mitigate
to have safer Internet connectivity. Automated software testing
provides invaluable insights into the current situation regarding
OWASP Top 10 2017 vulnerabilities for Web applications from
the five sectors of the Bangladesh Government. In this research,
comprehensive testing has been carried out using BurpSuite,
ZAP and Netsparker to see recurring vulnerabilities among the
sections of Web applications. We draw data-driven comparisons
between these tools and evaluate them against Web applications
from respective sectors and the results are presented accordingly.
We found the Services and the Transportation sectors to be most
vulnerable.

Index Terms—Software Testing; Automated Testing; OWASP;
Web Vulnerability; Testing Tools

I. INTRODUCTION
With the advancement and adoption of Web technology,

more and more government services are provided by online
Web applications these days. Sophisticated online portals are
visited by thousands of citizens every day as they become
more and more reliant on their convenience. Naturally, Web
applications like these store sensitive user information. With
such adoption, comes great concern for security to protect the
data and privacy of the users of such platforms [1]. Newer
and more sophisticated attacks need to be monitored around
the clock due to the advancements in Web technology [2].

Current issues remain where Web applications like these are
not properly or regularly tested for OWASP (Open Web Appli-
cation Security Project) vulnerabilities as seen in test results
disseminated in later sections of this paper. Our purpose is
to understand how the selected government Web applications
from different sectors fare against the testing tools.

According to a news article [3], approximately 147–200
Bangladeshi entities, including government agencies, were

exploited during April 2021. Before this, according to another
article in 2019 [4], 3 private banks were targeted and exploited
to steal almost $3 million. In 2016 in a similar type of heist,
the hackers stole approximately $81 million from Bangladesh
Bank’s federal reserve. These are only a handful of the
reported attacks.

This paper provides a selection of three automated vulnera-
bility testing tools to find the OWASP Top 10 2017 vulnerabil-
ities [5], [6]. The tools used in this research were: Netsparker,
BurpSuite, and ZAP. The main motivations for selecting these
three tools were the availability of existing security research
[7], OWASP compliant threat detection features, reporting,
and documentation of usage. According to past research, they
are fast and reliable, especially when tested against known
vulnerabilities [8]. The different sectors of government Web
applications that were tested using the tools are Services,
Telecommunication, Welfare, Health, and Transportation. Each
test was run three times on the same Web application using
the same tool. This methodology was adapted to mitigate any
inconsistencies and establish a measurement of correctness
for each testing tool. The results were averaged to come to
a consistent comparison between the sectors, and testing tools
were carefully compared for consistency. Common vulnerabil-
ities among the Web applications are pointed out and different
sectors are compared against one another based on how secure
they are.

In this paper, we intend to:

• Explore the three popular OWASP compliant testing tools
and their effectiveness in finding and recording OWASP’s
top 10 vulnerabilities.

• Test live Bangladesh Government Web applications, find
their vulnerabilities and draw a comparison between
them.

Our target is to find answers to the following questions:

46Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

• What is the current status of Bangladesh’s sensitive
Government Websites in terms of vulnerabilities?

• Which testing tools used in this research can best detect
the most vulnerabilities of the Bangladeshi Government
Websites?

• What do these vulnerabilities tell us about the Websites?
The organization of the paper is as follows: In Section 2, we

present a brief technical background on OWASP and its list
of top 10 vulnerabilities. In Section 3, we look into different
literature reviews. We present our research methodology in
Section 4 and discuss the results in Section 5. Finally, we
conclude our research and future scope in Section 6.

II. TECHNICAL BACKGROUND

In this section, we briefly introduce OWASP. It is a non-
profit, community-driven project whose primary aim is to
study contemporary vulnerabilities in modern Web applica-
tions. The foundation present a set of standards for identifying
the severity of the vulnerabilities, their possible causes, and
their mitigation plans.

Table I summarizes the Top 10 OWASP 2017 Vulnerabilities
with their acronyms. Throughout this paper, we will use these
acronyms to denote corresponding vulnerabilities.

TABLE I
SUMMARY OF TOP 10 OWASP 2017

Vulnerabilities Description Denotations
A1:2017 Injection A1
A2:2017 Broken Authentication A2
A3:2017 Sensitive Data Exposure A3
A4:2017 XML External Entities (XXE) A4
A5:2017 Broken Access Control A5
A6:2017 Security Misconfiguration A6
A7:2017 Cross-Site Scripting (XSS) A7
A8:2017 Insecure Deserialization A8
A9:2017 Using Components with Known Vulnerabilities A9
A10:2017 Insufficient Logging & Monitoring A10

The OWASP Top 10 is a list of the ten most important
and common vulnerabilities that may be found in most Web
applications. The popularity of the Top 10 list enabled its
adoption as a standard in many vulnerability testing tools.
In Table 1, we can see the list of the OWASP Top 10
vulnerabilities and their denotations. All the tools used in this
research adhere to the Top 10 classes of OWASP to report
found vulnerabilities. BurpSuite, Netsparker, and ZAP are all
OWASP compliant. They provide rich reports which accurately
identify vulnerabilities according to the OWASP Top 10 clas-
sification. After finding the class of a vulnerability, we can
refer to the OWASP Website to get a better understanding of
its severity and possible mitigation ideas.

III. LITERATURE REVIEW

Deployed Websites often come with several vulnerability
issues. These vulnerabilities have been extensively studied
and systematically categorized into vulnerability standards.
Batch-Nutman [5] studied the most frequent Web application
vulnerabilities that can help firms better secure their data from
such threats. The research aimed to help users and developers

be better equipped to deal with the most common attacks and
design strategies to avoid future attacks on their Web apps. The
author tested 10 vulnerabilities listed in OWASP (Open Web
Application Security Project) Top 10 [9] designed and devel-
oped a secure Web application by following the guidelines of
the OWASP. The paper focused on the mitigation of Web appli-
cation vulnerabilities through configuration changes, coding,
and patch application. SQL injection, broken authentication,
sensitive data exposure, broken access control, and XML
external entities are among the OWASP top ten vulnerabilities.
The Web application’s security has been tested and proven to
have a defense mechanism in place for the aforementioned
vulnerabilities. There are several Web application vulnerability
testing works [10]–[12]. Yulianton et al. [13] proposed a
framework to detect Web application vulnerabilities using a
combination of Dynamic Taint Analysis, Static Taint Analysis,
and Black-box testing. The research showed that the combi-
nation of Dynamic and Static Taint Analysis fed to Black-box
testing as metadata yielded greater accuracy and fewer false
positives of vulnerabilities. The aforementioned research gives
us the potential attacks on Websites and potential mitigations.
However, the importance of testing during the development
period is emphasized by Rangau et al. [14], who explained
the emergence of DevSecOps [15] and how it has come to be
important due to fast-paced deployment and a lack of proper
security documentation. Afterward, they introduced tools like
ZAP, JMeter, Selenium, etc., to implement dynamic testing
for Web applications in CI/CD pipelines. Interestingly, the
authors in [16] initially expressed concern regarding manual
testing how many resource it requires, and the complications
it introduces. Later the advantages of the Automated Testing
tools are explored and the findings indicate to 68-75% increase
in efficiency when it comes to time and effort in testing.

In this research, we test the effectiveness of three different
testing tools namely Netsparker, BurpSuite, and ZAP on
Bangladeshi Government Service Websites based on OWASP
Top 10 2017 Web vulnerabilities. Comparative analysis of
testing tools [1], [6], [17]–[19] focused on determining the
efficiency of load testing and detection of several Web attacks,
studying pen testing on several Web applications, and how
network information is gathered using various tools about
Websites to find the possibility of cyberattacks. Anantharaman
et al. [8] discussed OWASP A09:2017 (i.e., Using Components
with Known Vulnerabilities) and pointed out several ways
software can be component-based vulnerable proof by having
updated technological stacks and secure SSL. They have also
noted some standard developer and tester practices and tools
like BurpSuite that can help prevent vulnerabilities.

Various scanners have also been compared to check which
type of scanners can detect the maximum vulnerabilities. [20]
presented a systematic comparison between ZAP and Arachni
testing tools across four vulnerabilities (SQL injection, XSS,
CMDI, and LDAP). The authors used OWASP and WAVSEP
as benchmarks. The authors conclude that ZAP outperformed
Arachini and recommended that OWASP be used as standard
benchmarking to evaluate testing results. [21] presented a

47Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

comparative study of 8 Web vulnerability scanners (Acunetix,
HP WebInspect, IBM AppScan, OWASP ZAP, SNLS-VK,
Arachni, Vega, and Iron WASP) and tested on WebGoat and
Damn Vulnerable Web Application (DVWA) which have pre-
built vulnerabilities. Precision, recall, Youden index, OWASP
Web benchmark evaluation (WBE), and the Web application
security scanner evaluation criteria (WASSEC) were used to
evaluate the performances of the tools. The authors concluded
that all of the testing tools require improvement in terms of
code coverage, detection rate, and reducing the number of
false positives. Karangle et al. [22] compared modern security
scanning tools, such as Uniscan and ZAP tools for testing
vulnerabilities in Web applications through experimentation on
20 Websites. The paper goes into detail about penetration test-
ing using these tools and how the Website URL’s information
is gathered to find the possibility of cyberattacks. Ultimately,
they found that the ZAP tool performed faster than Uniscan,
but Uniscan performed a deeper vulnerability analysis.

The scope of our research involves comparing the effective-
ness of the three tools in terms of capturing the vulnerabilities
listed in OWASP Top 10 2017 on the Bangladeshi Government
Web services. Setiawan et al. [23] performed vulnerability
analysis for government website applications and carried out
using the Interactive Application Security Testing (IAST)
approach. The study used three tools, namely Jenkins, API
ZAP, and SonarQube. Moniruzzaman et al. [24] performed a
systemized combination of black box and white box testing
to detect vulnerabilities of different Bangladeshi Government
and popular Websites using most of the common testing tools.
They have found out that about 64% of the selected Websites
are at risk of vulnerabilities. However, we also explicitly point
out in our study the consistencies and inconsistencies in these
tools.

IV. RESEARCH METHODOLOGY
To ensure proper documentation of vulnerabilities reported

by each tool for each Website, an individual tool was run three
times on each Website to give a proper baseline. The following
data was collected from every test run:

• Number of runs (number of test runs on the same Website
using the same tool).

• Time taken to complete the test (in minutes).
• Counts of vulnerabilities found for severities: Low,

Medium, and High.
• Total number of vulnerabilities.
Multiple tests were run this way to understand the consis-

tency of vulnerability reporting for each tool for a particular
Website. Running multiple tests also helped to understand the
UI/UX of the individual tools, which essentially gave us a
way to judge their usability, accessibility, and applicability for
finding OWASP Top 10 vulnerabilities.

Another goal was to determine how the government Web
applications compare to each other in terms of vulnerabilities
and determine if there is a correlation between the popularity
of a Website and the number of vulnerabilities found there. For
this, five government Web applications from different sectors

were thoroughly tested with the testing tools for OWASP Top
10 vulnerabilities. The sectors are:

• Services
• Transportation
• Welfare
• Healthcare
• Telecommunications
After collecting the data found through testing, all the

vulnerabilities were cross-matched with their corresponding
OWASP vulnerabilities category and presented in a graphical
format. There, we see the severity of the vulnerabilities: vul-
nerabilities found in sectors by tool and overall vulnerabilities
found in different sectors.

Figure 1 represents our methodology workflow.

Fig. 1. Workflow of our methodology.

We can break down the process into 5 steps.
1) Tool Discovery: In this initial phase, the tools we

selected were the most popular among their class for
OWASP, as they had many resources and documentation
and also, according to [7].

2) Target Application: In the target application phase, we
chose some government Web applications that were used
by citizens of the country and narrowed it down to the
top 5 government Web applications.

3) Scanning: Several activities are carried out during this
phase to perform vulnerability scanning. The vulnerabil-
ity scan’s goal is to identify a list of vulnerabilities in
the test target. This study uses three tools: Netsparker,
BurpSuite, and ZAP.

4) Reporting: During this phase, the tester/developer will
document the possible results generated by the three
tools throughout the vulnerability assessment process.

5) Result Analysis: In this final phase, the tester/developer
analyzes the discovered vulnerability under the OWASP
Top Ten 2017.

[24] tested several Bangladeshi Government Websites, but
the vulnerability was mapped with Common Vulnerabilities
and Exposures (CVE) and the test category was limited to 5
vulnerabilities. In this study, we covered major Bangladeshi
Government Websites and presented an overview of vulnera-
bilities as per OWASP Top 10 2017 in the selected sites.

48Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

(a) High Vulnerability (b) Medium Vulnerability

(c) Low Vulnerability

Fig. 2. Vulnerability statistics of each of the testing tools on our targeted Websites.

Our classification of High, Medium and Low vulnerabilities
was aided by the OWASP Risk Factor (RF) table documented
by [25]. Here, the top 10 vulnerability classes are given a
Risk Factor score based on exploitability, security weakness
detectability, and their technical impact on business. We have
classified severity based on RF scores in the following manner:

• LOW if 4 ≤ RF < 5
• MEDIUM if 5 ≤ RF < 7
• HIGH if RF ≥ 7

As all the testing tools report the classes of OWASP
vulnerabilities, they are directly comparable to the RF scores
and their corresponding severity classes.

Using the 2017 OWASP standard may seem like a limitation
of this research when OWASP has announced 2021 standards.
All the tools used to test vulnerabilities in this research have
the option to generate reports for OWASP Top 10 2017.
Therefore, we have selected OWASP 2017 as it is compatible
with all the tools and the results can be compared consistently.
OWASP 2021 classifications are not yet fully integrated with
most vulnerability assessment tools on the market.

V. RESULT ANALYSIS

In this section, we dive deep into our findings in this re-
search. We believe that the collected data gives us an accurate
picture of the security and testing aspects of Government Web

applications that deal with millions of sensitive user data every
day.

If we take Figure 2 into account, we can observe that
Netsparker can record the highest number of threats compared
to BurpSuite and ZAP. According to the findings in Figure
2a, Netsparker records 5 times more high vulnerability threats
than BurpSuite and ZAP. From Figure 2b, we can also observe
that BurpSuite did not detect any Medium level threats which
indicate that BurpSuite might not have enough features to test
parameters when compared to Netsparker or ZAP. In Figure
2c, we can conclude that Netsparker had recorded the highest
number of low vulnerability threats followed by ZAP then
BurpSuite.

In Figure 3, we can see a breakdown of vulnerabilities and
their severity for each sector of Web applications. OWASP
vulnerabilities found by all the tools are aggregated for each
sector of Web applications and classified into severity cate-
gories, as discussed earlier, based on RF scores. As we can see
from the graph, Transportation and Services have the highest
numbers of high-severity vulnerabilities. The high-severity
vulnerabilities in Transportation and Service Web applications
may result in the following scenarios:

1) A1 - Injection: Where unauthorized users can gain access
to sensitive data to discover personal National Identity
or License Information with malicious intent.

49Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

Fig. 3. Severity of OWASP Vulnerability in Web Applications by Sector.

Fig. 4. OWASP 2017 Top 10 Vulnerabilities (Count across all Web applica-
tions).

2) A2 - Broken Authentication: Where attackers can use
brute force to potentially gain access to make unau-
thorized changes to user identity information or forge
official documents.

3) A3 - Sensitive Data Exposure Attackers exploit weak
public/private key generation to gain access to data
in transit using man-in-the-middle attacks to steal user
details for illegal promotional material.

4) A4 - XML External Entities Older XML may enable
uploading of hostile XML code through Uniform Re-
source Identifier (URI) network requests. This may allow
remote code execution and possible denial-of-service
attacks. This may result in system service downtime,
causing very difficult circumstances.

Consequently, if we take a look at the medium/high-severity
vulnerabilities in Healthcare, the following attack scenarios
might also be true:

1) A5 - Broken Access Control: Where unauthorized users
can make changes without any required permission.
Here, the medical information of a user can be altered to
make fake prescriptions to purchase unauthorized drugs.

2) A7 - Cross Site Scripting: Here, attackers can directly
manipulate a user’s browser to alter information using
their credentials with remote code execution. This might

result in false reports of ailments and also theft of user
credentials.

These scenarios hold for the other sectors of Web applica-
tions. Low-severity vulnerabilities are not actively threatening,
but may be exploitable in niche cases. Web applications
from the Telecommunication sector had the lowest number of
high/medium-severity vulnerabilities. We have an assumption
that it may be more secure as the sector relies almost entirely
on current technology and practices. Surprisingly, Welfare
reported the lowest number of vulnerabilities in general,
though it had a higher number of high-severity vulnerabilities
than the Telecommunication sector. We think this may be due
to smaller and relatively newer Web applications built with
current tools and practices, whereas the applications in the
Telecommunication sector were relatively mature.

According to Figure 4, we can observe that Netsparker
detected the most vulnerabilities among the three tools, while
ZAP was second and BurpSuite detected the least amount. It
must also be noted that even though Netsparker and ZAP have
similar results, Netsparker found more vulnerabilities such as
A1 and A7, which ZAP did not detect. ZAP also failed to scan
Welfare and Telecommunication Web applications, whereas
Netsparker managed to scan all the Web applications. Burp-
Suite failed to scan the Transportation Web application after
running for a long time. This indicates that ZAP and BurpSuite
only executed surface-level scanning, while Netsparker did
much deeper vulnerability analysis while scanning the Web
applications. However, BurpSuite detected A2, which neither
Netsparker nor ZAP were able to detect. If we observe the
time taken by the testing tools to scan each Web application,
ZAP is the fastest among all the tools, while BurpSuite comes
in second and Netsparker takes the longest overall.

Across three runs for each Website with each testing tool,
the test run with the highest number of classified vulnerabili-
ties is kept. In this Figure 4, we can see the total number of
OWASP Top 10 vulnerability classes found with each testing
tool across all the tested applications.

Figure 5 illustrates the vulnerabilities discovered in various
sectors. According to the chart, A6 (Security Misconfigura-
tion) appears to be the most common vulnerability, closely

50Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

Fig. 5. OWASP 2017 Top 10 Vulnerabilities (Found across individual sectors).

followed by A3 (Sensitive Data Exposure) and A9 (Using
Components With Known Vulnerabilities). According to the
remediation provided in [5], we can resolve these issues for
all of the vulnerabilities. Based on our targeted applications,
we can see that Transportation is the most vulnerable, followed
by Services.

Transportation plays a major role in the daily lives of citi-
zens. According to Bangladesh Transport Data [26], there are
approximately 4.5 million registered vehicles in Bangladesh as
of June 2020. Based on this relevant data, we can conclude that
there are approximately 4.5 million users of these applications
whose information is at high risk. The second most dangerous
application we discovered was Services, which includes busi-
ness information, citizen information, banking services, etc.
Bangladesh’s current population is 164.7 million as of 2020,
with some of them directly or indirectly using services whose
data are at risk. Vulnerabilities in healthcare are much lower
than what we found in Transportation and Service sectors.
Telecommunications and Welfare have the lowest number
of vulnerabilities. According to our findings, Severity can
manifest itself in a variety of ways, such as A3, SSL (Secure
Sockets Layer) certificates about to expire, session cookies
not marked as secured, and weak ciphers enabled, and so on.
For A6, it could be an insecure framework or a DB (database)
user with administrative privileges, among other things. In A9,
it typically deals with Apache, Tomcat, Bootstrap, JQuery,
OpenSSL, PHP, Nginx, and other versions. These are some
of the most common threats discovered in our research that
developers may have overlooked. This has a domino effect,
putting sensitive information at risk, such as registered holders’
data, etc.

From the vulnerability results we discovered in this re-
search, we can see that government Web applications in
Bangladesh suffer from important security oversights. Most of
the vulnerabilities arise from common software development
pitfalls such as:

• Not writing maintainable code
• Not writing reusable code
• Not writing unit or integration tests

• Not maintaining up-to-date documentation of the project
• Not updating software packages used in software devel-

opment
These are some of the steps that help catch 99% of the security
issues or bugs in Software Development.

It is positively alarming to discover a high number of
high-severity vulnerabilities in 3 out of 5 selected sectors of
government Web applications. We hypothesize that this is due
to the current state of maturity in technology in Bangladesh.
More in-depth analysis and studies are required to validate this
hypothesis, and we believe this to be an interesting arena for
future research.

VI. CONCLUSIONS
In this research, we have compiled, compared, and con-

trasted the data collected to see how effectively BurpSuite,
Netsparker and Zap record OWASP Top 10 vulnerabilities and
report them. We have also seen OWASP vulnerabilities across
all tested applications and common vulnerabilities and referred
to their remediation possibilities.

The driving purpose of this study was to understand OWASP
vulnerabilities and their impact on the sectors of Government
Web applications in Bangladesh. Our target was to run as
many tests using as many tools as possible to find consistent
results of vulnerabilities. Additionally, during this research,
we understood and learned how automated testing tools work.
Though only three testing tools are used, in the future we
intend to expand the list and draw a comparison between many
other popular tools. In future research, we would like to find
if specific tools are better for a specific type of Website e.g.,
Lighthouse [27] for Progressive Web Applications).

All the tests done in this paper are exclusively black box
testing with a specified scan policy. This is due to not having
direct access to source code to perform any static analysis. We
believe that a combination of both black box and static analysis
white box testing will provide better and deeper insight.
Yulianton et al. [13] For now, black-box testing only provides
us with information about what and how many vulnerabilities
are there, but the crux of the issue might arise from the more
apt question, “Why are the vulnerabilities there in the first
place?”

Our next task is to broaden the scope of Websites used
for testing vulnerabilities and use the latest OWASP Top 10
2021 guidelines. Along with black-box testing, we also look
forward to adding white-box and grey-box testing. Having
more insights can provide solutions toward better software
development methodologies with strict adherence to testing
guidelines.

REFERENCES

[1] L. F. de Lima, M. C. Horstmann, D. N. Neto, A. R. Grégio, F. Silva,
and L. M. Peres, “On the challenges of automated testing of web vul-
nerabilities,” in 2020 IEEE 29th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE).
IEEE, 2020, pp. 203–206.

[2] A. Sołtysik-Piorunkiewicz and M. Krysiak, “The cyber threats analysis
for web applications security in industry 4.0,” in Towards Industry
4.0—Current Challenges in Information Systems. Springer, 2020, pp.
127–141.

51Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

[3] S. Rahman, “Latest cyber attack hit at least 147 bangladeshi entities,”
2021. [Online]. Available: shorturl.at/qrz36

[4] S. Rehman, “Three banks hit by cyberattacks,” 2016. [Online].
Available: https://www.thedailystar.net/frontpage/news/three-banks-hit-
cyberattacks-1760629

[5] M. Bach-Nutman, “Understanding the top 10 owasp vulnerabilities,”
arXiv preprint arXiv:2012.09960, 2020.

[6] R. S. Devi and M. M. Kumar, “Testing for security weakness of web
applications using ethical hacking,” in 2020 4th International Conference
on Trends in Electronics and Informatics (ICOEI)(48184). IEEE, 2020,
pp. 354–361.

[7] F. Ö. Sönmez and B. G. Kiliç, “Holistic web application security
visualization for multi-project and multi-phase dynamic application
security test results,” IEEE Access, vol. 9, pp. 25 858–25 884, 2021.

[8] N. Anantharaman and B. Wukkadada, “Identifying the usage of known
vulnerabilities components based on owasp a9,” in 2020 International
Conference on Emerging Smart Computing and Informatics (ESCI).
IEEE, 2020, pp. 88–91.

[9] S. K. Lala, A. Kumar, and T. Subbulakshmi, “Secure web development
using owasp guidelines,” in 2021 5th International Conference on
Intelligent Computing and Control Systems (ICICCS). IEEE, 2021,
pp. 323–332.

[10] D. Omeiza and J. Owusu-Tweneboah, “Web security investigation
through penetration tests: A case study of an educational institution
portal,” arXiv preprint arXiv:1811.01388, 2018.

[11] N. Abdinurova, M. Galiyev, and A. Aitkulov, “Owasp vulnerabilities
scanning of a private university websites,” Suleyman Demirel University
Bulletin: Natural and Technical Sciences, 2021.

[12] F. Holı́k and S. Neradova, “Vulnerabilities of modern web applications,”
in 2017 40th International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics (MIPRO). IEEE,
2017, pp. 1256–1261.

[13] H. Yulianton, A. Trisetyarso, W. Suparta, B. S. Abbas, and C. H.
Kang, “Web application vulnerability detection using taint analysis and
black-box testing,” in IOP Conference Series: Materials Science and
Engineering, vol. 879, no. 1. IOP Publishing, 2020, p. 012031.

[14] T. Rangnau, R. v. Buijtenen, F. Fransen, and F. Turkmen, “Continuous
security testing: A case study on integrating dynamic security testing
tools in ci/cd pipelines,” in 2020 IEEE 24th International Enterprise
Distributed Object Computing Conference (EDOC). IEEE, 2020, pp.
145–154.

[15] “What is devsecops?” Apr 2018. [Online]. Available:
https://www.redhat.com/en/topics/devops/what-is-devsecops

[16] M. Hanna, A. E. Aboutabl, and M.-S. M. Mostafa, “Automated soft-
ware testing framework for web applications,” International Journal of
Applied Engineering Research, vol. 13, no. 11, pp. 9758–9767, 2018.

[17] R. Abbas, Z. Sultan, and S. N. Bhatti, “Comparative analysis of auto-
mated load testing tools: Apache jmeter, microsoft visual studio (tfs),
loadrunner, siege,” in 2017 International Conference on Communication
Technologies (ComTech). IEEE, 2017, pp. 39–44.

[18] S. Tyagi and K. Kumar, “Evaluation of static web vulnerability analysis
tools,” in 2018 Fifth International Conference on Parallel, Distributed
and Grid Computing (PDGC). IEEE, 2018, pp. 1–6.

[19] D. Dagar and A. Gupta, “A comparison of vulnerability assessment tools
owasp 2.7. 0 & pentest on demo web application,” CPJ Global Review
A National Journal of Chanderprabhu Jain College of Higher Studies,
pp. 46–50.

[20] B. Mburano and W. Si, “Evaluation of web vulnerability scanners
based on owasp benchmark,” in 2018 26th International Conference
on Systems Engineering (ICSEng). IEEE, 2018, pp. 1–6.

[21] R. Amankwah, J. Chen, P. K. Kudjo, and D. Towey, “An empirical
comparison of commercial and open-source web vulnerability scanners,”
Software: Practice and Experience, vol. 50, no. 9, pp. 1842–1857, 2020.

[22] N. Karangle, A. K. Mishra, and D. A. Khan, “Comparison of nikto
and uniscan for measuring url vulnerability,” in 2019 10th International
Conference on Computing, Communication and Networking Technolo-
gies (ICCCNT). IEEE, 2019, pp. 1–6.

[23] H. Setiawan, L. E. Erlangga, and I. Baskoro, “Vulnerability analysis
using the interactive application security testing (iast) approach for gov-
ernment x website applications,” in 2020 3rd International Conference
on Information and Communications Technology (ICOIACT). IEEE,
2020, pp. 471–475.

[24] M. Moniruzzaman, F. Chowdhury, and M. S. Ferdous, “Measuring
vulnerabilities of bangladeshi websites,” in 2019 International Confer-

ence on Electrical, Computer and Communication Engineering (ECCE).
IEEE, 2019, pp. 1–7.

[25] A. van der Stock, B. Glas, N. Smithline, and T. Gigler, “Owasp top
10 2017: The ten most critical web application security risks,” OWASP
Foundation, p. 23, 2017.

[26] A. M. A. Obaida, “Number of motor vehicles,” Aug 2022. [Online].
Available: http://dsce.edu.bd/db/Number of Motor Vehicles

[27] “Overview - lighthouse,” May 2022. [Online]. Available:
https://developer.chrome.com/docs/lighthouse/overview/

52Copyright (c) IARIA, 2023. ISBN: 978-1-61208-997-3

ICSEA 2022 : The Seventeenth International Conference on Software Engineering Advances

